

Planning and Optimization

B3. Operator Examples and Planning Tasks

Malte Helmert and Gabriele Röger

Universität Basel

September 28, 2022

Planning and Optimization

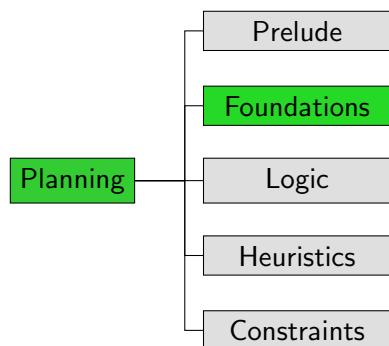
September 28, 2022 — B3. Operator Examples and Planning Tasks

B3.1 Operator Examples

B3.2 Planning Tasks

B3.3 Summary

Content of this Course



B3.1 Operator Examples

Applying Operators: Example

We use the state variables $V = \{a, b, c, d\}$.

Example

Consider the operator $o = \langle a, (\neg a \wedge (\neg c \triangleright \neg b)) \rangle$ and the state $s = \{a \mapsto \mathbf{T}, b \mapsto \mathbf{T}, c \mapsto \mathbf{T}, d \mapsto \mathbf{T}\}$.

The operator o is applicable in s because $s \models a$.

Effect conditions of $\text{eff}(o)$:

$$\begin{aligned}\text{effcond}(a, \text{eff}(o)) &= \text{effcond}(a, (\neg a \wedge (\neg c \triangleright \neg b))) \\ &= (\text{effcond}(a, \neg a) \vee \text{effcond}(a, (\neg c \triangleright \neg b))) \\ &= (\perp \vee (\neg c \wedge \text{effcond}(a, \neg b))) \\ &= (\perp \vee (\neg c \wedge \perp)) \\ &\equiv \perp \quad \rightsquigarrow \text{false in state } s\end{aligned}$$

Applying Operators: Example

We use the state variables $V = \{a, b, c, d\}$.

Example

Consider the operator $o = \langle a, (\neg a \wedge (\neg c \triangleright \neg b)) \rangle$ and the state $s = \{a \mapsto \mathbf{T}, b \mapsto \mathbf{T}, c \mapsto \mathbf{T}, d \mapsto \mathbf{T}\}$.

The operator o is applicable in s because $s \models a$.

Effect conditions of $\text{eff}(o)$:

$$\begin{aligned}\text{effcond}(\neg a, \text{eff}(o)) &= \text{effcond}(\neg a, (\neg a \wedge (\neg c \triangleright \neg b))) \\ &= (\text{effcond}(\neg a, \neg a) \vee \text{effcond}(\neg a, (\neg c \triangleright \neg b))) \\ &= (\top \vee \text{effcond}(\neg a, (\neg c \triangleright \neg b))) \\ &\equiv \top \quad \rightsquigarrow \text{true in state } s\end{aligned}$$

Applying Operators: Example

We use the state variables $V = \{a, b, c, d\}$.

Example

Consider the operator $o = \langle a, (\neg a \wedge (\neg c \triangleright \neg b)) \rangle$ and the state $s = \{a \mapsto \mathbf{T}, b \mapsto \mathbf{T}, c \mapsto \mathbf{T}, d \mapsto \mathbf{T}\}$.

The operator o is applicable in s because $s \models a$.

Effect conditions of $\text{eff}(o)$:

$$\begin{aligned}\text{effcond}(b, \text{eff}(o)) &= \text{effcond}(b, (\neg a \wedge (\neg c \triangleright \neg b))) \\ &= (\text{effcond}(b, \neg a) \vee \text{effcond}(b, (\neg c \triangleright \neg b))) \\ &= (\perp \vee (\neg c \wedge \text{effcond}(b, \neg b))) \\ &= (\perp \vee (\neg c \wedge \perp)) \\ &\equiv \perp \quad \rightsquigarrow \text{false in state } s\end{aligned}$$

Applying Operators: Example

We use the state variables $V = \{a, b, c, d\}$.

Example

Consider the operator $o = \langle a, (\neg a \wedge (\neg c \triangleright \neg b)) \rangle$ and the state $s = \{a \mapsto \mathbf{T}, b \mapsto \mathbf{T}, c \mapsto \mathbf{T}, d \mapsto \mathbf{T}\}$.

The operator o is applicable in s because $s \models a$.

Effect conditions of $\text{eff}(o)$:

$$\begin{aligned}\text{effcond}(\neg b, \text{eff}(o)) &= \text{effcond}(\neg b, (\neg a \wedge (\neg c \triangleright \neg b))) \\ &= (\text{effcond}(\neg b, \neg a) \vee \text{effcond}(\neg b, (\neg c \triangleright \neg b))) \\ &= (\perp \vee (\neg c \wedge \text{effcond}(\neg b, \neg b))) \\ &= (\perp \vee (\neg c \wedge \top)) \\ &\equiv \neg c \quad \rightsquigarrow \text{false in state } s\end{aligned}$$

Applying Operators: Example

We use the state variables $V = \{a, b, c, d\}$.

Example

Consider the operator $o = \langle a, (\neg a \wedge (\neg c \triangleright \neg b)) \rangle$ and the state $s = \{a \mapsto \mathbf{T}, b \mapsto \mathbf{T}, c \mapsto \mathbf{T}, d \mapsto \mathbf{T}\}$.

The operator o is applicable in s because $s \models a$.

Effect conditions of $\text{eff}(o)$:

$$\begin{aligned}\text{effcond}(c, \text{eff}(o)) &\equiv \perp \rightsquigarrow \text{false in state } s \\ \text{effcond}(\neg c, \text{eff}(o)) &\equiv \perp \rightsquigarrow \text{false in state } s \\ \text{effcond}(d, \text{eff}(o)) &\equiv \perp \rightsquigarrow \text{false in state } s \\ \text{effcond}(\neg d, \text{eff}(o)) &\equiv \perp \rightsquigarrow \text{false in state } s\end{aligned}$$

The resulting state of applying o in s is the state $\{a \mapsto \mathbf{F}, b \mapsto \mathbf{T}, c \mapsto \mathbf{T}, d \mapsto \mathbf{T}\}$.

Example Operator: 4-Bit Counter

Example (Incrementing a 4-Bit Counter)

Operator to increment a 4-bit number $b_3 b_2 b_1 b_0$ represented by 4 state variables b_0, \dots, b_3 :

precondition:

$$\neg b_0 \vee \neg b_1 \vee \neg b_2 \vee \neg b_3$$

effect:

$$\begin{aligned} &(\neg b_0 \triangleright b_0) \wedge \\ &((\neg b_1 \wedge b_0) \triangleright (b_1 \wedge \neg b_0)) \wedge \\ &((\neg b_2 \wedge b_1 \wedge b_0) \triangleright (b_2 \wedge \neg b_1 \wedge \neg b_0)) \wedge \\ &((\neg b_3 \wedge b_2 \wedge b_1 \wedge b_0) \triangleright (b_3 \wedge \neg b_2 \wedge \neg b_1 \wedge \neg b_0))\end{aligned}$$

Example Operators: Blocks World

Example (Blocks World Operators)

To model blocks world operators conveniently, we use auxiliary state variables $A\text{-clear}$, $B\text{-clear}$, and $C\text{-clear}$ to express that there is nothing on top of a given block.

Then blocks world operators can be modeled as:

- ▶ $\langle A\text{-clear} \wedge A\text{-on-table} \wedge B\text{-clear}, A\text{-on-}B \wedge \neg A\text{-on-table} \wedge \neg B\text{-clear} \rangle$
- ▶ $\langle A\text{-clear} \wedge A\text{-on-table} \wedge C\text{-clear}, A\text{-on-}C \wedge \neg A\text{-on-table} \wedge \neg C\text{-clear} \rangle$
- ▶ $\langle A\text{-clear} \wedge A\text{-on-}B, A\text{-on-table} \wedge \neg A\text{-on-}B \wedge B\text{-clear} \rangle$
- ▶ $\langle A\text{-clear} \wedge A\text{-on-}C, A\text{-on-table} \wedge \neg A\text{-on-}C \wedge C\text{-clear} \rangle$
- ▶ $\langle A\text{-clear} \wedge A\text{-on-}B \wedge C\text{-clear}, A\text{-on-}C \wedge \neg A\text{-on-}B \wedge B\text{-clear} \wedge \neg C\text{-clear} \rangle$
- ▶ $\langle A\text{-clear} \wedge A\text{-on-}C \wedge B\text{-clear}, A\text{-on-}B \wedge \neg A\text{-on-}C \wedge C\text{-clear} \wedge \neg B\text{-clear} \rangle$
- ▶ ...

B3.2 Planning Tasks

Planning Tasks

Definition (Planning Task)

A (propositional) **planning task** is a 4-tuple $\Pi = \langle V, I, O, \gamma \rangle$ where

- ▶ V is a finite set of **propositional state variables**,
- ▶ I is a valuation over V called the **initial state**,
- ▶ O is a finite set of **operators** over V , and
- ▶ γ is a formula over V called the **goal**.

Mapping Planning Tasks to Transition Systems

Definition (Transition System Induced by a Planning Task)

The planning task $\Pi = \langle V, I, O, \gamma \rangle$ **induces** the transition system $\mathcal{T}(\Pi) = \langle S, L, c, T, s_0, S_* \rangle$, where

- ▶ S is the set of all states over V ,
- ▶ L is the set of operators O ,
- ▶ $c(o) = \text{cost}(o)$ for all operators $o \in O$,
- ▶ $T = \{ \langle s, o, s' \rangle \mid s \in S, o \text{ applicable in } s, s' = s[o] \}$,
- ▶ $s_0 = I$, and
- ▶ $S_* = \{ s \in S \mid s \models \gamma \}$.

Planning Tasks: Terminology

- ▶ Terminology for transitions systems is also applied to the planning tasks Π that induce them.
- ▶ For example, when we speak of the **states of Π** , we mean the states of $\mathcal{T}(\Pi)$.
- ▶ A sequence of operators that forms a solution of $\mathcal{T}(\Pi)$ is called a **plan** of Π .

Satisficing and Optimal Planning

By **planning**, we mean the following two algorithmic problems:

Definition (Satisficing Planning)

Given: a planning task Π

Output: a plan for Π , or **unsolvable** if no plan for Π exists

Definition (Optimal Planning)

Given: a planning task Π

Output: a plan for Π with minimal cost among all plans for Π , or **unsolvable** if no plan for Π exists

B3.3 Summary

Summary

- ▶ **Planning tasks** compactly represent transition systems and are suitable as inputs for planning algorithms.
- ▶ A planning task consists of a set of **state variables** and an **initial state, operators** and **goal** over these state variables.
- ▶ In **satisficing planning**, we must find a solution for a planning task (or show that no solution exists).
- ▶ In **optimal planning**, we must additionally guarantee that generated solutions are of minimal cost.