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Devising a Symbolic Search Algorithm

» We now put the pieces together to build
a symbolic search algorithm for propositional planning tasks.
P use BDDs as a black box data structure:
P care about provided operations and their time complexity
» do not care about their internal implementation
> Efficient implementations are available as libraries, e.g.:

» CUDD, a high-performance BDD library
» libbdd, shipped with Ubuntu Linux
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C7.1 Basic BDD Operations
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Basic BDD Operations
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BDD Operations: Preliminaries

> All BDDs work on a fixed and totally ordered
set of propositional variables.
» Complexity of operations given in terms of:

» k, the number of BDD variables
> ||B||, the number of nodes in the BDD B
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BDD Operations (1)

BDD operations: logical/set atoms

» bdd-true(): build BDD representing all assignments
» in logic: T
> time complexity: O(1)

» bdd-false(): build BDD representing ()
> in logic: L
> time complexity: O(1)

» bdd-atom(v): build BDD representing {s | s(v) = 1}
> in logic: v
> time complexity: O(1)
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BDD Operations (2)

BDD operations: logical/set connectives

» bdd-complement(B): build BDD representing r(B)
> in logic: ¢
> time complexity: O(||B||)
» bdd-union(B, B’): build BDD representing r(B) U r(B’)
> in logic: (¢ Vv)
> time complexity: O(||B|| - |B’]])
> analogously:
» bdd-intersection(B, B"): r(B)Nr(B’), (¢ A1)
> bdd-setdifference(B, B"): r(B)\ r(B’), (¢ A =)
» bdd-implies(B, B'): r(B)Ur(B'), (¢ =)
> bdd-equiv(B, B'): (r(B)Nr(B))U(r(B)Nr(B")), (¢ < 1)
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BDD Operations (3)

BDD operations: Boolean tests
» bdd-includes(B, /): return true iff | € r(B)
> in logic: | |= 7
> time complexity: O(k)
» bdd-equals(B, B'): return true iff r(B) = r(B’)
> in logic: ¢ =7
> time complexity: O(1) (due to canonical representation)
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Conditioning: Formulas

The last two basic BDD operations are a bit more unusual
and require some preliminary remarks.

Conditioning a variable v in a formula ¢ to T or F,
written [T /v] or ¢[F/v], means restricting v
to a particular truth value:

Examples:
> (AN(BV=C)[T/Bl=(AAN(TV-C)=A
» (AN(BV-C))[F/Bl=(AAN(LV-C)=AAN-C

C7. Symbolic Search: Full Algorithm Basic BDD Operations

Conditioning: Sets of Assignments

We can define the same operation for sets of assignments S:
S[F/v] and S[T/v] restrict S to elements with the given value
for v and remove v from the domain of definition:

Example:

» S={{A—F,B—F,C— F},
{A—»T,B—T,C+— F},
{A-T,B—T,C—T}}

~ S[T/B]={{A—T,C+— F},

{A=-T,C—T}}
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Forgetting

Forgetting (a.k.a. existential abstraction) is similar to conditioning:
we allow either truth value for v and remove the variable.

We write this as Jv ¢ (for formulas) and Jv S (for sets).

Formally:

> v =o[T/v]Ve[F/V]
» JvS=S[T/v]USI[F/v]
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Forgetting: Example BDD Operations (4)

Basic BDD Operations

Examples:

» S={{A—F,B—F, C— F},
{A»T,B—T,C+— F},
{A-T,B—~T,C—T}}

BDD operations: conditioning and forgetting

» bdd-condition(B, v, t) where t € {T,F}:
build BDD representing r(B)[t/v]

> in logic: ¢[t/Vv]

~ dABS ={{A—F,C — F}, > time complexity: O(||B||)
{A=T,C—F}, > bdd-forget(B, v):
{A-T,C—T}} build BDD representing 3v r(B)
~ 3CS={{A~F,B~ F}, > inlogic: 3vp (= [T/v]V ¢[F/V])
(A T,B TH > time complexity: O(||B||?)
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Formulas to BDDs

Formulas and Singletons

» With the logical /set operations, we can convert propositional
formulas ¢ into BDDs representing the models of .

» We denote this computation with bdd-formula(y).

C7.2 Formulas and Singletons

» Each individual logical connective takes polynomial time,
but converting a full formula of length n can take O(2") time.
(How is this possible?)
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Singleton BDDs

> We can convert a single truth assignment /
into a BDD representing {/} by computing
the conjunction of all literals true in /
(using bdd-atom, bdd-complement and bdd-intersection).

» We denote this computation with bdd-singleton(/).
» When done in the correct order, this takes time O(k).

C7. Symbolic Search: Full Algorithm Renaming

C7.3 Renaming
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Renaming

We will need to support one final operation on formulas: renaming.

Renaming X to Y in formula ¢, written p[X — Y],
means replacing all occurrences of X by Y in ¢.

We require that Y is not present in ¢ initially.

Example:
> o =(AN(BV~C())
~ @[A— D] =(DAN(BV-C))
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How Hard Can That Be?

» For formulas, renaming is a simple (linear-time) operation.

» For a BDD B, it is equally simple (O(||B||)) when renaming
between variables that are adjacent in the variable order.

> In general, it requires O(||B||?), using the equivalence
o[X = Y] =3IX(p A (X < Y))
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C7.4 Symbolic Breadth-first Search
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Breadth-first Search with Progression and BDDs

Progression Breadth-first Search
def bfs-progression(V, I, O, 7):
goal_states :== models(~y)
reachedy := {I}
i:=0
loop:
if reached; N goal_states # ():
return solution found
reached; ;1 := reached; U apply(reached;, O)
if reached;,1 = reached;:

return no solution exists
i=i+1
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Planning Task State Variables vs. BDD Variables

Consider propositional planning task (V,/, O,~) with states S.
In symbolic planning, we have two BDD variables v and v/
for every state variable v € V of the planning task.
» use unprimed variables v to describe sets of states:
{s € S | some property}

» use combinations of unprimed and primed variables v, v/
to describe sets of state pairs:

{(s,s’) | some property}
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Breadth-first Search with Progression and BDDs

Progression Breadth-first Search
def bfs-progression(V, I, O, 7):
goal_states :== models(y)
reachedy := {I}
i:=0
loop:
if reached; N goal_states # ():
return solution found
reached; ;1 := reached; U apply(reached;, O)
if reached;,1 = reached;:

return no solution exists
i=i+1

Use bdd-formula.
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Breadth-first Search with Progression and BDDs

Progression Breadth-first Search
def bfs-progression(V, I, O, 7):
goal_states :== models(~y)
reachedy := {/}
i:=0
loop:
if reached; N goal_states # ():
return solution found
reached; 1 := reached; U apply(reached;, O)
if reached;,1 = reached;:

return no solution exists
i=i+1

Use bdd-singleton.
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Breadth-first Search with Progression and BDDs

Progression Breadth-first Search
def bfs-progression(V, I, O, 7):
goal_states :== models(~y)
reachedy := {I}
i:=0
loop:
if reached; N goal_states # ():
return solution found
reached; ;1 := reached; U apply(reached;, O)
if reached;,1 = reached;:

return no solution exists
i=i+1

Use bdd-union.
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Breadth-first Search with Progression and BDDs

Progression Breadth-first Search
def bfs-progression(V, I, O, 7):
goal_states :== models(~y)
reachedy := {I}
=0
loop:
if reached; N goal_states # ():
return solution found
reached; 1 := reached; U apply(reached;, O)
if reached;,1 = reached;:
return no solution exists
i=i+1

Use bdd-intersection, bdd-false, bdd-equals.
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Breadth-first Search with Progression and BDDs

Progression Breadth-first Search
def bfs-progression(V, I, O, 7):
goal_states :== models(~y)
reachedy := {I}
i:=0
loop:
if reached; N goal_states # ():
return solution found
reached; ;1 := reached; U apply(reached;, O)
if reached;,1 = reached;:

return no solution exists
i=i+1

Use bdd-equals.
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Breadth-first Search with Progression and BDDs

Progression Breadth-first Search
def bfs-progression(V, I, O, 7):
goal_states :== models(~y)
reachedy := {I}
i =0
loop:
if reached; N goal_states # ():
return solution found
reached; 1 := reached; U apply(reached;, O)
if reached;,1 = reached;:
return no solution exists
i=i+1

How to do this?
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The apply Function (1)

We need an operation that
> for a set of states reached (given as a BDD)
» and a set of operators O

> computes the set of states (as a BDD) that result from
applying some operator o € O in some state s € reached.

We have seen something similar already. ..
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Translating Operators into Formulas

Definition (Operators in Propositional Logic)
Let o be an operator and V a set of state variables.

Define 7v(0) := pre(o) A A\, c\/ (regr(v, eff0)) < Vv').

States that o is applicable and describes how
» the new value of v, represented by v/,
P> must relate to the old state, described by variables V.
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The apply Function (2)

» The formula 7y(0) describes all transitions s > s’
» induced by a single operator o
» in terms of variables V describing s
» and variables V// describing s’.
» The formula \/, .o Tv(0) describes state transitions
by any operator in O.
» We can translate this formula to a BDD
(over variables V U V') with bdd-formula.
» The resulting BDD is called the transition relation
of the planning task, written as Ty (O).
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The apply Function (3)

Using the transition relation, we can compute apply(reached, O)
as follows:

The apply function
def apply(reached, O):
B:= Ty(0)
B := bdd-intersection(B, reached)
for each v € V:
B := bdd-forget(B, v)
for each v € V:
B := bdd-rename(B, V', v)
return B
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The apply Function (3)

Using the transition relation, we can compute apply(reached, O)
as follows:

The apply function
def apply(reached, O):
B = T\/(O)
B := bdd-intersection(B, reached)
for each v € V:
B := bdd-forget(B, v)
for each v € V:
B := bdd-rename(B, V', v)
return B
This describes the set of state pairs (s, s’) where s’ is a successor
of s in terms of variables V U V',
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The apply Function (3)

Using the transition relation, we can compute apply(reached, O)
as follows:

The apply function
def apply(reached, O):
B:=Ty(0)
B := bdd-intersection(B, reached)
for each v € V:
B := bdd-forget(B, v)
for each v € V:
B := bdd-rename(B, V', v)
return B
This describes the set of state pairs (s, s’) where s’ is a successor
of s and s € reached in terms of variables V U V',
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The apply Function (3)

Using the transition relation, we can compute apply(reached, O)
as follows:

The apply function
def apply(reached, O):
B:=Ty(0)
B := bdd-intersection(B, reached)
for each v € V:
B := bdd-forget(B, v)
for each v € V:
B := bdd-rename(B, V', v)
return B
This describes the set of states s’ which are successors
of some state s € reached in terms of variables V’.
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The apply Function (3)

Using the transition relation, we can compute apply(reached, O)
as follows:

The apply function
def apply(reached, O):
B:= Ty(0)
B := bdd-intersection(B, reached)
for each v € V:
B := bdd-forget(B, v)
for each v € V:
B := bdd-rename(B, V', v)
return B
This describes the set of states s’ which are successors
of some state s € reached in terms of variables V.
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The apply Function (3)

Using the transition relation, we can compute apply(reached, O)
as follows:

The apply function
def apply(reached, O):
B:=Ty(0)
B := bdd-intersection(B, reached)
for each v € V:
B := bdd-forget(B, v)
for each v € V:
B := bdd-rename(B, V', v)
return B
Thus, apply indeed computes the set of successors of reached
using operators O.

Symbolic Breadth-first Search

C7. Symbolic Search: Full Algorithm Discussion

C7.5 Discussion
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C7. Symbolic Search: Full Algorithm Discussion
Discussion
» This completes the discussion of a (basic)
symbolic search algorithm for classical planning.
> We ignored the aspect of solution extraction.
This needs some extra work, but is not a major challenge.
> In practice, some steps can be performed slightly more
efficiently, but these are comparatively minor details.
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Variable Orders

For good performance, we need a good variable ordering.

> Variables that refer to the same state variable
before and after operator application (v and V')
should be neighbors in the transition relation BDD.

C7. Symbolic Search: Full Algorithm Discussion

Extensions

Symbolic search can be extended to. ..

P regression and bidirectional search:
this is very easy and often effective

» uniform-cost search:
requires some work, but not too difficult in principle

P heuristic search:
requires a heuristic representable as a BDD;
has not really been shown to outperform blind symbolic search
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C7.6 Summary
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Summary

» Symbolic search operates on sets of states
instead of individual states as in explicit-state search.

> State sets and transition relations can be represented
as BDDs.

» Based on this, we can implement a blind breadth-first search
in an efficient way.

» A good variable ordering is crucial for performance.
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