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Parentheses

Associativity:

(e A (¥ A X))
(e V(¥ VX))

((p Ap) A x)
(e V) Vx)

m Placement of parentheses for a conjunction of conjunctions
does not influence whether an interpretation is a model.

m ditto for disjunctions of disjunctions

—» can omit parentheses and treat this as if parentheses
placed arbitrarily
m Example: (A1 A Ax A A3 A Ag) instead of
((Al AN (A2 VAN A3)) VAN A4)
m Example: (-AV (BAC)V D) instead of ((mAV (BAC)) VD)
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Does this mean we can always omit all parentheses
and assume an arbitrary placement? — No!
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Parentheses

Does this mean we can always omit all parentheses
and assume an arbitrary placement? — No!

((pAP)VX)Z (P A (VX))

What should ¢ A ¢ V x mean?



Placement of Parentheses by Convention

Often parentheses can be dropped in specific cases
and an implicit placement is assumed:

m — binds more strongly than A
m A binds more strongly than Vv
® V binds more strongly than — or <

— cf. PEMDAS/ “Punkt vor Strich”
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Placement of Parentheses by Convention

Often parentheses can be dropped in specific cases
and an implicit placement is assumed:

m — binds more strongly than A
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m V binds more strongly than — or <
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Placement of Parentheses by Convention

Often parentheses can be dropped in specific cases
and an implicit placement is assumed:

m — binds more strongly than A
m A binds more strongly than Vv
m V binds more strongly than — or <

— cf. PEMDAS/ “Punkt vor Strich”

AV -CAB— AV -D stands for (AV (-CAB)) — (AV —D))

m often harder to read
B error-prone

— not used in this course



Short Notations for Conjunctions and Disjunctions

Short notation for addition:

n
Zi_lxi:X1+X2+"'+Xn



Short Notations for Conjunctions and Disjunctions
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n
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Short Notations for Conjunctions and Disjunctions

Short notation for addition:

n
Zi_lxile +Xo 4+ Xy

> X=x1+X 4+ X
XE{X1,...,Xn}

Analogously:

n
/\i:1<Pi=(<P1/\<P2/\"'/\SOn)

n
\/i:1<Pi=(<P1\/<P2\/"'\/90n)



Short Notations for Conjunctions and Disjunctions

Short notation for addition:
n
Yo xi=xbet X
Z X=Xt +X24 -+ Xp
XG{X17"'7X’7}

Analogously (possible because of commutativity of A and V):

Ay

= (1 Ap2 A Ap)

=(p1 A2 A= Apn)
=(p1VpaV--- Vo)
for X ={p1,...,¢n}

\/, 1
/\Wex
Viex#



Short Notation: Corner Cases

Is Z |= 1) true for

w:/\ ¢ and 1) = \/@ex

if X =0or X ={x}7



Short Notation: Corner Cases

Is Z |= 1) true for

z/;:/\ @ and ¢ = \/¢ex
if X =0or X ={x}7

convention:

[ /\906@ @ is a tautology.
m Vg ¢ is unsatisfiable.

" Npepy = Ve @ =X



Discrete Mathematics in Computer Science

Normal Forms

Malte Helmert, Gabriele Roger

University of Basel



Why Normal Forms?

m A normal form is a representation
with certain syntactic restrictions.
m condition for reasonable normal form: every formula
must have a logically equivalent formula in normal form
m advantages:
® can restrict proofs to formulas in normal form
m can define algorithms only for formulas in normal form

German: Normalform
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Literals, Clauses and Monomials

m A literal is an atomic proposition
or the negation of an atomic proposition (e.g., A and —A).

m A clause is a disjunction of literals
(e.g., (QV =PV =SVR)).

m A monomial is a conjunction of literals
(e.g., (QA =P A=SAR)).

The terms clause and monomial are also used for the corner case
with only one literal.

German: Literal, Klausel, Monom



Terminology: Examples

B (-QAR)

m (PV-Q)

m (PV-Q)AP)
m P

m (P—->Q)

= (PVP)

m P




Terminology: Examples

® (-Q AR) is a monomial
m (PV-Q)

m (PV-Q)AP)

m P

m (P—->Q)

= (PVP)

m P




Terminology: Examples

® (-Q AR) is a monomial
m (PV Q) is a clause

m (PV-Q)AP)

m P

m (P—->Q)

= (PVP)

m P




Terminology: Examples

® (-Q AR) is a monomial

m (PV Q) is a clause

m ((PV —Q) A P) is neither literal nor clause nor monomial
m P

m (P—->Q)

= (PVP)

m P




Terminology: Examples

® (-Q AR) is a monomial
m (PV Q) is a clause
m ((PV —Q) A P) is neither literal nor clause nor monomial

m —P is a literal, a clause and a monomial

m (P—->Q)

= (PVP)

m P




Terminology: Examples

® (-Q AR) is a monomial

m (PV Q) is a clause

m ((PV —Q) A P) is neither literal nor clause nor monomial
m —P is a literal, a clause and a monomial

m (P — Q) is neither literal nor clause nor monomial
(but (=P Vv Q) is a clause!)

= (PVP)

m P




Terminology: Examples

® (-Q AR) is a monomial
m (PV Q) is a clause
m ((PV —Q) A P) is neither literal nor clause nor monomial
m —P is a literal, a clause and a monomial
m (P — Q) is neither literal nor clause nor monomial
(but (=P Vv Q) is a clause!)
m (P VP)is a clause, but not a literal or monomial
m P




Terminology: Examples

(-Q A R) is a monomial
(P Vv —Q) is a clause
((P Vv =Q) A P) is neither literal nor clause nor monomial

=P is a literal, a clause and a monomial

(P — Q) is neither literal nor clause nor monomial
(but (=P Vv Q) is a clause!)

(P Vv P) is a clause, but not a literal or monomial

——P is neither literal nor clause nor monomial




Conjunctive Normal Form

Definition (Conjunctive Normal Form)

A formula is in conjunctive normal form (CNF)
if it is a conjunction of clauses, i.e., if it has the form

n m;

AV L

i=1j=1

with n,m; > 0 (for 1 </ < n), where the Lj; are literals.

German: konjunktive Normalform (KNF)

(-PVQ)ARA(PV=S))isin CNF.




Disjunctive Normal Form

Definition (Disjunctive Normal Form)

A formula is in disjunctive normal form (DNF)
if it is a disjunction of monomials, i.e., if it has the form

n m;

V AL

i=1j=1

with n,m; > 0 (for 1 </ < n), where the Lj; are literals.

German: disjunktive Normalform (DNF)

(-PAQ)VRV(PA=S))isin DNF.




CNF and DNF: Examples

Which of the following formulas are in CNF? Which are in DNF?

(PV-Q)AP)
(RVQ)APA(RVS))
V (-Q AR))

(
(
(P
((P V-Q) — P)



Construction of CNF (and DNF)

Algorithm to Construct CNF

© Replace abbreviations — and <> by their definitions
((—)-elimination and (<+)-elimination).
~ formula structure: only Vv, A, —

@ Move negations inside using De Morgan and double negation.
~ formula structure: only V, A, literals

© Distribute V over A with distributivity
(strictly speaking also with commutativity).
~~ formula structure: CNF

@ optionally: Simplify the formula at the end
or at intermediate steps (e. g., with idempotence).

Note: For DNF, distribute A over V instead.



Constructing CNF: Example

Construction of Conjunctive Normal Form
Given: ¢ = (((PA—-Q)VR) = (PV—(SVT)))
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Constructing CNF: Example

Construction of Conjunctive Normal Form
Given: ¢ = (((PA—-Q)VR) = (PV—(SVT)))

(=(PA-Q)VR)VPV=(SVT)) [Step 1]
(F(PA-QA-R)VPV—(SVT)) [Step 2]

¥




Constructing CNF: Example

Construction of Conjunctive Normal Form
Given: ¢ = (((PA—-Q)VR) = (PV—(SVT)))

(=(PA-Q)VR)VPV=(SVT)) [Step 1]
(F(PA-QA-R)VPV—(SVT)) [Step 2]
((FPV-"Q)A-R)VPV—(SVT)) [Step 2]

¥




Constructing CNF: Example

Construction of Conjunctive Normal Form
Given: ¢ = (((PA—-Q)VR) = (PV—(SVT)))

(=((PA=Q)VR)VPV=(SVT)) [Step 1]
(F(PA-QA-R)VPV—(SVT)) [Step 2]
((FPV-"Q)A-R)VPV—(SVT)) [Step 2]
((FPVQ)A-R)VPV=(SVT)) [Step 2]

AS)




Constructing CNF: Example

Construction of Conjunctive Normal Form
Given: ¢ = (((PA—-Q)VR) = (PV—(SVT)))

¥

~ o~ A~ o~ o~

“(PA=Q)VR)VPV=(SVT))

(
(
(
(

“(PA-Q)A-R)VPV=(SVT))
(=P V--Q)A-R)VPV-(SVT))
(=PVQ)A-R)VPV~(SVT))
(=PVQ)A-R)VPV(=SA-T))

[Step 1]
[Step 2]
[Step 2]
[Step 2]
[Step 2]




Constructing CNF: Example

Construction of Conjunctive Normal Form

¢ =(((PA=Q)VR) = (PV=(SVT))

Given:

¥

(=
(
(
(
(
(
(

(PA-Q)VR)VPV—=(SVT))
(~(PA=Q)A-R)VPV=(SVT))
(-PV-"Q)A-R)VPV~(SVT))
(HPVQ)A-R)VPV=(SVT))
(=PVQ)A-R)VPV(=SA-T))
(-PVQVPV(=SA-T))A
=RV PV (=S A-T)))

[Step 1]
[Step 2]
[Step 2]
[Step 2]
[Step 2]

[Step 3]




Constructing CNF: Example

Construction of Conjunctive Normal Form

¢ =(((PA=Q)VR) = (PV=(SVT))

Given:

¥

(=
(
(
(
(
(
(
(

(PA-Q)VR)VPV—=(SVT))
(~(PA=Q)A-R)VPV=(SVT))
(-PV-"Q)A-R)VPV~(SVT))
(HPVQ)A-R)VPV=(SVT))
(=PVQ)A-R)VPV(=SA-T))
(-PVQVPV(=SA-T))A
=RV PV (=S A-T)))
=RV PV (=SA-T))

[Step 1]
[Step 2]
[Step 2]
[Step 2]
[Step 2]

[Step 3]
[Step 4]




Constructing CNF: Example

Construction of Conjunctive Normal Form

Given:

o= (((PA=Q)VR) -

¥

(=
(
(
(
(
(
(
(
(

(Pv—(SVvT)))

(PA-Q)VR)VPV—=(SVT))
“(PA-Q)A-R)VPV=(SVT))
(=P V--Q)A-R)VPV-(SVT))

("PVQ)A-R)VPV(=SA-T))

(
(
(FPVQ)A-R)VPV=(SVT))
(
(

-PVQVPV(=SA-T))A
—RVP V(=S A-T)))
~RVPV (=S A-T))

(FRVPV=S)A

(-RV PV -T))

[Step 1]
[Step 2]
[Step 2]
[Step 2]
[Step 2]

[Step 3]
[Step 4]
[Step 3]




Construct DNF: Example

Construction of Disjunctive Normal Form
Given: ¢ = (((PA—-Q)VR) = (PV—(SVT)))

AS)

L 1 | 1
~ ~ ~~ —~ —~
—~ ~ ~ ~

(PA-Q)VR)VPV=(SVT))

~(PA=Q)A-R)VPV~(SVT))
(=P V -=Q) A =R) VPV ~(SV T))
(-PVQ)A-R)VPV~(SVT))

(=P V Q) A=R) VPV (=S A -T))
~PA-R)V(QA-R)VPV(=SA-T))

[Step 1]
[Step 2]
[Step 2]
[Step 2]
[Step 2]
[Step 3]
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For every formula ¢ there is a logically equivalent formula in CNF
and a logically equivalent formula in DNF.
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Otherwise we would write “there is exactly one”.
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For every formula o there is a logically equivalent formula in CNF
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m “There is 3" always means “there is at least one”.
Otherwise we would write “there is exactly one”.

m Intuition: algorithm to construct normal form works
with any given formula and only uses equivalence rewriting.



Existence of an Equivalent Formula in Normal Form

For every formula o there is a logically equivalent formula in CNF
and a logically equivalent formula in DNF.

m “There is 3" always means “there is at least one”.
Otherwise we would write “there is exactly one”.

m Intuition: algorithm to construct normal form works
with any given formula and only uses equivalence rewriting.

m actual proof would use induction over structure of formula



Size of Normal Forms

m In the worst case, a logically equivalent formula in CNF or
DNF can be exponentially larger than the original formula.

m Example: for (x; V y1) A -+ A (Xn V yn) there is no smaller
logically equivalent formula in DNF than:
Vet (Aies i A Nieqr..ops %)
m As a consequence, the construction of the CNF/DNF formula
can take exponential time.



More Theorems

A formula in CNF is a tautology iff every clause is a tautology. I

A formula in DNF is satisfiable iff at least one of its monomials
is satisfiable.

~» both proved easily with semantics of propositional logic
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Knowledge Bases: Example

If not DrinkBeer, then EatFish.
If EatFish and DrinkBeer,

then not EatlceCream.

If EatlceCream or not DrinkBeer,
then not EatFish.

KB = {(—DrinkBeer — EatFish),
((EatFish A DrinkBeer) — —EatlceCream),
((EatlceCream Vv —DrinkBeer) — —EatFish)}

Exercise from U. Schéning: Logik fiir Informatiker
Picture courtesy of graur razvan ionut / FreeDigitalPhotos.net



Models for Sets of Formulas

Definition (Model for Knowledge Base)

Let KB be a knowledge base over A,
i.e., a set of propositional formulas over A.

A truth assignment Z for A is a model for KB (written: Z = KB)
if Z is a model for every formula ¢ € KB.

German: Wissensbasis, Modell



Properties of Sets of Formulas

A knowledge base KB is
m satisfiable if KB has at least one model
m unsatisfiable if KB is not satisfiable
m valid (or a tautology) if every interpretation is a model for KB
m falsifiable if KB is no tautology

German: erfiillbar, unerfiillbar, giiltig, giiltig/eine Tautologie,
falsifizierbar



Example |

Which of the properties does KB = {(A A =B),=(B \V A)} have?



Example |

Which of the properties does KB = {(A A =B),=(B \V A)} have?

KB is unsatisfiable:

For every model Z with Z = (A A —=B) we have Z(A) = 1.
This means Z = (B V A) and thus Z [~ —(B V A).



Example |

Which of the properties does KB = {(A A =B),=(B \V A)} have?

KB is unsatisfiable:
For every model Z with Z = (A A —=B) we have Z(A) = 1.
This means Z = (B V A) and thus Z [~ —(B V A).

This directly implies that KB is falsifiable, not satisfiable
and no tautology.



Example Il

Which of the properties does

KB = {(—DrinkBeer — EatFish),
((EatFish A DrinkBeer) — —EatlceCream),
((EatlceCream Vv —DrinkBeer) — —EatFish)} have?



Example Il

Which of the properties does

KB = {(—DrinkBeer — EatFish),
((EatFish A DrinkBeer) — —EatlceCream),
((EatlceCream Vv —DrinkBeer) — —EatFish)} have?

m satisfiable, e. g. with
7 = {EatFish — 1, DrinkBeer — 1, EatlceCream +— 0}

m thus not unsatisfiable

m falsifiable, e. g. with
T = {EatFish — 0, DrinkBeer — 0, EatlceCream — 1}

m thus not valid
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Logical Consequences: Motivation

What's the secret of your long life?

| am on a strict diet: If | don't drink beer
to a meal, then | always eat fish. When-
ever | have fish and beer with the same
meal, | abstain from ice cream. When |
eat ice cream or don't drink beer, then |
never touch fish.

Claim: the woman drinks beer to every meal.

How can we prove this?

Exercise from U. Schéning: Logik fiir Informatiker
Picture courtesy of graur razvan ionut/FreeDigitalPhotos.net



Logical Consequences

Definition (Logical Consequence)

Let KB be a set of formulas and ¢ a formula.

We say that KB logically implies ¢ (written as KB = ¢)
if all models of KB are also models of ¢.

also: KB logically entails ¢, ¢ logically follows from KB,
@ is a logical consequence of KB

German: KB impliziert ¢ logisch, ¢ folgt logisch aus KB,
 ist logische Konsequenz von KB
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Definition (Logical Consequence)

Let KB be a set of formulas and ¢ a formula.

We say that KB logically implies ¢ (written as KB = ¢)
if all models of KB are also models of ¢.

also: KB logically entails ¢, ¢ logically follows from KB,
@ is a logical consequence of KB
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Attention: the symbol = is “overloaded”: KB = ¢ vs. 7 |= ¢.



Logical Consequences

Definition (Logical Consequence)

Let KB be a set of formulas and ¢ a formula.

We say that KB logically implies ¢ (written as KB = ¢)
if all models of KB are also models of ¢.

also: KB logically entails ¢, ¢ logically follows from KB,
@ is a logical consequence of KB

German: KB impliziert ¢ logisch, ¢ folgt logisch aus KB,
 ist logische Konsequenz von KB

Attention: the symbol = is “overloaded”: KB = ¢ vs. 7 |= ¢.

What if KB is unsatisfiable or the empty set?



Logical Consequences: Example

Let ¢ = DrinkBeer and

KB = {(—DrinkBeer — EatFish),
((EatFish A DrinkBeer) — —EatlceCream),
((EatlceCream Vv —DrinkBeer) — —EatFish)}.

Show: KB = ¢




Logical Consequences: Example

Let ¢ = DrinkBeer and

KB = {(—DrinkBeer — EatFish),
((EatFish A DrinkBeer) — —EatlceCream),
((EatlceCream Vv —DrinkBeer) — —EatFish)}.

Show: KB = ¢

Proof sketch.

Proof by contradiction: assume Z = KB, but Z }~ DrinkBeer.
Then it follows that Z = —DrinkBeer.

Because Z is a model of KB, we also have

7 = (—DrinkBeer — EatFish) and thus Z |= EatFish. (Why?)
With an analogous argumentation starting from

7 = ((EatlceCream Vv —DrinkBeer) — —EatFish)

we get 7 = —EatFish and thus Z [~ EatFish. ~~» Contradiction!




Important Theorems about Logical Consequences

Theorem (Deduction Theorem)
KB U {i} | ¥ iff KB = (o — )

German: Deduktionssatz

Theorem (Contraposition Theorem)
KB U {p} = = iff KBU{¢} = o

German: Kontrapositionssatz

Theorem (Contradiction Theorem)

KB U {¢} is unsatisfiable iff KB = -

German: Widerlegungssatz

(without proof)
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