Discrete Mathematics in Computer Science E4. Inference

Malte Helmert, Gabriele Röger

University of Basel

Malte Helmert, Gabriele Röger (University of Discrete Mathematics in Computer Science

Discrete Mathematics in Computer Science — E4. Inference

E4.1 Inference Rules and Calculi

E4.2 Resolution Calculus

Malte Helmert, Gabriele Röger (University of Discrete Mathematics in Computer Science

E4.1 Inference Rules and Calculi

Inference: Motivation

- up to now: proof of logical consequence with semantic arguments
- no general algorithm
- solution: produce formulas that are logical consequences of given formulas with syntactic inference rules
- advantage: mechanical method that can easily be implemented as an algorithm

Inference Rules

Inference rules have the form

$$\frac{\varphi_1,\ldots,\varphi_k}{\psi}$$

- Meaning: "Every model of $\varphi_1, \ldots, \varphi_k$ is a model of ψ ."
- An axiom is an inference rule with k = 0.
- ► A set of inference rules is called a calculus or proof system.

German: Inferenzregel, Axiom, (der) Kalkül, Beweissystem

Some Inference Rules for Propositional Logic

Derivation

Definition (Derivation)

A derivation or proof of a formula φ from a knowledge base KB is a sequence of formulas ψ_1, \ldots, ψ_k with

•
$$\psi_k = \varphi$$
 and

• for all
$$i \in \{1, ..., k\}$$
:

• $\psi_i \in \mathsf{KB}$, or

▶ ψ_i is the result of the application of an inference rule to elements from {ψ₁,...,ψ_{i-1}}.

German: Ableitung, Beweis

Derivation: Example

Example Given: $KB = \{P, (P \rightarrow Q), (P \rightarrow R), ((Q \land R) \rightarrow S)\}$ Task: Find derivation of $(S \land R)$ from KB. P (KB) ($P \rightarrow Q$) (KB) \bigcirc Q (1, 2, Modus ponens) ($P \rightarrow R$) (KB) \bigcirc R (1, 4, Modus ponens) **(** $Q \land R$ **)** (3, 5, \land -introduction) • $((Q \land R) \rightarrow S)$ (KB) § 5 (6, 7, Modus ponens) **9** $(S \land R)$ (8, 5, \land -introduction)

Correctness and Completeness

```
Definition (Correctness and Completeness of a Calculus)
We write KB \vdash_C \varphi if there is a derivation of \varphi from KB
in calculus C.
(If calculus C is clear from context, also only KB \vdash \varphi.)
A calculus C is correct if for all KB and \varphi
KB \vdash_C \varphi implies KB \models \varphi.
A calculus C is complete if for all KB and \varphi
KB \models \varphi implies KB \vdash_C \varphi.
```

Consider calculus *C*, consisting of the derivation rules seen earlier. Question: Is *C* correct? Question: Is *C* complete?

```
German: korrekt, vollständig
```

E4. Inference

Refutation-completeness

- We obviously want correct calculi.
- Do we always need a complete calculus?
- Contradiction theorem: KB ∪ {φ} is unsatisfiable iff KB ⊨ ¬φ
- This implies that $KB \models \varphi$ iff $KB \cup \{\neg \varphi\}$ is unsatisfiable.
- We can reduce the general implication problem to a test of unsatisfiability.
- In calculi, we use the special symbol □ for (provably) unsatisfiable formulas.

Definition (Refutation-Completeness) A calculus C is refutation-complete if $KB \vdash_C \Box$ for all unsatisfiable KB.

German: widerlegungsvollständig

E4.2 Resolution Calculus

Resolution: Idea

- Resolution is a refutation-complete calculus for knowledge bases in conjunctive normal form.
- Every knowledge base can be transformed into equivalent formulas in CNF.
 - Transformation can require exponential time.
 - Alternative: efficient transformation into equisatisfiable formulas (not part of this course)
- Show KB $\models \varphi$ by deriving KB $\cup \{\neg \varphi\} \vdash_R \Box$ with resolution calculus *R*.
- Resolution can require exponential time.
- This is probably the case for all refutation-complete proof methods. ~> complexity theory

German: Resolution, erfüllbarkeitsäquivalent

Knowledge Base as Set of Clauses

Simplified notation of knowledge bases in CNF

- ► Formula in CNF as set of clauses (due to commutativity, idempotence, associativity of ∧)
- Set of formulas as set of clauses
- ► Clause as set of literals (due to commutativity, idempotence, associativity of ∨)
- Knowledge base as set of sets of literals

Example

$$\mathsf{KB} = \{ (P \lor P), ((\neg P \lor Q) \land (\neg P \lor R) \land (Q \lor \neg P) \land R), \\ ((\neg Q \lor \neg R \lor S) \land P) \}$$

as set of clauses:

$$\Delta = \{\{P\}, \{\neg P, Q\}, \{\neg P, R\}, \{R\}, \{\neg Q, \neg R, S\}\}$$

Resolution Rule

The resolution calculus consists of a single rule, called resolution rule:

$$\frac{C_1\cup\{X\},\ C_2\cup\{\neg X\}}{C_1\cup C_2},$$

where C_1 and C_2 are (possibly empty) clauses and X is an atomic proposition.

If we derive the empty clause, we write \Box instead of $\{\}$.

Terminology:

- X and $\neg X$ are the resolution literals,
- ▶ $C_1 \cup \{X\}$ and $C_2 \cup \{\neg X\}$ are the parent clauses, and
- $C_1 \cup C_2$ is the resolvent.

German: Resolutionskalkül, Resolutionsregel, Resolutionsliterale, Elternklauseln, Resolvent

Proof by Resolution

German: Resolutionsbeweis, mit Resolution aus Δ abgeleitet

Proof by Resolution: Example

Proof by Resolution for Testing a Logical Consequence: Example Given: $KB = \{P, (P \rightarrow (Q \land R))\}$. Show with resolution that $KB \models (R \lor S)$.

Three steps:

Reduce logical consequence to unsatisfiability.

- Iransform knowledge base into clause form (CNF).
- **③** Derive empty clause \Box with resolution.

```
Step 1: Reduce logical consequence to unsatisfiability.

KB \models (R \lor S) iff KB \cup \{\neg(R \lor S)\} is unsatisfiable.

Thus, consider

KB' = KB \cup \{\neg(R \lor S)\} = \{P, (P \rightarrow (Q \land R)), \neg(R \lor S)\}.
...
```

Proof by Resolution: Example (continued)

Proof by Resolution for Testing a Logical Consequence: Example $\mathsf{KB}' = \{ P, (P \to (Q \land R)), \neg (R \lor S) \}.$ Step 2: Transform knowledge base into clause form (CNF). ► P \rightarrow Clauses: {*P*} $\blacktriangleright P \to (Q \land R)) \equiv (\neg P \lor (Q \land R)) \equiv ((\neg P \lor Q) \land (\neg P \lor R))$ \rightarrow Clauses: { $\neg P, Q$ }, { $\neg P, R$ } $(R \lor S) \equiv (\neg R \land \neg S)$ \rightsquigarrow Clauses: { $\neg R$ }, { $\neg S$ } $\Delta = \{\{P\}, \{\neg P, Q\}, \{\neg P, R\}, \{\neg R\}, \{\neg S\}\}$. . .

Proof by Resolution: Example (continued)

Proof by Resolution for Testing a Logical Consequence: Example $\Delta = \{\{P\}, \{\neg P, Q\}, \{\neg P, R\}, \{\neg R\}, \{\neg S\}\}$ Step 3: Derive empty clause \Box with resolution. • $C_1 = \{P\} \text{ (from } \Delta)$ \blacktriangleright $C_2 = \{\neg P, Q\}$ (from Δ) • $C_3 = \{\neg P, R\}$ (from Δ) \blacktriangleright $C_4 = \{\neg R\}$ (from Δ) • $C_5 = \{Q\}$ (from C_1 and C_2) \blacktriangleright $C_6 = \{\neg P\}$ (from C_3 and C_4) • $C_7 = \Box$ (from C_1 and C_6)

Note: There are shorter proofs. (For example?)

Another Example

```
Another Example for Resolution
Show with resolution, that KB \models DrinkBeer, where
        KB = \{ (\neg DrinkBeer \rightarrow EatFish), \}
                  ((EatFish \land DrinkBeer) \rightarrow \negEatIceCream),
                  ((EatIceCream \lor \negDrinkBeer) \rightarrow \negEatFish)}.
```

Proving that Something Does Not Follow

- We can now use resolution proofs to mechanically show KB ⊨ φ whenever a given knowledge base logically implies φ.
- ▶ Question: How can we use the same mechanism to show that something does not follow (KB $\not\models \varphi$)?