Discrete Mathematics in Computer Science Inference Rules and Calculi

Malte Helmert, Gabriele Röger

University of Basel

Inference: Motivation

- up to now: proof of logical consequence with semantic arguments
- no general algorithm
- solution: produce formulas that are logical consequences of given formulas with syntactic inference rules
- advantage: mechanical method that can easily be implemented as an algorithm

Inference Rules

Inference rules have the form

$$\frac{\varphi_1,\ldots,\varphi_k}{\psi}$$
.

- Meaning: "Every model of $\varphi_1, \ldots, \varphi_k$ is a model of ψ ."
- An axiom is an inference rule with k=0.
- A set of inference rules is called a calculus or proof system.

German: Inferenzregel, Axiom, (der) Kalkül, Beweissystem

Some Inference Rules for Propositional Logic

Derivation

Definition (Derivation)

A derivation or proof of a formula φ from a knowledge base KB is a sequence of formulas ψ_1, \ldots, ψ_k with

- $\psi_k = \varphi$ and
- for all $i \in \{1, ..., k\}$:
 - $\psi_i \in \mathsf{KB}$, or
 - ψ_i is the result of the application of an inference rule to elements from $\{\psi_1, \dots, \psi_{i-1}\}.$

German: Ableitung, Beweis

Example

Given: $KB = \{P, (P \rightarrow Q), (P \rightarrow R), ((Q \land R) \rightarrow S)\}$

Example

Given: $KB = \{P, (P \rightarrow Q), (P \rightarrow R), ((Q \land R) \rightarrow S)\}$

Task: Find derivation of $(S \land R)$ from KB.

P (KB)

Example

Given: $KB = \{P, (P \rightarrow Q), (P \rightarrow R), ((Q \land R) \rightarrow S)\}$

- P (KB)
- $2 (P \rightarrow Q) (KB)$

Example

Given: $KB = \{P, (P \rightarrow Q), (P \rightarrow R), ((Q \land R) \rightarrow S)\}$

- P (KB)
- Q (1, 2, Modus ponens)

Example

Given: $KB = \{P, (P \rightarrow Q), (P \rightarrow R), ((Q \land R) \rightarrow S)\}$

- P (KB)
- Q (1, 2, Modus ponens)

Example

Given: $KB = \{P, (P \rightarrow Q), (P \rightarrow R), ((Q \land R) \rightarrow S)\}$

- P (KB)
- $(P \rightarrow Q)$ (KB)
- Q (1, 2, Modus ponens)
- $(P \rightarrow R)$ (KB)
- R (1, 4, Modus ponens)

Example

Given: $KB = \{P, (P \rightarrow Q), (P \rightarrow R), ((Q \land R) \rightarrow S)\}$

- P (KB)
- $(P \rightarrow Q)$ (KB)
- Q (1, 2, Modus ponens)
- $(P \rightarrow R)$ (KB)
- R (1, 4, Modus ponens)

Example

Given: $KB = \{P, (P \rightarrow Q), (P \rightarrow R), ((Q \land R) \rightarrow S)\}$

- P (KB)
- $(P \rightarrow Q)$ (KB)
- \bigcirc Q (1, 2, Modus ponens)
- R (1, 4, Modus ponens)
- \bigcirc $(Q \land R)$ (3, 5, \land -introduction)
- $((Q \land R) \rightarrow S)$ (KB)

Example

Given: $KB = \{P, (P \rightarrow Q), (P \rightarrow R), ((Q \land R) \rightarrow S)\}$

- P (KB)
- $(P \rightarrow Q)$ (KB)
- Q (1, 2, Modus ponens)
- R (1, 4, Modus ponens)
- \bigcirc ($Q \land R$) (3, 5, \land -introduction)
- \bigcirc $((Q \land R) \rightarrow S)$ (KB)
- § S (6, 7, Modus ponens)

Example

Given: $KB = \{P, (P \rightarrow Q), (P \rightarrow R), ((Q \land R) \rightarrow S)\}$

- P (KB)
- $(P \rightarrow Q)$ (KB)
- Q (1, 2, Modus ponens)
- R (1, 4, Modus ponens)
- \bigcirc $(Q \land R)$ (3, 5, \land -introduction)
- \bigcirc $((Q \land R) \rightarrow S)$ (KB)
- S (6, 7, Modus ponens)
- $(S \land R)$ (8, 5, \land -introduction)

Correctness and Completeness

Definition (Correctness and Completeness of a Calculus)

We write $KB \vdash_C \varphi$ if there is a derivation of φ from KB in calculus C.

(If calculus C is clear from context, also only $KB \vdash \varphi$.)

A calculus C is correct if for all KB and φ KB $\vdash_C \varphi$ implies KB $\models_{\mathcal{C}} \varphi$.

A calculus C is complete if for all KB and φ KB $\models \varphi$ implies KB $\vdash_C \varphi$.

Correctness and Completeness

Definition (Correctness and Completeness of a Calculus)

We write $KB \vdash_C \varphi$ if there is a derivation of φ from KB in calculus C.

(If calculus C is clear from context, also only $KB \vdash \varphi$.)

A calculus C is correct if for all KB and φ KB $\vdash_C \varphi$ implies KB \models_{φ} .

A calculus C is complete if for all KB and φ KB $\models \varphi$ implies KB $\vdash_C \varphi$.

Consider calculus C, consisting of the derivation rules seen earlier.

Question: Is *C* correct? Question: Is *C* complete?

German: korrekt, vollständig

- We obviously want correct calculi.
- Do we always need a complete calculus?

- We obviously want correct calculi.
- Do we always need a complete calculus?
- Contradiction theorem: $KB \cup \{\varphi\}$ is unsatisfiable iff $KB \models \neg \varphi$
- This implies that KB $\models \varphi$ iff KB $\cup \{\neg \varphi\}$ is unsatisfiable.
- We can reduce the general implication problem to a test of unsatisfiability.

- We obviously want correct calculi.
- Do we always need a complete calculus?
- Contradiction theorem: $KB \cup \{\varphi\}$ is unsatisfiable iff $KB \models \neg \varphi$
- This implies that KB $\models \varphi$ iff KB $\cup \{\neg \varphi\}$ is unsatisfiable.
- We can reduce the general implication problem to a test of unsatisfiability.
- In calculi, we use the special symbol

 for (provably) unsatisfiable formulas.

- We obviously want correct calculi.
- Do we always need a complete calculus?
- Contradiction theorem: $KB \cup \{\varphi\}$ is unsatisfiable iff $KB \models \neg \varphi$
- This implies that KB $\models \varphi$ iff KB $\cup \{\neg \varphi\}$ is unsatisfiable.
- We can reduce the general implication problem to a test of unsatisfiability.
- In calculi, we use the special symbol

 for (provably) unsatisfiable formulas.

Definition (Refutation-Completeness)

A calculus C is refutation-complete if $KB \vdash_C \Box$ for all unsatisfiable KB.

Discrete Mathematics in Computer Science Resolution Calculus

Malte Helmert, Gabriele Röger

University of Basel

Resolution is a refutation-complete calculus for knowledge bases in conjunctive normal form.

- Resolution is a refutation-complete calculus for knowledge bases in conjunctive normal form.
- Every knowledge base can be transformed into equivalent formulas in CNF.
 - Transformation can require exponential time.
 - Alternative: efficient transformation into equisatisfiable formulas (not part of this course)

- Resolution is a refutation-complete calculus for knowledge bases in conjunctive normal form.
- Every knowledge base can be transformed into equivalent formulas in CNF.
 - Transformation can require exponential time.
 - Alternative: efficient transformation into equisatisfiable formulas (not part of this course)
- Show KB $\models \varphi$ by deriving KB $\cup \{\neg \varphi\} \vdash_R \square$ with resolution calculus R.

- Resolution is a refutation-complete calculus for knowledge bases in conjunctive normal form.
- Every knowledge base can be transformed into equivalent formulas in CNF.
 - Transformation can require exponential time.
 - Alternative: efficient transformation into equisatisfiable formulas (not part of this course)
- Show KB $\models \varphi$ by deriving KB $\cup \{\neg \varphi\} \vdash_R \square$ with resolution calculus R.
- Resolution can require exponential time.
- This is probably the case for all refutation-complete proof methods. → complexity theory

German: Resolution, erfüllbarkeitsäquivalent

Knowledge Base as Set of Clauses

Simplified notation of knowledge bases in CNF

- Formula in CNF as set of clauses (due to commutativity, idempotence, associativity of ∧)
- Set of formulas as set of clauses
- Clause as set of literals (due to commutativity, idempotence, associativity of ∨)
- Knowledge base as set of sets of literals

Knowledge Base as Set of Clauses

Simplified notation of knowledge bases in CNF

- Formula in CNF as set of clauses (due to commutativity, idempotence, associativity of ∧)
- Set of formulas as set of clauses
- Clause as set of literals (due to commutativity, idempotence, associativity of ∨)
- Knowledge base as set of sets of literals

Example

$$\mathsf{KB} = \{ (P \lor P), ((\neg P \lor Q) \land (\neg P \lor R) \land (Q \lor \neg P) \land R), \\ ((\neg Q \lor \neg R \lor S) \land P) \}$$

as set of clauses:

Knowledge Base as Set of Clauses

Simplified notation of knowledge bases in CNF

- Formula in CNF as set of clauses (due to commutativity, idempotence, associativity of ∧)
- Set of formulas as set of clauses
- Clause as set of literals (due to commutativity, idempotence, associativity of ∨)
- Knowledge base as set of sets of literals

Example

$$\mathsf{KB} = \{ (P \lor P), ((\neg P \lor Q) \land (\neg P \lor R) \land (Q \lor \neg P) \land R), \\ ((\neg Q \lor \neg R \lor S) \land P) \}$$

as set of clauses:

$$\Delta = \{ \{P\}, \{\neg P, Q\}, \{\neg P, R\}, \{R\}, \{\neg Q, \neg R, S\} \}$$

Resolution Rule

The resolution calculus consists of a single rule, called resolution rule:

$$\frac{C_1 \cup \{X\}, \ C_2 \cup \{\neg X\}}{C_1 \cup C_2},$$

where C_1 and C_2 are (possibly empty) clauses and X is an atomic proposition.

Resolution Rule

The resolution calculus consists of a single rule, called resolution rule:

$$\frac{C_1 \cup \{X\}, \ C_2 \cup \{\neg X\}}{C_1 \cup C_2},$$

where C_1 and C_2 are (possibly empty) clauses and X is an atomic proposition.

If we derive the empty clause, we write \square instead of $\{\}$.

Resolution Rule

The resolution calculus consists of a single rule, called resolution rule:

$$\frac{C_1 \cup \{X\}, \ C_2 \cup \{\neg X\}}{C_1 \cup C_2},$$

where C_1 and C_2 are (possibly empty) clauses and X is an atomic proposition.

If we derive the empty clause, we write \square instead of $\{\}$.

Terminology:

- $\blacksquare X$ and $\neg X$ are the resolution literals,
- $C_1 \cup \{X\}$ and $C_2 \cup \{\neg X\}$ are the parent clauses, and
- $C_1 \cup C_2$ is the resolvent.

German: Resolutionskalkül, Resolutionsregel, Resolutionsliterale, Elternklauseln, Resolvent

Proof by Resolution

Definition (Proof by Resolution)

A proof by resolution of a clause D from a knowledge base Δ is a sequence of clauses C_1, \ldots, C_n with

- $C_n = D$ and
- for all $i \in \{1, ..., n\}$:
 - $C_i \in \Delta$, or
 - C_i is resolvent of two clauses from $\{C_1, \ldots, C_{i-1}\}$.

If there is a proof of D by resolution from Δ , we say that D can be derived with resolution from Δ and write $\Delta \vdash_R D$.

Remark: Resolution is a correct, refutation-complete, but incomplete calculus.

German: Resolutionsbeweis, mit Resolution aus Δ abgeleitet

Proof by Resolution for Testing a Logical Consequence: Example

Given: $KB = \{P, (P \rightarrow (Q \land R))\}.$

Show with resolution that $KB \models (R \lor S)$.

Proof by Resolution for Testing a Logical Consequence: Example

Given: $KB = \{P, (P \rightarrow (Q \land R))\}.$

Show with resolution that $KB \models (R \lor S)$.

Three steps:

- Reduce logical consequence to unsatisfiability.
- Transform knowledge base into clause form (CNF).
- **3** Derive empty clause \square with resolution.

Proof by Resolution for Testing a Logical Consequence: Example

Given: $KB = \{P, (P \rightarrow (Q \land R))\}.$

Show with resolution that KB \models ($R \lor S$).

Three steps:

- Reduce logical consequence to unsatisfiability.
- Transform knowledge base into clause form (CNF).
- ⑤ Derive empty clause □ with resolution.

Step 1: Reduce logical consequence to unsatisfiability.

Proof by Resolution for Testing a Logical Consequence: Example

Given: $KB = \{P, (P \rightarrow (Q \land R))\}.$

Show with resolution that KB \models ($R \lor S$).

Three steps:

- Reduce logical consequence to unsatisfiability.
- 2 Transform knowledge base into clause form (CNF).
- **3** Derive empty clause \square with resolution.

Step 1: Reduce logical consequence to unsatisfiability.

 $KB \models (R \lor S)$ iff $KB \cup \{\neg (R \lor S)\}$ is unsatisfiable.

Thus, consider

$$\mathsf{KB}' = \mathsf{KB} \cup \{\neg(R \vee S)\} = \{P, (P \to (Q \land R)), \neg(R \vee S)\}.$$

. . .

Proof by Resolution for Testing a Logical Consequence: Example

$$\mathsf{KB}' = \{P, (P \to (Q \land R)), \neg (R \lor S)\}.$$

Step 2: Transform knowledge base into clause form (CNF).

Proof by Resolution for Testing a Logical Consequence: Example

$$\mathsf{KB}' = \{P, (P \to (Q \land R)), \neg (R \lor S)\}.$$

Step 2: Transform knowledge base into clause form (CNF).

- \sim Clauses: $\{P\}$
- $P \rightarrow (Q \land R)) \equiv (\neg P \lor (Q \land R)) \equiv ((\neg P \lor Q) \land (\neg P \lor R))$ \leadsto Clauses: $\{\neg P, Q\}, \{\neg P, R\}$
- $\neg (R \lor S) \equiv (\neg R \land \neg S)$ \$\sim \text{Clauses:} \{ \neg R\}, \{ \neg S\}\$

Proof by Resolution for Testing a Logical Consequence: Example

$$\mathsf{KB}' = \{P, (P \to (Q \land R)), \neg (R \lor S)\}.$$

Step 2: Transform knowledge base into clause form (CNF).

- \rightarrow Clauses: $\{P\}$
- $P \rightarrow (Q \land R)) \equiv (\neg P \lor (Q \land R)) \equiv ((\neg P \lor Q) \land (\neg P \lor R))$ \leadsto Clauses: $\{\neg P, Q\}, \{\neg P, R\}$
- $\neg (R \lor S) \equiv (\neg R \land \neg S)$ \$\sim \text{Clauses:} \{\neg R\}, \{\neg S\}\$

$$\Delta = \{ \{P\}, \{\neg P, Q\}, \{\neg P, R\}, \{\neg R\}, \{\neg S\} \}$$

Proof by Resolution for Testing a Logical Consequence: Example

$$\Delta = \{ \{P\}, \{\neg P, Q\}, \{\neg P, R\}, \{\neg R\}, \{\neg S\} \}$$

Step 3: Derive empty clause \square with resolution.

- $C_1 = \{P\} \text{ (from } \Delta)$
- $C_3 = \{\neg P, R\}$ (from Δ)
- $C_4 = \{ \neg R \} \text{ (from } \Delta)$
- lacksquare $C_5 = \{Q\}$ (from C_1 and C_2)
- lacksquare $C_6 = \{ \neg P \}$ (from C_3 and C_4)
- $C_7 = \square$ (from C_1 and C_6)

Note: There are shorter proofs. (For example?)

Another Example

Another Example for Resolution

Show with resolution, that $KB \models DrinkBeer$, where

```
\label{eq:KB} \begin{split} \mathsf{KB} &= \{ (\neg \mathsf{DrinkBeer} \to \mathsf{EatFish}), \\ &\quad ((\mathsf{EatFish} \land \mathsf{DrinkBeer}) \to \neg \mathsf{EatIceCream}), \\ &\quad ((\mathsf{EatIceCream} \lor \neg \mathsf{DrinkBeer}) \to \neg \mathsf{EatFish}) \}. \end{split}
```

Proving that Something Does Not Follow

- We can now use resolution proofs to mechanically show $KB \models \varphi$ whenever a given knowledge base logically implies φ .
- Question: How can we use the same mechanism to show that something does not follow (KB $\not\models \varphi$)?