Planning and Optimization
C7. Symbolic Search: Full Algorithm

Malte Helmert and Gabriele Roger

Universitat Basel

October 17, 2022

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 17, 2022 1 /45

Planning and Optimization
October 17, 2022 — C7. Symbolic Search: Full Algorithm

C7.1 Basic BDD Operations

C7.2 Formulas and Singletons
C7.3 Renaming

C7.4 Symbolic Breadth-first Search
C7.5 Discussion

C7.6 Summary

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 17, 2022

2/

45

Content of this Course

Prelude

Foundations

Heuristics

Constraints

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 17, 2022 3 /45

Devising a Symbolic Search Algorithm

» We now put the pieces together to build
a symbolic search algorithm for propositional planning tasks.
P use BDDs as a black box data structure:
P care about provided operations and their time complexity
» do not care about their internal implementation
> Efficient implementations are available as libraries, e.g.:

» CUDD, a high-performance BDD library
» libbdd, shipped with Ubuntu Linux

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 17, 2022

4/

45




C7. Symbolic Search: Full Algorithm

C7.1 Basic BDD Operations

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 17, 2022

Basic BDD Operations

C7. Symbolic Search: Full Algorithm Basic BDD Operations

BDD Operations: Preliminaries

> All BDDs work on a fixed and totally ordered
set of propositional variables.
» Complexity of operations given in terms of:

» k, the number of BDD variables
> ||B||, the number of nodes in the BDD B

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 17, 2022

C7. Symbolic Search: Full Algorithm

BDD Operations (1)

BDD operations: logical/set atoms

» bdd-true(): build BDD representing all assignments
» in logic: T
> time complexity: O(1)

» bdd-false(): build BDD representing ()
> in logic: L
> time complexity: O(1)

» bdd-atom(v): build BDD representing {s | s(v) = 1}
> in logic: v
> time complexity: O(1)

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 17, 2022

Basic BDD Operations

C7. Symbolic Search: Full Algorithm Basic BDD Operations

BDD Operations (2)

BDD operations: logical/set connectives

» bdd-complement(B): build BDD representing r(B)
> in logic: ¢
> time complexity: O(||B||)
» bdd-union(B, B’): build BDD representing r(B) U r(B’)
> in logic: (¢ Vv)
> time complexity: O(||B|| - |B’]])
> analogously:
» bdd-intersection(B, B"): r(B)Nr(B’), (¢ A1)
> bdd-setdifference(B, B"): r(B)\ r(B’), (¢ A =)
» bdd-implies(B, B'): r(B)Ur(B'), (¢ =)
> bdd-equiv(B, B'): (r(B)Nr(B))U(r(B)Nr(B")), (¢ < 1)

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 17, 2022




C7. Symbolic Search: Full Algorithm Basic BDD Operations

BDD Operations (3)

BDD operations: Boolean tests
» bdd-includes(B, /): return true iff | € r(B)
> in logic: | |= 7
> time complexity: O(k)
» bdd-equals(B, B'): return true iff r(B) = r(B’)
> in logic: ¢ =7
> time complexity: O(1) (due to canonical representation)

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 17, 2022 9 /45

C7. Symbolic Search: Full Algorithm Basic BDD Operations

Conditioning: Formulas

The last two basic BDD operations are a bit more unusual
and require some preliminary remarks.

Conditioning a variable v in a formula ¢ to T or F,
written [T /v] or ¢[F/v], means restricting v
to a particular truth value:

Examples:
> (AN(BV=C)[T/Bl=(AAN(TV-C)=A
» (AN(BV-C))[F/Bl=(AAN(LV-C)=AAN-C

C7. Symbolic Search: Full Algorithm Basic BDD Operations

Conditioning: Sets of Assignments

We can define the same operation for sets of assignments S:
S[F/v] and S[T/v] restrict S to elements with the given value
for v and remove v from the domain of definition:

Example:

» S={{A—F,B—F,C— F},
{A—»T,B—T,C+— F},
{A-T,B—T,C—T}}

~ S[T/B]={{A—T,C+— F},

{A=-T,C—T}}

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 17, 2022 11 / 45

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 17, 2022 10 / 45
C7. Symbolic Search: Full Algorithm Basic BDD Operations
Forgetting

Forgetting (a.k.a. existential abstraction) is similar to conditioning:
we allow either truth value for v and remove the variable.

We write this as Jv ¢ (for formulas) and Jv S (for sets).

Formally:

> v =o[T/v]Ve[F/V]
» JvS=S[T/v]USI[F/v]

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 17, 2022 12 / 45




C7. Symbolic Search: Full Algorithm

Basic BDD Operations C7. Symbolic Search: Full Algorithm

Forgetting: Example BDD Operations (4)

Basic BDD Operations

Examples:

» S={{A—F,B—F, C— F},
{A»T,B—T,C+— F},
{A-T,B—~T,C—T}}

BDD operations: conditioning and forgetting

» bdd-condition(B, v, t) where t € {T,F}:
build BDD representing r(B)[t/v]

> in logic: ¢[t/Vv]

~ dABS ={{A—F,C — F}, > time complexity: O(||B||)
{A=T,C—F}, > bdd-forget(B, v):
{A-T,C—T}} build BDD representing 3v r(B)
~ 3CS={{A~F,B~ F}, > inlogic: 3vp (= [T/v]V ¢[F/V])
(A T,B TH > time complexity: O(||B||?)
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 17, 2022 13 / 45 M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 17, 2022 14 / 45

C7. Symbolic Search: Full Algorithm

Formulas and Singletons C7. Symbolic Search: Full Algorithm

Formulas to BDDs

Formulas and Singletons

» With the logical /set operations, we can convert propositional
formulas ¢ into BDDs representing the models of .

» We denote this computation with bdd-formula(y).

C7.2 Formulas and Singletons

» Each individual logical connective takes polynomial time,
but converting a full formula of length n can take O(2") time.
(How is this possible?)

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 17, 2022 15 / 45

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 17, 2022 16 / 45




C7. Symbolic Search: Full Algorithm Formulas and Singletons

Singleton BDDs

> We can convert a single truth assignment /
into a BDD representing {/} by computing
the conjunction of all literals true in /
(using bdd-atom, bdd-complement and bdd-intersection).

» We denote this computation with bdd-singleton(/).
» When done in the correct order, this takes time O(k).

C7. Symbolic Search: Full Algorithm Renaming

C7.3 Renaming

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 17, 2022 18 / 45

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 17, 2022 17 / 45
C7. Symbolic Search: Full Algorithm Renaming
Renaming

We will need to support one final operation on formulas: renaming.

Renaming X to Y in formula ¢, written p[X — Y],
means replacing all occurrences of X by Y in ¢.

We require that Y is not present in ¢ initially.

Example:
> o =(AN(BV~C())
~ @[A— D] =(DAN(BV-C))

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 17, 2022 19 / 45

C7. Symbolic Search: Full Algorithm Renaming

How Hard Can That Be?

» For formulas, renaming is a simple (linear-time) operation.

» For a BDD B, it is equally simple (O(||B||)) when renaming
between variables that are adjacent in the variable order.

> In general, it requires O(||B||?), using the equivalence
o[X = Y] =3IX(p A (X < Y))

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 17, 2022 20 / 45




C7. Symbolic Search: Full Algorithm Symbolic Breadth-first Search

C7.4 Symbolic Breadth-first Search

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

October 17, 2022 21 /45

C7. Symbolic Search: Full Algorithm Symbolic Breadth-first Search

Breadth-first Search with Progression and BDDs

Progression Breadth-first Search
def bfs-progression(V, I, O, 7):
goal_states :== models(~y)
reachedy := {I}
i:=0
loop:
if reached; N goal_states # ():
return solution found
reached; ;1 := reached; U apply(reached;, O)
if reached;,1 = reached;:

return no solution exists
i=i+1

M. Helmert, G. Roger (Universitat Basel)

Planning and Optimization October 17, 2022 23 / 45

C7. Symbolic Search: Full Algorithm Symbolic Breadth-first Search

Planning Task State Variables vs. BDD Variables

Consider propositional planning task (V,/, O,~) with states S.
In symbolic planning, we have two BDD variables v and v/
for every state variable v € V of the planning task.
» use unprimed variables v to describe sets of states:
{s € S | some property}

» use combinations of unprimed and primed variables v, v/
to describe sets of state pairs:

{(s,s’) | some property}

M. Helmert, G. Roger (Universitat Basel)

Planning and Optimization October 17, 2022 22 / 45

C7. Symbolic Search: Full Algorithm Symbolic Breadth-first Search

Breadth-first Search with Progression and BDDs

Progression Breadth-first Search
def bfs-progression(V, I, O, 7):
goal_states :== models(y)
reachedy := {I}
i:=0
loop:
if reached; N goal_states # ():
return solution found
reached; ;1 := reached; U apply(reached;, O)
if reached;,1 = reached;:

return no solution exists
i=i+1

Use bdd-formula.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 17, 2022 24 / 45




C7. Symbolic Search: Full Algorithm Symbolic Breadth-first Search

Breadth-first Search with Progression and BDDs

Progression Breadth-first Search
def bfs-progression(V, I, O, 7):
goal_states :== models(~y)
reachedy := {/}
i:=0
loop:
if reached; N goal_states # ():
return solution found
reached; 1 := reached; U apply(reached;, O)
if reached;,1 = reached;:

return no solution exists
i=i+1

Use bdd-singleton.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

October 17, 2022 25 / 45

C7. Symbolic Search: Full Algorithm Symbolic Breadth-first Search

Breadth-first Search with Progression and BDDs

Progression Breadth-first Search
def bfs-progression(V, I, O, 7):
goal_states :== models(~y)
reachedy := {I}
i:=0
loop:
if reached; N goal_states # ():
return solution found
reached; ;1 := reached; U apply(reached;, O)
if reached;,1 = reached;:

return no solution exists
i=i+1

Use bdd-union.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 17, 2022 27 / 45

C7. Symbolic Search: Full Algorithm Symbolic Breadth-first Search

Breadth-first Search with Progression and BDDs

Progression Breadth-first Search
def bfs-progression(V, I, O, 7):
goal_states :== models(~y)
reachedy := {I}
=0
loop:
if reached; N goal_states # ():
return solution found
reached; 1 := reached; U apply(reached;, O)
if reached;,1 = reached;:
return no solution exists
i=i+1

Use bdd-intersection, bdd-false, bdd-equals.

M. Helmert, G. Roger (Universitat Basel)

Planning and Optimization October 17, 2022 26 / 45

C7. Symbolic Search: Full Algorithm Symbolic Breadth-first Search

Breadth-first Search with Progression and BDDs

Progression Breadth-first Search
def bfs-progression(V, I, O, 7):
goal_states :== models(~y)
reachedy := {I}
i:=0
loop:
if reached; N goal_states # ():
return solution found
reached; ;1 := reached; U apply(reached;, O)
if reached;,1 = reached;:

return no solution exists
i=i+1

Use bdd-equals.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 17, 2022 28 / 45




C7. Symbolic Search: Full Algorithm Symbolic Breadth-first Search

Breadth-first Search with Progression and BDDs

Progression Breadth-first Search
def bfs-progression(V, I, O, 7):
goal_states :== models(~y)
reachedy := {I}
i =0
loop:
if reached; N goal_states # ():
return solution found
reached; 1 := reached; U apply(reached;, O)
if reached;,1 = reached;:
return no solution exists
i=i+1

How to do this?

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 17, 2022 29 / 45

C7. Symbolic Search: Full Algorithm Symbolic Breadth-first Search

The apply Function (1)

We need an operation that
> for a set of states reached (given as a BDD)
» and a set of operators O

> computes the set of states (as a BDD) that result from
applying some operator o € O in some state s € reached.

We have seen something similar already. ..

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 17, 2022 30 / 45

C7. Symbolic Search: Full Algorithm Symbolic Breadth-first Search

Translating Operators into Formulas

Definition (Operators in Propositional Logic)
Let o be an operator and V a set of state variables.

Define 7v(0) := pre(o) A A\, c\/ (regr(v, eff0)) < Vv').

States that o is applicable and describes how
» the new value of v, represented by v/,
P> must relate to the old state, described by variables V.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 17, 2022 31 /45

C7. Symbolic Search: Full Algorithm Symbolic Breadth-first Search

The apply Function (2)

» The formula 7y(0) describes all transitions s > s’
» induced by a single operator o
» in terms of variables V describing s
» and variables V// describing s’.
» The formula \/, .o Tv(0) describes state transitions
by any operator in O.
» We can translate this formula to a BDD
(over variables V U V') with bdd-formula.
» The resulting BDD is called the transition relation
of the planning task, written as Ty (O).

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 17, 2022 32 /45




C7. Symbolic Search: Full Algorithm Symbolic Breadth-first Search

The apply Function (3)

Using the transition relation, we can compute apply(reached, O)
as follows:

The apply function
def apply(reached, O):
B:= Ty(0)
B := bdd-intersection(B, reached)
for each v € V:
B := bdd-forget(B, v)
for each v € V:
B := bdd-rename(B, V', v)
return B

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 17, 2022 33 /45

C7. Symbolic Search: Full Algorithm Symbolic Breadth-first Search

The apply Function (3)

Using the transition relation, we can compute apply(reached, O)
as follows:

The apply function
def apply(reached, O):
B = T\/(O)
B := bdd-intersection(B, reached)
for each v € V:
B := bdd-forget(B, v)
for each v € V:
B := bdd-rename(B, V', v)
return B
This describes the set of state pairs (s, s’) where s’ is a successor
of s in terms of variables V U V',

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 17, 2022 34 /45

C7. Symbolic Search: Full Algorithm Symbolic Breadth-first Search

The apply Function (3)

Using the transition relation, we can compute apply(reached, O)
as follows:

The apply function
def apply(reached, O):
B:=Ty(0)
B := bdd-intersection(B, reached)
for each v € V:
B := bdd-forget(B, v)
for each v € V:
B := bdd-rename(B, V', v)
return B
This describes the set of state pairs (s, s’) where s’ is a successor
of s and s € reached in terms of variables V U V',

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 17, 2022 35 /45

C7. Symbolic Search: Full Algorithm Symbolic Breadth-first Search

The apply Function (3)

Using the transition relation, we can compute apply(reached, O)
as follows:

The apply function
def apply(reached, O):
B:=Ty(0)
B := bdd-intersection(B, reached)
for each v € V:
B := bdd-forget(B, v)
for each v € V:
B := bdd-rename(B, V', v)
return B
This describes the set of states s’ which are successors
of some state s € reached in terms of variables V’.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 17, 2022 36 / 45




C7. Symbolic Search: Full Algorithm Symbolic Breadth-first Search

The apply Function (3)

Using the transition relation, we can compute apply(reached, O)
as follows:

The apply function
def apply(reached, O):
B:= Ty(0)
B := bdd-intersection(B, reached)
for each v € V:
B := bdd-forget(B, v)
for each v € V:
B := bdd-rename(B, V', v)
return B
This describes the set of states s’ which are successors
of some state s € reached in terms of variables V.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 17, 2022 37 / 45

C7. Symbolic Search: Full Algorithm

The apply Function (3)

Using the transition relation, we can compute apply(reached, O)
as follows:

The apply function
def apply(reached, O):
B:=Ty(0)
B := bdd-intersection(B, reached)
for each v € V:
B := bdd-forget(B, v)
for each v € V:
B := bdd-rename(B, V', v)
return B
Thus, apply indeed computes the set of successors of reached
using operators O.

Symbolic Breadth-first Search

C7. Symbolic Search: Full Algorithm Discussion

C7.5 Discussion

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 17, 2022 39 / 45

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 17, 2022 38 /45
C7. Symbolic Search: Full Algorithm Discussion
Discussion
» This completes the discussion of a (basic)
symbolic search algorithm for classical planning.
> We ignored the aspect of solution extraction.
This needs some extra work, but is not a major challenge.
> In practice, some steps can be performed slightly more
efficiently, but these are comparatively minor details.
Planning and Optimization October 17, 2022 40 / 45

M. Helmert, G. Roger (Universitat Basel)




C7. Symbolic Search: Full Algorithm Discussion

Variable Orders

For good performance, we need a good variable ordering.

> Variables that refer to the same state variable
before and after operator application (v and V')
should be neighbors in the transition relation BDD.

C7. Symbolic Search: Full Algorithm Discussion

Extensions

Symbolic search can be extended to. ..

P regression and bidirectional search:
this is very easy and often effective

» uniform-cost search:
requires some work, but not too difficult in principle

P heuristic search:
requires a heuristic representable as a BDD;
has not really been shown to outperform blind symbolic search

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 17, 2022 42 / 45

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 17, 2022 41 / 45
C7. Symbolic Search: Full Algorithm Discussion
Literature

[@ Randal E. Bryant.
Graph-Based Algorithms for Boolean Function Manipulation.
IEEE Transactions on Computers 35.8, pp. 677-691, 1986.
Reduced ordered BDDs.

ﬁ Kenneth L. McMillan.
Symbolic Model Checking.
PhD Thesis, 1993.
Symbolic search with BDDs.

@ Alvaro Torralba.
Symbolic Search and Abstraction Heuristics
for Cost-Optimal Planning.
PhD Thesis, 2015.
State of the art of symbolic search planning.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 17, 2022 43 / 45

C7. Symbolic Search: Full Algorithm Summary

C7.6 Summary

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 17, 2022 44 / 45




C7. Symbolic Search: Full Algorithm

Summary

» Symbolic search operates on sets of states
instead of individual states as in explicit-state search.

> State sets and transition relations can be represented
as BDDs.

» Based on this, we can implement a blind breadth-first search
in an efficient way.

» A good variable ordering is crucial for performance.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 17, 2022

Summary

45

45




	Basic BDD Operations
	

	Formulas and Singletons
	

	Renaming
	

	Symbolic Breadth-first Search
	

	Discussion
	

	Summary
	


