Discrete Mathematics in Computer Science Syntax of Predicate Logic

Malte Helmert, Gabriele Röger

University of Basel

Limits of Propositional Logic

Cannot well be expressed in propositional logic:

- "Everyone who does the exercises passes the exam."
- "If someone with administrator privileges presses 'delete', all data is gone."
- "Everyone has a mother."
- "If someone is the father of some person, the person is his child."

Limits of Propositional Logic

Cannot well be expressed in propositional logic:

- "Everyone who does the exercises passes the exam."
- "If someone with administrator privileges presses 'delete', all data is gone."
- "Everyone has a mother."
- "If someone is the father of some person, the person is his child."

▷ need more expressive logic

→ predicate logic (a.k.a. first-order logic)

German: Prädikatenlogik (erster Stufe)

Syntax: Building Blocks

- Signatures define allowed symbols.
 analogy: atom set A in propositional logic
- Terms are associated with objects by the semantics.
 no analogy in propositional logic
- Formulas are associated with truth values (true or false) by the semantics.
 analogy: formulas in propositional logic

German: Signatur, Term, Formel

Signatures: Definition

Definition (Signature)

A signature (of predicate logic) is a 4-tuple $S = \langle V, C, F, P \rangle$ consisting of the following four disjoint sets:

- a finite or countable set \mathcal{V} of variable symbols
- a finite or countable set C of constant symbols
- a finite or countable set \mathcal{F} of function symbols
- a finite or countable set *P* of predicate symbols (or relation symbols)

Every function symbol $f \in \mathcal{F}$ and predicate symbol $P \in \mathcal{P}$ has an associated arity $ar(f), ar(P) \in \mathbb{N}_1$ (number of arguments).

German: Variablen-, Konstanten-, Funktions-, Prädikat- und Relationssymbole; Stelligkeit

Signatures: Terminology and Conventions

terminology:

- k-ary (function or predicate) symbol: symbol s with arity ar(s) = k.
- also: unary, binary, ternary

German: k-stellig, unär, binär, ternär

conventions (in this course):

- variable symbols written in *italics*, other symbols upright.
- predicate symbols begin with capital letter, other symbols with lower-case letters

Signatures: Examples

Example: Arithmetic

•
$$\mathcal{V} = \{x, y, z, x_1, x_2, x_3, \dots\}$$

•
$$C = \{ \mathsf{zero}, \mathsf{one} \}$$

•
$$\mathcal{F} = \{\mathsf{sum}, \mathsf{product}\}$$

ar(sum) = *ar*(product) = 2, *ar*(Positive) = *ar*(SquareNumber) = 1

Signatures: Examples

Example: Genealogy

•
$$\mathcal{V} = \{x, y, z, x_1, x_2, x_3, \dots\}$$

•
$$C = \{$$
roger-federer, lisa-simpson $\}$

$$\mathcal{F} = \emptyset$$

•
$$\mathcal{P} = \{ \mathsf{Female}, \mathsf{Male}, \mathsf{Parent} \}$$

ar(Female) = ar(Male) = 1, ar(Parent) = 2

Terms: Definition

Definition (Term)

Let $S = \langle \mathcal{V}, \mathcal{C}, \mathcal{F}, \mathcal{P} \rangle$ be a signature. A term (over S) is inductively constructed according to the following rules:

- Every variable symbol $\mathbf{v} \in \mathcal{V}$ is a term.
- Every constant symbol $\mathbf{c} \in \mathcal{C}$ is a term.
- If t_1, \ldots, t_k are terms and $f \in \mathcal{F}$ is a function symbol with arity k, then $f(t_1, \ldots, t_k)$ is a term.

German: Term

Terms: Definition

Definition (Term)

Let $S = \langle V, C, F, P \rangle$ be a signature. A term (over S) is inductively constructed according to the following rules:

- Every variable symbol $\mathbf{v} \in \mathcal{V}$ is a term.
- Every constant symbol $\mathbf{c} \in \mathcal{C}$ is a term.
- If t_1, \ldots, t_k are terms and $f \in \mathcal{F}$ is a function symbol with arity k, then $f(t_1, \ldots, t_k)$ is a term.

German: Term

examples:

- **X**4
- lisa-simpson
- sum(x₃, product(one, x₅))

Formulas: Definition

Definition (Formula)

. . .

For a signature $S = \langle V, C, F, P \rangle$ the set of predicate logic formulas (over S) is inductively defined as follows:

- If t₁,..., t_k are terms (over S) and P ∈ P is a k-ary predicate symbol, then the atomic formula (or the atom) P(t₁,..., t_k) is a formula over S.
- If t_1 and t_2 are terms (over S), then the identity $(t_1 = t_2)$ is a formula over S.
- If x ∈ V is a variable symbol and φ a formula over S, then the universal quantification ∀x φ and the existential quantification ∃x φ are formulas over S.

German: atomare Formel, Atom, Identität, Allquantifizierung, Existenzquantifizierung

Formulas: Definition

Definition (Formula)

. . .

For a signature $S = \langle V, C, F, P \rangle$ the set of predicate logic formulas (over S) is inductively defined as follows:

- If φ is a formula over S, then so is its negation $\neg \varphi$.
- If φ and ψ are formulas over S, then so are the conjunction (φ ∧ ψ) and the disjunction (φ ∨ ψ).

German: Negation, Konjunktion, Disjunktion

Formulas: Examples

Examples: Arithmetic and Genealogy

- Positive(x₂)
- $\forall x (\neg SquareNumber(x) \lor Positive(x))$
- $\exists x_3 (SquareNumber(x_3) \land \neg Positive(x_3))$

$$\forall x (x = y)$$

- $\forall x (sum(x, x) = product(x, one))$
- $\forall x \exists y (sum(x, y) = zero)$
- $\forall x \exists y (\mathsf{Parent}(y, x) \land \mathsf{Female}(y))$

Terminology: The symbols \forall and \exists are called quantifiers.

German: Quantoren

Abbreviations and Placement of Parentheses by Convention

abbreviations:

- $(\varphi \to \psi)$ is an abbreviation for $(\neg \varphi \lor \psi)$.
- $(\varphi \leftrightarrow \psi)$ is an abbreviation for $((\varphi \rightarrow \psi) \land (\psi \rightarrow \varphi))$.
- Sequences of the same quantifier can be abbreviated.
 For example:
 - $\forall x \forall y \forall z \varphi \rightsquigarrow \forall x y z \varphi$
 - $\blacksquare \exists x \exists y \exists z \varphi \rightsquigarrow \exists x y z \varphi$
 - $\forall w \exists x \exists y \forall z \varphi \rightsquigarrow \forall w \exists xy \forall z \varphi$

Abbreviations and Placement of Parentheses by Convention

abbreviations:

- $(\varphi \rightarrow \psi)$ is an abbreviation for $(\neg \varphi \lor \psi)$.
- $(\varphi \leftrightarrow \psi)$ is an abbreviation for $((\varphi \rightarrow \psi) \land (\psi \rightarrow \varphi))$.
- Sequences of the same quantifier can be abbreviated.
 For example:
 - $\forall x \forall y \forall z \varphi \rightsquigarrow \forall x y z \varphi$
 - $\blacksquare \exists x \exists y \exists z \varphi \rightsquigarrow \exists x y z \varphi$
 - $\forall w \exists x \exists y \forall z \varphi \rightsquigarrow \forall w \exists xy \forall z \varphi$

placement of parentheses by convention:

- analogous to propositional logic
- quantifiers \forall and \exists bind more strongly than anything else.

■ example: $\forall x P(x) \rightarrow Q(x)$ corresponds to $(\forall x P(x) \rightarrow Q(x))$, not $\forall x (P(x) \rightarrow Q(x))$.

Exercise

$$\begin{aligned} \mathcal{S} &= \langle \{x,y,z\}, \{\mathsf{c}\}, \{\mathsf{f},\mathsf{g},\mathsf{h}\}, \{\mathsf{Q},\mathsf{R},\mathsf{S}\} \rangle \text{ with } \\ ar(\mathsf{f}) &= 3, ar(\mathsf{g}) = ar(\mathsf{h}) = 1, ar(\mathsf{Q}) = 2, ar(\mathsf{R}) = ar(\mathsf{S}) = 1 \end{aligned}$$

■ f(*x*, *y*)

$$(g(x) = \mathsf{R}(y))$$

- (g(x) = f(y, c, h(x)))
- $(\mathsf{R}(x) \land \forall x \,\mathsf{S}(x))$
- ∀c Q(c, x)

$$(\forall x \exists y (g(x) = y) \lor (h(x) = c))$$

Which expressions are syntactically correct formulas or terms for $\mathcal{S}?$ What kind of term/formula?

Discrete Mathematics in Computer Science Semantics of Predicate Logic

Malte Helmert, Gabriele Röger

University of Basel

Semantics: Motivation

- interpretations in propositional logic: truth assignments for the propositional variables
- There are no propositional variables in predicate logic.
- instead: interpretation determines meaning of the constant, function and predicate symbols.
- meaning of variable symbols not determined by interpretation but by separate variable assignment

Interpretations and Variable Assignments

Let $\mathcal{S} = \langle \mathcal{V}, \mathcal{C}, \mathcal{F}, \mathcal{P} \rangle$ be a signature.

Definition (Interpretation, Variable Assignment)

An interpretation (for S) is a pair $\mathcal{I} = \langle U, \cdot^{\mathcal{I}} \rangle$ of:

- a non-empty set U called the universe and
- a function ·^I that assigns a meaning to the constant, function, and predicate symbols:
 - $c^{\mathcal{I}} \in U$ for constant symbols $c \in C$
 - $f^{\mathcal{I}}: U^k \to U$ for *k*-ary function symbols $f \in \mathcal{F}$
 - $\mathsf{P}^{\mathcal{I}} \subseteq U^k$ for *k*-ary predicate symbols $\mathsf{P} \in \mathcal{P}$

A variable assignment (for S and universe U) is a function $\alpha : \mathcal{V} \to U$.

German: Interpretation, Universum (or Grundmenge), Variablenzuweisung

Interpretations and Variable Assignments: Example

Example

signature: $S = \langle V, C, F, P \rangle$ with $V = \{x, y, z\}$, $C = \{\text{zero, one}\}, F = \{\text{sum, product}\}, P = \{\text{SquareNumber}\}$ ar(sum) = ar(product) = 2, ar(SquareNumber) = 1

Interpretations and Variable Assignments: Example

Example

signature:
$$S = \langle \mathcal{V}, \mathcal{C}, \mathcal{F}, \mathcal{P} \rangle$$
 with $\mathcal{V} = \{x, y, z\}$,
 $\mathcal{C} = \{\text{zero, one}\}, \mathcal{F} = \{\text{sum, product}\}, \mathcal{P} = \{\text{SquareNumber}\}$
 $ar(\text{sum}) = ar(\text{product}) = 2, ar(\text{SquareNumber}) = 1$
 $\mathcal{I} = \langle U, \cdot^{\mathcal{I}} \rangle$ with
 $\mathbf{U} = \{u_0, u_1, u_2, u_3, u_4, u_5, u_6\}$
 $\mathbf{z} \text{ero}^{\mathcal{I}} = u_0$
 $\mathbf{u} \text{one}^{\mathcal{I}} = u_1$
 $\mathbf{u} \text{sum}^{\mathcal{I}}(u_i, u_j) = u_{(i+j) \mod 7} \text{ for all } i, j \in \{0, \dots, 6\}$
 $\mathbf{u} \text{ product}^{\mathcal{I}}(u_i, u_j) = u_{(i\cdot j) \mod 7} \text{ for all } i, j \in \{0, \dots, 6\}$
 $\mathbf{u} \text{ SquareNumber}^{\mathcal{I}} = \{u_0, u_1, u_2, u_4\}$
 $\alpha = \{x \mapsto u_5, y \mapsto u_5, z \mapsto u_0\}$

Semantics: Informally

Example: $(\forall x (Block(x) \rightarrow Red(x)) \land Block(a))$ "For all objects x: if x is a block, then x is red. Also, the object called a is a block."

- **Terms** are interpreted as objects.
- Unary predicates denote properties of objects (to be a block, to be red, to be a square number, ...).
- General predicates denote relations between objects (to be someone's child, to have a common divisor, ...).
- Universally quantified formulas ("∀") are true if they hold for every object in the universe.
- Existentially quantified formulas ("∃") are true if they hold for at least one object in the universe.

Interpretations of Terms

Let $\mathcal{S} = \langle \mathcal{V}, \mathcal{C}, \mathcal{F}, \mathcal{P} \rangle$ be a signature.

Definition (Interpretation of a Term)

Let $\mathcal{I} = \langle U, \cdot^{\mathcal{I}} \rangle$ be an interpretation for S, and let α be a variable assignment for S and universe U. Let t be a term over S. The interpretation of t under \mathcal{I} and α , written as $t^{\mathcal{I},\alpha}$, is the element of the universe U defined as follows:

If
$$t = x$$
 with $x \in \mathcal{V}$ (t is a variable term):
 $x^{\mathcal{I},\alpha} = \alpha(x)$

If t = c with $c \in C$ (t is a constant term): $c^{\mathcal{I},\alpha} = c^{\mathcal{I}}$

If
$$t = f(t_1, \ldots, t_k)$$
 (t is a function term):
 $f(t_1, \ldots, t_k)^{\mathcal{I}, \alpha} = f^{\mathcal{I}}(t_1^{\mathcal{I}, \alpha}, \ldots, t_k^{\mathcal{I}, \alpha})$

Interpretations of Terms: Example

Example

signature: $S = \langle V, C, F, P \rangle$ with $V = \{x, y, z\}$, $C = \{\text{zero, one}\}$, $F = \{\text{sum, product}\}$, ar(sum) = ar(product) = 2

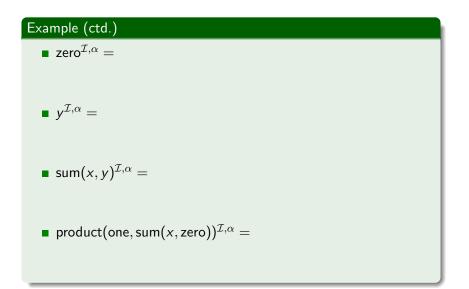
Interpretations of Terms: Example

Example

signature:
$$S = \langle \mathcal{V}, \mathcal{C}, \mathcal{F}, \mathcal{P} \rangle$$

with $\mathcal{V} = \{x, y, z\}, C = \{\text{zero, one}\}, \mathcal{F} = \{\text{sum, product}\},$
 $ar(\text{sum}) = ar(\text{product}) = 2$
 $\mathcal{I} = \langle U, \cdot^{\mathcal{I}} \rangle$ with
 $\mathbf{U} = \{u_0, u_1, u_2, u_3, u_4, u_5, u_6\}$
 $\mathbf{z} \text{ero}^{\mathcal{I}} = u_0$
 $\mathbf{u} \text{one}^{\mathcal{I}} = u_1$
 $\mathbf{u} \text{sum}^{\mathcal{I}}(u_i, u_j) = u_{(i+j) \mod 7} \text{ for all } i, j \in \{0, \dots, 6\}$
 $\mathbf{u} \text{ product}^{\mathcal{I}}(u_i, u_j) = u_{(i \cdot j) \mod 7} \text{ for all } i, j \in \{0, \dots, 6\}$
 $\alpha = \{x \mapsto u_5, y \mapsto u_5, z \mapsto u_0\}$

Interpretations of Terms: Example (ctd.)



Semantics of Predicate Logic Formulas

Let $\mathcal{S} = \langle \mathcal{V}, \mathcal{C}, \mathcal{F}, \mathcal{P} \rangle$ be a signature.

Definition (Formula is Satisfied or True)

Let $\mathcal{I} = \langle U, \cdot^{\mathcal{I}} \rangle$ be an interpretation for S, and let α be a variable assignment for S and universe U. We say that \mathcal{I} and α satisfy a predicate logic formula φ (also: φ is true under \mathcal{I} and α), written: $\mathcal{I}, \alpha \models \varphi$, according to the following inductive rules:

$$\begin{split} \mathcal{I}, \alpha &\models \mathsf{P}(t_1, \dots, t_k) & \text{iff } \langle t_1^{\mathcal{I}, \alpha}, \dots, t_k^{\mathcal{I}, \alpha} \rangle \in \mathsf{P}^{\mathcal{I}} \\ \mathcal{I}, \alpha &\models (t_1 = t_2) & \text{iff } t_1^{\mathcal{I}, \alpha} = t_2^{\mathcal{I}, \alpha} \\ \mathcal{I}, \alpha &\models \neg \varphi & \text{iff } \mathcal{I}, \alpha \not\models \varphi \\ \mathcal{I}, \alpha &\models (\varphi \land \psi) & \text{iff } \mathcal{I}, \alpha \models \varphi \text{ and } \mathcal{I}, \alpha \models \psi \\ \mathcal{I}, \alpha &\models (\varphi \lor \psi) & \text{iff } \mathcal{I}, \alpha \models \varphi \text{ or } \mathcal{I}, \alpha \models \psi \end{split}$$

German: \mathcal{I} und α erfüllen φ (also: φ ist wahr unter \mathcal{I} und α)

. . .

Semantics of Predicate Logic Formulas

Let $\mathcal{S} = \langle \mathcal{V}, \mathcal{C}, \mathcal{F}, \mathcal{P} \rangle$ be a signature.

. . .

Definition (Formula is Satisfied or True)

$$\mathcal{I}, \alpha \models orall x arphi \quad ext{iff } \mathcal{I}, \alpha[x := u] \models arphi ext{ for all } u \in U$$

 $\mathcal{I}, \alpha \models \exists x \varphi \quad \text{iff} \ \mathcal{I}, \alpha[x := u] \models \varphi \ \text{for at least one} \ u \in U$

where $\alpha[x := u]$ is the same variable assignment as α , except that it maps variable x to the value u. Formally:

$$(\alpha[x := u])(z) = \begin{cases} u & \text{if } z = x \\ \alpha(z) & \text{if } z \neq x \end{cases}$$

Semantics: Example

Example

signature: $S = \langle \mathcal{V}, \mathcal{C}, \mathcal{F}, \mathcal{P} \rangle$ with $\mathcal{V} = \{x, y, z\}$, $\mathcal{C} = \{a, b\}$, $\mathcal{F} = \emptyset$, $\mathcal{P} = \{Block, Red\}$, ar(Block) = ar(Red) = 1.

Semantics: Example

Example

signature:
$$S = \langle \mathcal{V}, C, \mathcal{F}, \mathcal{P} \rangle$$

with $\mathcal{V} = \{x, y, z\}, C = \{a, b\}, \mathcal{F} = \emptyset, \mathcal{P} = \{Block, Red\},$
 $ar(Block) = ar(Red) = 1.$
 $\mathcal{I} = \langle U, \cdot^{\mathcal{I}} \rangle$ with
 $\mathbf{U} = \{u_1, u_2, u_3, u_4, u_5\}$
 $\mathbf{u} a^{\mathcal{I}} = u_1$
 $\mathbf{b}^{\mathcal{I}} = u_3$
 $\mathbf{Block}^{\mathcal{I}} = \{u_1, u_2\}$
 $\mathbf{Red}^{\mathcal{I}} = \{u_1, u_2, u_3, u_5\}$
 $\alpha = \{x \mapsto u_1, y \mapsto u_2, z \mapsto u_1\}$

Semantics: Example (ctd.)

Example (ctd.)

Questions:

- $\mathcal{I}, \alpha \models (\mathsf{Block}(\mathsf{b}) \lor \neg \mathsf{Block}(\mathsf{b}))$?
- $\mathcal{I}, \alpha \models (\mathsf{Block}(x) \rightarrow (\mathsf{Block}(x) \lor \neg \mathsf{Block}(y)))?$
- $\mathcal{I}, \alpha \models (\mathsf{Block}(\mathsf{a}) \land \mathsf{Block}(\mathsf{b}))$?
- $\mathcal{I}, \alpha \models \forall x (\mathsf{Block}(x) \to \mathsf{Red}(x))?$