Discrete Mathematics in Computer Science
E5. Syntax and Semantics of Predicate Logic

Malte Helmert, Gabriele Röger

University of Basel

Discrete Mathematics in Computer Science

- E5. Syntax and Semantics of Predicate Logic

E5.1 Syntax of Predicate Logic

E5.2 Semantics of Predicate Logic

Malte Helmert, Gabriele Röger (University of Discrete Mathematics in Computer Science

- Signatures define allowed symbols. analogy: atom set A in propositional logic
- Terms are associated with objects by the semantics. no analogy in propositional logic
- Formulas are associated with truth values (true or false) by the semantics.
analogy: formulas in propositional logic

German: Signatur, Term, Formel

Definition (Signature)

A signature (of predicate logic) is a 4-tuple $\mathcal{S}=\langle\mathcal{V}, \mathcal{C}, \mathcal{F}, \mathcal{P}\rangle$ consisting of the following four disjoint sets:

- a finite or countable set \mathcal{V} of variable symbols
- a finite or countable set \mathcal{C} of constant symbols
- a finite or countable set \mathcal{F} of function symbols
- a finite or countable set \mathcal{P} of predicate symbols (or relation symbols)
Every function symbol $\mathrm{f} \in \mathcal{F}$ and predicate symbol $\mathrm{P} \in \mathcal{P}$ has an associated arity $\operatorname{ar}(\mathrm{f}), \operatorname{ar}(\mathrm{P}) \in \mathbb{N}_{1}$ (number of arguments).

German: Variablen-, Konstanten-, Funktions-, Prädikat- und Relationssymbole; Stelligkeit

terminology:

- k-ary (function or predicate) symbol: symbol s with arity $\operatorname{ar}(\mathrm{s})=k$.
- also: unary, binary, ternary

German: k-stellig, unär, binär, ternär
conventions (in this course):

- variable symbols written in italics, other symbols upright.
- predicate symbols begin with capital letter, other symbols with lower-case letters

Signatures: Terminology and Conventions

E5. Syntax and Semantics of Predicate Logic Syntax of Pred	te Logic
Signatures: Examples	
Example: Arithmetic $\begin{aligned} & \mathcal{V}=\left\{x, y, z, x_{1}, x_{2}, x_{3}, \ldots\right\} \\ \mathcal{C} & =\{\text { zero, one }\} \\ \mathcal{F} & =\{\text { sum, product }\} \\ \mathcal{P} & =\{\text { Positive }, \text { SquareNumber }\} \\ \operatorname{ar}(\text { sum }) & =\operatorname{ar}(\text { product })=2, \operatorname{ar}(\text { Positive })=\operatorname{ar}(\text { SquareNumber })=1 \end{aligned}$	
Malte Helmert, Gabriele Röger (University of Discrete Mathematics in Computer Science	$8 / 27$

Example: Genealogy

- $\mathcal{V}=\left\{x, y, z, x_{1}, x_{2}, x_{3}, \ldots\right\}$
- $\mathcal{C}=\{$ roger-federer, lisa-simpson $\}$
- $\mathcal{F}=\emptyset$
- $\mathcal{P}=\{$ Female, Male, Parent $\}$
$\operatorname{ar}($ Female $)=\operatorname{ar}($ Male $)=1, \operatorname{ar}($ Parent $)=2$

Definition (Formula)

For a signature $\mathcal{S}=\langle\mathcal{V}, \mathcal{C}, \mathcal{F}, \mathcal{P}\rangle$ the set of predicate logic formulas (over \mathcal{S}) is inductively defined as follows:

- If t_{1}, \ldots, t_{k} are terms (over \mathcal{S}) and $\mathrm{P} \in \mathcal{P}$ is a k-ary predicate symbol, then the atomic formula (or the atom) $\mathrm{P}\left(t_{1}, \ldots, t_{k}\right)$ is a formula over \mathcal{S}.
- If t_{1} and t_{2} are terms (over \mathcal{S}), then the identity $\left(t_{1}=t_{2}\right)$ is a formula over \mathcal{S}.
- If $x \in \mathcal{V}$ is a variable symbol and φ a formula over \mathcal{S}, then the universal quantification $\forall x \varphi$ and the existential quantification $\exists x \varphi$ are formulas over \mathcal{S}.

German: atomare Formel, Atom, Identität,

Allquantifizierung, Existenzquantifizierung

Formulas: Definition

Definition (Formula)
For a signature $\mathcal{S}=\langle\mathcal{V}, \mathcal{C}, \mathcal{F}, \mathcal{P}\rangle$ the set of predicate logic formulas (over \mathcal{S}) is inductively defined as follows:
.

- If φ is a formula over \mathcal{S}, then so is its negation $\neg \varphi$.
- If φ and ψ are formulas over \mathcal{S}, then so are
the conjunction $(\varphi \wedge \psi)$ and the disjunction $(\varphi \vee \psi)$.

Formulas: Examples

Examples: Arithmetic and Genealogy

- Positive $\left(x_{2}\right)$
- $\forall x(\neg$ SquareNumber $(x) \vee$ Positive $(x))$
- $\exists x_{3}\left(\right.$ SquareNumber $\left.\left(x_{3}\right) \wedge \neg \operatorname{Positive~}\left(x_{3}\right)\right)$
- $\forall x(x=y)$
- $\forall x(\operatorname{sum}(x, x)=\operatorname{product}(x$, one $))$
- $\forall x \exists y(\operatorname{sum}(x, y)=$ zero $)$
- $\forall x \exists y(\operatorname{Parent}(y, x) \wedge$ Female $(y))$

Terminology: The symbols \forall and \exists are called quantifiers.
German: Quantoren
E. Symat and Semnitics of Preiciate logic \quad Slacement of Parentheses by Convention

- $(\varphi \rightarrow \psi)$ is an abbreviation for $(\neg \varphi \vee \psi)$.
- $(\varphi \leftrightarrow \psi)$ is an abbreviation for $((\varphi \rightarrow \psi) \wedge(\psi \rightarrow \varphi))$.
- Sequences of the same quantifier can be abbreviated.

For example:

- $\forall x \forall y \forall z \varphi \rightsquigarrow \forall x y z \varphi$
- $\exists x \exists y \exists z \varphi \rightsquigarrow \exists x y z \varphi$
- $\forall w \exists x \exists y \forall z \varphi \rightsquigarrow \forall w \exists x y \forall z \varphi$
placement of parentheses by convention:
- analogous to propositional logic
- quantifiers \forall and \exists bind more strongly than anything else.
- example: $\forall x \mathrm{P}(x) \rightarrow \mathrm{Q}(x)$ corresponds to $(\forall x \mathrm{P}(x) \rightarrow \mathrm{Q}(x))$,

abbreviations:

$$
\text { not } \forall x(\mathrm{P}(x) \rightarrow \mathrm{Q}(x))
$$

Semantics of Predicate Logic
$\mathcal{S}=\langle\{x, y, z\},\{\mathrm{c}\},\{\mathrm{f}, \mathrm{g}, \mathrm{h}\},\{\mathrm{Q}, \mathrm{R}, \mathrm{S}\}\rangle$ with
$\operatorname{ar}(\mathrm{f})=3, \operatorname{ar}(\mathrm{~g})=\operatorname{ar}(\mathrm{h})=1, \operatorname{ar}(\mathrm{Q})=2, \operatorname{ar}(\mathrm{R})=\operatorname{ar}(\mathrm{S})=1$

- $\mathrm{f}(x, y)$
- $(\mathrm{g}(x)=\mathrm{R}(y))$
- $(\mathrm{g}(x)=\mathrm{f}(y, \mathrm{c}, \mathrm{h}(x)))$
- $(\mathrm{R}(x) \wedge \forall x \mathrm{~S}(x))$
- $\forall c Q(c, x)$
- $(\forall x \exists y(\mathrm{~g}(x)=y) \vee(\mathrm{h}(x)=\mathrm{c}))$

Which expressions are syntactically correct formulas or terms for \mathcal{S} ?
What kind of term/formula?

Exercise

- interpretations in propositional logic: truth assignments for the propositional variables
- There are no propositional variables in predicate logic.
- instead: interpretation determines meaning of the constant, function and predicate symbols.
- meaning of variable symbols not determined by interpretation but by separate variable assignment

Interpretations and Variable Assignments

Let $\mathcal{S}=\langle\mathcal{V}, \mathcal{C}, \mathcal{F}, \mathcal{P}\rangle$ be a signature.
Definition (Interpretation, Variable Assignment)
An interpretation (for \mathcal{S}) is a pair $\mathcal{I}=\left\langle U, \cdot^{\mathcal{I}}\right\rangle$ of:

- a non-empty set U called the universe and
- a function.I that assigns a meaning to the constant, function, and predicate symbols:
- $\mathrm{c}^{\mathcal{I}} \in U$ for constant symbols $\mathrm{c} \in \mathcal{C}$
- $\mathrm{f}^{\mathcal{I}}: U^{k} \rightarrow U$ for k-ary function symbols $\mathrm{f} \in \mathcal{F}$
- $\mathrm{P}^{\mathcal{I}} \subseteq U^{k}$ for k-ary predicate symbols $\mathrm{P} \in \mathcal{P}$

A variable assignment (for \mathcal{S} and universe U)
is a function $\alpha: \mathcal{V} \rightarrow U$.
German: Interpretation, Universum (or Grundmenge),
Variablenzuweisung
E5. Syntax and Semantics of Predicate Logic Semantics of Predicate Logic
Interpretations and Variable Assignments: Example

Example

signature: $\mathcal{S}=\langle\mathcal{V}, \mathcal{C}, \mathcal{F}, \mathcal{P}\rangle$ with $\mathcal{V}=\{x, y, z\}$,
$\mathcal{C}=\{$ zero, one $\}, \mathcal{F}=\{$ sum, product $\}, \mathcal{P}=\{$ SquareNumber $\}$
$\operatorname{ar}($ sum $)=\operatorname{ar}($ product $)=2, \operatorname{ar}($ SquareNumber $)=1$
$\mathcal{I}=\left\langle U,{ }^{\mathcal{I}}\right\rangle$ with

- $U=\left\{u_{0}, u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}\right\}$
- zero $^{\mathcal{I}}=u_{0}$
- one $^{\mathcal{I}}=u_{1}$
$-\operatorname{sum}^{\mathcal{I}}\left(u_{i}, u_{j}\right)=u_{(i+j) \bmod 7}$ for all $i, j \in\{0, \ldots, 6\}$
- product ${ }^{\mathcal{I}}\left(u_{i}, u_{j}\right)=u_{(i \cdot j) \bmod 7}$ for all $i, j \in\{0, \ldots, 6\}$
- SquareNumber $^{\mathcal{I}}=\left\{u_{0}, u_{1}, u_{2}, u_{4}\right\}$
$\alpha=\left\{x \mapsto u_{5}, y \mapsto u_{5}, z \mapsto u_{0}\right\}$

Semantics: Informally

Example: $(\forall x(\operatorname{Block}(x) \rightarrow \operatorname{Red}(x)) \wedge \operatorname{Block}(\mathrm{a}))$
"For all objects x : if x is a block, then x is red.
Also, the object called a is a block."

- Terms are interpreted as objects.
- Unary predicates denote properties of objects (to be a block, to be red, to be a square number, ...).
- General predicates denote relations between objects (to be someone's child, to have a common divisor, ...).
- Universally quantified formulas ("V") are true if they hold for every object in the universe.
- Existentially quantified formulas (" \exists ") are true if they hold for at least one object in the universe.

Let $\mathcal{S}=\langle\mathcal{V}, \mathcal{C}, \mathcal{F}, \mathcal{P}\rangle$ be a signature .
Definition (Interpretation of a Term)
Let $\mathcal{I}=\left\langle U, \mathcal{I}^{\mathcal{I}}\right\rangle$ be an interpretation for \mathcal{S},
and let α be a variable assignment for \mathcal{S} and universe U
Let t be a term over \mathcal{S}.
The interpretation of t under \mathcal{I} and α, written as $t^{\mathcal{I}, \alpha}$,
is the element of the universe U defined as follows:

- If $t=x$ with $x \in \mathcal{V}(t$ is a variable term):
$x^{\mathcal{I}, \alpha}=\alpha(x)$
- If $t=\mathrm{c}$ with $\mathrm{c} \in \mathcal{C}(t$ is a constant term): $\mathrm{c}^{\mathcal{I}, \alpha}=\mathrm{c}^{\mathcal{I}}$
- If $t=\mathrm{f}\left(t_{1}, \ldots, t_{k}\right)(t$ is a function term $)$: $\mathrm{f}\left(t_{1}, \ldots, t_{k}\right)^{\mathcal{I}, \alpha}=\mathrm{f}^{\mathcal{I}}\left(t_{1}^{\mathcal{I}, \alpha}, \ldots, t_{k}^{\mathcal{I}, \alpha}\right)$

Example
signature: $\mathcal{S}=\langle\mathcal{V}, \mathcal{C}, \mathcal{F}, \mathcal{P}\rangle$
with $\mathcal{V}=\{x, y, z\}, \mathcal{C}=\{$ zero, one $\}, \mathcal{F}=\{$ sum, product $\}$, $\operatorname{ar}($ sum $)=\operatorname{ar}($ product $)=2$
$\mathcal{I}=\left\langle U,{ }^{\mathcal{I}}\right\rangle$ with

- $U=\left\{u_{0}, u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}\right\}$
- zero $^{\mathcal{I}}=u_{0}$
- one $^{\mathcal{I}}=u_{1}$
- $\operatorname{sum}^{\mathcal{I}}\left(u_{i}, u_{j}\right)=u_{(i+j) \bmod 7}$ for all $i, j \in\{0, \ldots, 6\}$
product ${ }^{\mathcal{I}}\left(u_{i}, u_{j}\right)=u_{(i \cdot j) \bmod 7}$ for all $i, j \in\{0, \ldots, 6\}$
$\alpha=\left\{x \mapsto u_{5}, y \mapsto u_{5}, z \mapsto u_{0}\right\}$

Malte Helmert, Gabriele Röger (University of Discrete Mathematics in Computer Science

Semantics of Predicate Logic Formulas

Let $\mathcal{S}=\langle\mathcal{V}, \mathcal{C}, \mathcal{F}, \mathcal{P}\rangle$ be a signature.
Definition (Formula is Satisfied or True)
Let $\mathcal{I}=\left\langle U,{ }^{\mathcal{I}}\right\rangle$ be an interpretation for \mathcal{S},
and let α be a variable assignment for \mathcal{S} and universe U.
We say that \mathcal{I} and α satisfy a predicate logic formula φ (also: φ is true under \mathcal{I} and α), written: $\mathcal{I}, \alpha=\varphi$, according to the following inductive rules:

$$
\begin{aligned}
\mathcal{I}, \alpha \models \mathrm{P}\left(t_{1}, \ldots, t_{k}\right) & \text { iff }\left\langle t_{1}^{\mathcal{I}, \alpha}, \ldots, t_{k}^{\mathcal{I}, \alpha}\right\rangle \in \mathrm{P}^{\mathcal{I}} \\
\mathcal{I}, \alpha \models\left(t_{1}=t_{2}\right) & \text { iff } t_{1}^{\mathcal{I}, \alpha}=t_{2}^{\mathcal{I}, \alpha} \\
\mathcal{I}, \alpha \models \neg \varphi & \text { iff } \mathcal{I}, \alpha \neq \varphi \\
\mathcal{I}, \alpha \models(\varphi \wedge \psi) & \text { iff } \mathcal{I}, \alpha \models \varphi \text { and } \mathcal{I}, \alpha \models \psi \\
\mathcal{I}, \alpha \models(\varphi \vee \psi) & \text { iff } \mathcal{I}, \alpha \models \varphi \text { or } \mathcal{I}, \alpha \models \psi
\end{aligned}
$$

German: \mathcal{I} und α erfüllen φ (also: φ ist wahr unter \mathcal{I} und α)

Let $\mathcal{S}=\langle\mathcal{V}, \mathcal{C}, \mathcal{F}, \mathcal{P}\rangle$ be a signature.

Example

Definition (Formula is Satisfied or True)

$$
\begin{array}{ll}
\mathcal{I}, \alpha \models \forall x \varphi & \text { iff } \mathcal{I}, \alpha[x:=u] \models \varphi \text { for all } u \in U \\
\mathcal{I}, \alpha \models \exists x \varphi & \text { iff } \mathcal{I}, \alpha[x:=u] \models \varphi \text { for at least one } u \in U
\end{array}
$$

where $\alpha[x:=u]$ is the same variable assignment as α, except that it maps variable x to the value u.
Formally:

$$
(\alpha[x:=u])(z)= \begin{cases}u & \text { if } z=x \\ \alpha(z) & \text { if } z \neq x\end{cases}
$$

signature: $\mathcal{S}=\langle\mathcal{V}, \mathcal{C}, \mathcal{F}, \mathcal{P}\rangle$
with $\mathcal{V}=\{x, y, z\}, \mathcal{C}=\{\mathrm{a}, \mathrm{b}\}, \mathcal{F}=\emptyset, \mathcal{P}=\{$ Block, Red $\}$, $\operatorname{ar}($ Block $)=\operatorname{ar}($ Red $)=1$.
$\mathcal{I}=\left\langle U, \cdot{ }^{\mathcal{I}}\right\rangle$ with

- $U=\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right\}$
- $\mathrm{a}^{\mathcal{I}}=u_{1}$
- $\mathrm{b}^{\mathcal{I}}=u_{3}$
- Block $^{\mathcal{I}}=\left\{u_{1}, u_{2}\right\}$
$-\operatorname{Red}^{\mathcal{I}}=\left\{u_{1}, u_{2}, u_{3}, u_{5}\right\}$
$\alpha=\left\{x \mapsto u_{1}, y \mapsto u_{2}, z \mapsto u_{1}\right\}$

E5. Syntax and Semantics of Predicate Logic
Semantics: Example (ctd.)
Example (ctd.)
Questions:

- $\mathcal{I}, \alpha \vDash(\operatorname{Block}(\mathrm{b}) \vee \neg \operatorname{Block}(\mathrm{b}))$?
- $\mathcal{I}, \alpha \vDash(\operatorname{Block}(x) \rightarrow(\operatorname{Block}(x) \vee \neg \operatorname{Block}(y)))$?
- $\mathcal{I}, \alpha \vDash(\operatorname{Block}(\mathrm{a}) \wedge \operatorname{Block}(\mathrm{b}))$?
- $\mathcal{I}, \alpha=\forall x(\operatorname{Block}(x) \rightarrow \operatorname{Red}(x))$?

