Planning and Optimization
D6. Delete Relaxation: h™** and h2dd

Malte Helmert and Gabriele Roger

Universitat Basel

October 26, 2022

Planning and Optimization
October 26, 2022 — D6. Delete Relaxation: h™* and k%

D6.1 Introduction
D6.2 h™a* and h2dd
D6.3 Properties of ™2 and A2

D6.4 Summary

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 26, 2022

2/27

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 26, 2022 1/27
Content of this Course
Prelude
Foundations
Constraints
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 26, 2022 3 /27

Content of this Course: Heuristics

Delete Relaxation }——{ Relaxed Tasks

- Relaxed
Abstraction ‘

Task Graphs

L Relaxation
"""""""""""""""""""" Heuristics
- Landmarks
""""""""""""" * Network
Constraints =
D Flows
‘‘‘‘‘‘‘ Potenfial .
Heuristics

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 26, 2022

4/ 27

D6. Delete Relaxation: h™®* and h*dd

D6.1 Introduction

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 26, 2022

5/

Introduction

27

D6. Delete Relaxation: h™#* and h*dd

Delete Relaxation Heuristics

» In this chapter, we introduce heuristics
based on delete relaxation.

» Their basic idea is to propagate information
in relaxed task graphs, similar to the previous chapter.

» Unlike the previous chapter, we do not just propagate
information about whether a given node is reachable,
but estimates how expensive it is to reach the node.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 26, 2022

6/

Introduction

27

D6. Delete Relaxation: h™** and h?d9

Reminder: Running Example

We will use the same running example as in the previous chapter:
M= (V,I,{o01,02,03,04},7) with
V: {37 b?C7d7e7 f7g7 h}
I={a—»T,b—T,c—F,d—T,
e—F,f—F g— F h— F}

op=(cV(anb),cA((cNnd)>e)1)
o, =(T,f,2)

03:<f,g,1>

O4:<f,h,1>

y=eA(gAh)

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 26, 2022

Introduction

/ 27

D6. Delete Relaxation: h™®* and h?d9

Algorithm for Reachability Analysis (Reminder)

» reachability analysis in RTGs = computing all forced true
nodes = computing the most conservative assignment

» Here is an algorithm that achieves this:

Reachability Analysis
Associate a reachable attribute with each node.
for all nodes n:
n.reachable := false
while no fixed point is reached:
Choose a node n.
if nis an AND node:
n.reachable := \
if nis an OR node:
n.reachable :=\/

wesuce(n) M -reachable

/
n esuce(n) 1 .reachable

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 26, 2022

8 /

Introduction

27

D6. Delete Relaxation: h™®* and h*dd Introduction

Reachability Analysis: Example (Reminder)

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 26, 2022

D6. Delete Relaxation: h™#* and h*dd

D6.2 h™2* and h2dd

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 26, 2022

D6. Delete Relaxation: h™** and h?d9 A3 and h299

Associating Costs with RTG Nodes

Basic intuitions for associating costs with RTG nodes:
» To apply an operator, we must pay its cost.

» To make an OR node true, it is sufficient
to make one of its successors true.
~~ Therefore, we estimate the cost of an OR node
as the minimum of the costs of its successors.

» To make an AND node true, all its successors
must be made true first.
~~ We can be optimistic and estimate the cost
as the maximum of the successor node costs.
~ Or we can be pessimistic and estimate the cost
as the sum of the successor node costs.
~~ We will prove later that this is indeed optimistic/pessimistic.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 26, 2022

D6. Delete Relaxation: h™®* and h?d9 A3 and h299

h™2* Algorithm

(Differences to reachability analysis algorithm highlighted.)

Computing h™®* Values
Associate a cost attribute with each node.
for all nodes n:
n.cost := oo
while no fixed point is reached:
Choose a node n.
if nis an AND node that is not an effect node:
N.COSt := MaXy cycc(n) N -COSE
if n is an effect node for operator o:
n.cost := cost(0) + MaX, ¢ succ(n) '-cost
if nis an OR node:

N.Cost := Min ¢ gycc(n) N COSt
The overall heuristic value is the cost of the goal node, n,.cost.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 26, 2022

pmax

D6. Delete Relaxation: h™®* and h*dd

h™®: Example

pmax

and hdd

M. Helmert, G. Roger (Universitat Basel)

> hmax(/) — 3

Planning and Optimization October 26, 2022 13 /

/

D6. Delete Relaxation: h™#* and h*dd A3 and h?4d

h?4d Algorithm

(Differences to h™2* algorithm highlighted.)

Computing h?9¢ Values
Associate a cost attribute with each node.
for all nodes n:
n.cost := oo
while no fixed point is reached:
Choose a node n.
if nis an AND node that is not an effect node:
N.cost =} cqycc(m N-COSE
if nis an effect node for operator o:
n.cost := cost(o) + >
if nis an OR node:
n.cost 1= MiN ¢ gyce(n) N -COSE

/
n’ €succ(n) n'.cost

The overall heuristic value is the cost of the goal node, n,.cost.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 26, 2022 14 / 27

D6. Delete Relaxation: h™** and h?d9

h?dd: Example

pMax ynqg padd

M. Helmert, G. Roger (Universitat Basel)

~ hPdd(]) =8

Planning and Optimization October 26, 2022 15 / 27

D6. Delete Relaxation: h™®* and h?d9 A3 and H299

h™2* and h29d: Definition

We can now define our first non-trivial efficient planning heuristics:

h™2% and k294 Heuristics
Let M= (V,I,0,~) be a propositional planning task
in positive normal form.

The h™®* heuristic value of a state s, written h™®*(s), is obtained
by constructing the RTG for N} = (V,s, O",~) and then
computing ny.cost using the h™** value algorithm for RTGs.

The h?99 heuristic value of a state s, written h2%9(s), is computed
in the same way using the h4 value algorithm for RTGs.

Notation: we will use the same notation h™2*(n) and h234(n)
for the h™® /h24d values of RTG nodes

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 26, 2022 16 / 27

D6. Delete Relaxation: h™®* and h*dd Properties of "M% and h*dd

D6.3 Properties of ™2 and h?4

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 26, 2022 17 / 27

D6. Delete Relaxation: h™#* and h*dd

Understanding h™® and h2

Properties of hM® and h?dd

We want to understand h™®* and h?4d better:
> Are they well-defined?
» How can they be efficiently computed?
> Are they safe?
» Are they admissible?

>

How do they compare to the optimal solution cost
for a delete-relaxed task (h*)?

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 26, 2022 18 / 27

D6. Delete Relaxation: h™® and h?9d Properties of h™® and h29d

Well-Definedness of h™> and h*44 (1)

Are ™ and h2dd well-defined?

» The algorithms for computing hM®* and 44 values do not
specify in which order the RTG nodes should be selected.

> It turns out that the order does not affect the final result.
~» The h™2* and h29d values are well-defined.

» To show this, we must show

> that their computation always terminates, and
» that all executions terminate with the same result.

» For time reasons, we only provide a proof sketch.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 26, 2022 19 / 27

D6. Delete Relaxation: h™® and h?d Properties of "M% and h299

Well-Definedness of h™> and h*44 (2)

Theorem

The fixed point algorithms for computing ™ and h?@ values
produce a well-defined result.

Proof Sketch.
Let Vo, Vi, Vo, ... be the vectors of cost values
during a given execution of the algorithm.

Termination: Note that V; > Vi for all i.

It is not hard to prove that each node value can only decrease
a finite number of times: first from oo to some finite value,
and then a finite number of additional times.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 26, 2022 20 / 27

D6. Delete Relaxation: h™®* and h*dd Properties of "M% and h*dd

Well-Definedness of h™® and h*d (3)

Proof Sketch (continued).
Uniqueness of result: Let Vg > Vi > Vo > -+ >V, be
the finite sequence of cost value vectors until termination
during a given execution of the algorithm.
> View the consistency conditions of all nodes
(e.g., n.cost = mincgce(n) N'-cost for all OR nodes n)
as a system of equations E.
» V), must be a solution to E (otherwise no fixed point
is reached with V).
» For all i € {0,..., n}, show by induction over i
that V; > S for all solutions S to E.
> |t follows that V,, is the unique maximum solution to E
and hence well-defined.
L]

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 26, 2022 21 /27

D6. Delete Relaxation: h™#* and h*dd Properties of h™** and h*dd

Efficient Computation of "™ and A

> If nodes are poorly chosen, the h™2*/h2dd algorithm
can update the same node many times
until it reaches its final value.

» However, there is a simple strategy that prevents this:
in every iteration, pick a node with minimum new value
among all nodes that can be updated to a new value.

» With this strategy, no node is updated more than once.
(We omit the proof, which is not complicated.)

» Using a suitable priority queue data structure,
this allows computing the h™2*/h24d values of an RTG
with nodes N and arcs A in time O(|N|log|N|+ |A]).

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 26, 2022 22 /27

D6. Delete Relaxation: h™® and h?9d Properties of h™® and h29d

h™2*: Example of Efficient Computation

- hmaX(]) =3

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 26, 2022 23 /27

D6. Delete Relaxation: h™® and h?d Properties of "M% and h299

Efficient Computation of ™ and h?d4: Remarks

» In the following chapters, we will always assume that we are
using this efficient version of the h™®* and h244 algorithm.

» In particular, we will assume that all reachable nodes
of the relaxed task graph are processed exactly once
(and all unreachable nodes not at all), so that it makes sense
to speak of certain nodes being processed after others etc.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 26, 2022 24 /27

D6. Delete Relaxation: h™®* and h*dd Properties of "M% and h*dd

Heuristic Quality of hM®* and f2dd

This leaves us with the questions about the heuristic quality
of h™M3 and h2dd:

> Are they safe?
» Are they admissible?
» How do they compare to the optimal solution cost
for a delete-relaxed task?
It is easy to see that h™®* and h?dd are safe:
they assign oo iff a node is unreachable in the delete relaxation.

In our running example, it seems that h™®* is prone to
underestimation and A4 is prone to overestimation.

We will study this further in the next chapter.

D6. Delete Relaxation: h™#* and h*dd

D6.4 Summary

M. Helmert, G. Roger (Universitat Basel)

Planning and Optimization

October 26, 2022

Summary

26 /

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 26, 2022 25 /27
D6. Delete Relaxation: h™® and h?9d Summary
Summary

> h™M2% and h?99 values estimate how expensive it is to reach
a state variable, operator effect or formula (e.g., the goal).
» They are computed by propagating cost information
in relaxed task graphs:

» At OR nodes, choose the cheapest alternative.
» At AND nodes, maximize or sum the successor costs.
> At effect nodes, also add the operator cost.

> hMa and h?99 values can serve as heuristics.

» They are well-defined and can be computed efficiently
by computing them in order of increasing cost along the RTG.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 26, 2022 27 /27

	Introduction
	

	hmax and hadd
	

	Properties of hmax and hadd
	

	Summary
	

