# Discrete Mathematics in Computer Science Simplified Notation

Malte Helmert, Gabriele Röger

University of Basel

Associativity:

$$((\varphi \land \psi) \land \chi) \equiv (\varphi \land (\psi \land \chi))$$
$$((\varphi \lor \psi) \lor \chi) \equiv (\varphi \lor (\psi \lor \chi))$$

- Placement of parentheses for a conjunction of conjunctions does not influence whether an interpretation is a model.
- ditto for disjunctions of disjunctions
- $\rightarrow\,$  can omit parentheses and treat this as if parentheses placed arbitrarily
  - Example:  $(A_1 \land A_2 \land A_3 \land A_4)$  instead of  $((A_1 \land (A_2 \land A_3)) \land A_4)$
  - Example:  $(\neg A \lor (B \land C) \lor D)$  instead of  $((\neg A \lor (B \land C)) \lor D)$

Does this mean we can always omit all parentheses and assume an arbitrary placement?  $\rightarrow No!$ 

Does this mean we can always omit all parentheses and assume an arbitrary placement?  $\rightarrow No!$ 

$$((\varphi \land \psi) \lor \chi) \not\equiv (\varphi \land (\psi \lor \chi))$$

Does this mean we can always omit all parentheses and assume an arbitrary placement?  $\rightarrow$  No!

$$((\varphi \land \psi) \lor \chi) \not\equiv (\varphi \land (\psi \lor \chi))$$

What should  $\varphi \wedge \psi \lor \chi$  mean?

Often parentheses can be dropped in specific cases and an implicit placement is assumed:

- $\blacksquare \ \neg$  binds more strongly than  $\land$
- $\blacksquare$   $\land$  binds more strongly than  $\lor$
- $\lor$  binds more strongly than  $\rightarrow$  or  $\leftrightarrow$
- $\rightarrow$  cf. PEMDAS/ "Punkt vor Strich"

Often parentheses can be dropped in specific cases and an implicit placement is assumed:

- $\blacksquare \ \neg$  binds more strongly than  $\land$
- $\blacksquare$   $\land$  binds more strongly than  $\lor$
- $\blacksquare$   $\lor$  binds more strongly than  $\rightarrow$  or  $\leftrightarrow$

 $\rightarrow$  cf. <code>PEMDAS/</code> "Punkt vor Strich"

#### Example

 $\mathsf{A} \vee \neg \mathsf{C} \wedge \mathsf{B} \to \mathsf{A} \vee \neg \mathsf{D}$  stands for  $\mathsf{A} \vee \neg \mathsf{C} \wedge \mathsf{B} \to \mathsf{A} \vee \neg \mathsf{D}$ 

Often parentheses can be dropped in specific cases and an implicit placement is assumed:

- $\blacksquare \ \neg$  binds more strongly than  $\land$
- $\blacksquare$   $\land$  binds more strongly than  $\lor$
- $\blacksquare$   $\lor$  binds more strongly than  $\rightarrow$  or  $\leftrightarrow$

 $\rightarrow$  cf. PEMDAS/ "Punkt vor Strich"

#### Example

 $\mathsf{A} \vee \neg \mathsf{C} \wedge \mathsf{B} \to \mathsf{A} \vee \neg \mathsf{D}$  stands for  $\mathsf{A} \vee (\neg \mathsf{C} \wedge \mathsf{B}) \to \mathsf{A} \vee \neg \mathsf{D}$ 

Often parentheses can be dropped in specific cases and an implicit placement is assumed:

- $\blacksquare \ \neg$  binds more strongly than  $\land$
- $\blacksquare$   $\land$  binds more strongly than  $\lor$
- $\blacksquare$   $\lor$  binds more strongly than  $\rightarrow$  or  $\leftrightarrow$

 $\rightarrow$  cf. PEMDAS/ "Punkt vor Strich"

#### Example

 $A \lor \neg C \land B \to A \lor \neg D$  stands for  $(A \lor (\neg C \land B)) \to (A \lor \neg D)$ 

Often parentheses can be dropped in specific cases and an implicit placement is assumed:

- $\blacksquare \ \neg$  binds more strongly than  $\land$
- $\blacksquare$   $\land$  binds more strongly than  $\lor$
- $\blacksquare$   $\lor$  binds more strongly than  $\rightarrow$  or  $\leftrightarrow$

 $\rightarrow$  cf. PEMDAS/ "Punkt vor Strich"

#### Example

 $A \lor \neg C \land B \to A \lor \neg D$  stands for  $((A \lor (\neg C \land B)) \to (A \lor \neg D))$ 

Often parentheses can be dropped in specific cases and an implicit placement is assumed:

- $\neg$  binds more strongly than  $\land$
- $\blacksquare$   $\land$  binds more strongly than  $\lor$
- $\blacksquare$   $\lor$  binds more strongly than  $\rightarrow$  or  $\leftrightarrow$

 $\rightarrow$  cf. PEMDAS/ "Punkt vor Strich"

#### Example

 $A \lor \neg C \land B \to A \lor \neg D$  stands for  $((A \lor (\neg C \land B)) \to (A \lor \neg D))$ 

- often harder to read
- error-prone
- $\rightarrow\,$  not used in this course

Short notation for addition:

$$\sum_{i=1}^n x_i = x_1 + x_2 + \dots + x_n$$

Short notation for addition:

$$\sum_{i=1}^n x_i = x_1 + x_2 + \dots + x_n$$

Analogously:

$$\bigwedge_{i=1}^{n} \varphi_{i} = (\varphi_{1} \land \varphi_{2} \land \dots \land \varphi_{n})$$
$$\bigvee_{i=1}^{n} \varphi_{i} = (\varphi_{1} \lor \varphi_{2} \lor \dots \lor \varphi_{n})$$

Short notation for addition:

$$\sum_{i=1}^{n} x_i = x_1 + x_2 + \dots + x_n$$
$$\sum_{x \in \{x_1, \dots, x_n\}} x = x_1 + x_2 + \dots + x_n$$

Analogously:

$$\bigwedge_{i=1}^{n} \varphi_{i} = (\varphi_{1} \land \varphi_{2} \land \dots \land \varphi_{n})$$
$$\bigvee_{i=1}^{n} \varphi_{i} = (\varphi_{1} \lor \varphi_{2} \lor \dots \lor \varphi_{n})$$

Short notation for addition:

$$\sum_{i=1}^{n} x_i = x_1 + x_2 + \dots + x_n$$
$$\sum_{x \in \{x_1, \dots, x_n\}} x = x_1 + x_2 + \dots + x_n$$

Analogously (possible because of commutativity of  $\land$  and  $\lor$ ):

### Short Notation: Corner Cases

Is  $\mathcal{I} \models \psi$  true for

$$\psi = \bigwedge_{\varphi \in X} \varphi$$
 and  $\psi = \bigvee_{\varphi \in X} \varphi$ 

if  $X = \emptyset$  or  $X = \{\chi\}$ ?

### Short Notation: Corner Cases

Is  $\mathcal{I} \models \psi$  true for

$$\psi = \bigwedge_{\varphi \in X} \varphi \text{ and } \psi = \bigvee_{\varphi \in X} \varphi$$

if  $X = \emptyset$  or  $X = \{\chi\}$ ?

convention:

# Discrete Mathematics in Computer Science Normal Forms

Malte Helmert, Gabriele Röger

University of Basel

### Why Normal Forms?

- A normal form is a representation with certain syntactic restrictions.
- condition for reasonable normal form: every formula must have a logically equivalent formula in normal form
- advantages:
  - can restrict proofs to formulas in normal form
  - can define algorithms only for formulas in normal form

German: Normalform

■ A literal is an atomic proposition or the negation of an atomic proposition (e.g., A and ¬A).

- A literal is an atomic proposition or the negation of an atomic proposition (e.g., A and ¬A).
- A clause is a disjunction of literals (e.g., (Q ∨ ¬P ∨ ¬S ∨ R)).

- A literal is an atomic proposition or the negation of an atomic proposition (e.g., A and ¬A).
- A clause is a disjunction of literals (e.g., (Q ∨ ¬P ∨ ¬S ∨ R)).
- A monomial is a conjunction of literals (e.g., (Q ∧ ¬P ∧ ¬S ∧ R)).

- A literal is an atomic proposition or the negation of an atomic proposition (e.g., A and ¬A).
- A clause is a disjunction of literals (e.g., (Q ∨ ¬P ∨ ¬S ∨ R)).
- A monomial is a conjunction of literals (e.g., (Q ∧ ¬P ∧ ¬S ∧ R)).

The terms clause and monomial are also used for the corner case with only one literal.

- A literal is an atomic proposition or the negation of an atomic proposition (e.g., A and ¬A).
- A clause is a disjunction of literals (e.g., (Q ∨ ¬P ∨ ¬S ∨ R)).
- A monomial is a conjunction of literals (e.g., (Q ∧ ¬P ∧ ¬S ∧ R)).

The terms clause and monomial are also used for the corner case with only one literal.

German: Literal, Klausel, Monom

### Examples

- (¬Q ∧ R)
- (P ∨ ¬Q)
- ((P ∨ ¬Q) ∧ P)
- ¬P
- (P → Q)

■ (P ∨ P) ■ ¬¬P

- $(\neg Q \land R)$  is a monomial
- (P ∨ ¬Q)
- $((P \lor \neg Q) \land P)$
- ¬P
- $(P \rightarrow Q)$
- (P ∨ P)
- ¬¬P

- $(\neg Q \land R)$  is a monomial
- (P  $\lor \neg$ Q) is a clause
- $((P \lor \neg Q) \land P)$
- ¬P
- $(P \rightarrow Q)$
- (P ∨ P)
- ¬¬P

- $(\neg Q \land R)$  is a monomial
- (P  $\lor \neg$ Q) is a clause
- $\blacksquare$   $((\mathsf{P} \lor \neg \mathsf{Q}) \land \mathsf{P})$  is neither literal nor clause nor monomial
- ¬P
- $(P \rightarrow Q)$
- (P ∨ P)
- ¬¬P

- $(\neg Q \land R)$  is a monomial
- (P  $\lor \neg$ Q) is a clause
- $((P \lor \neg Q) \land P)$  is neither literal nor clause nor monomial
- $\blacksquare \neg \mathsf{P}$  is a literal, a clause and a monomial
- (P  $\rightarrow$  Q)

- $(\neg Q \land R)$  is a monomial
- (P  $\lor \neg$ Q) is a clause
- $((P \lor \neg Q) \land P)$  is neither literal nor clause nor monomial
- $\neg P$  is a literal, a clause and a monomial
- (P → Q) is neither literal nor clause nor monomial (but (¬P ∨ Q) is a clause!)
- (P ∨ P)
- ¬¬P

- $(\neg Q \land R)$  is a monomial
- (P  $\lor \neg$ Q) is a clause
- $((P \lor \neg Q) \land P)$  is neither literal nor clause nor monomial
- $\neg P$  is a literal, a clause and a monomial
- $(P \rightarrow Q)$  is neither literal nor clause nor monomial (but  $(\neg P \lor Q)$  is a clause!)
- $\blacksquare$  (P  $\lor$  P) is a clause, but not a literal or monomial
- ¬¬P

- $(\neg Q \land R)$  is a monomial
- (P  $\lor \neg$ Q) is a clause
- $((P \lor \neg Q) \land P)$  is neither literal nor clause nor monomial
- $\blacksquare \neg \mathsf{P}$  is a literal, a clause and a monomial
- $(P \rightarrow Q)$  is neither literal nor clause nor monomial (but  $(\neg P \lor Q)$  is a clause!)
- $\blacksquare$  (P  $\lor$  P) is a clause, but not a literal or monomial
- $\neg \neg P$  is neither literal nor clause nor monomial

### Conjunctive Normal Form

### Definition (Conjunctive Normal Form)

A formula is in conjunctive normal form (CNF) if it is a conjunction of clauses, i. e., if it has the form

 $\bigwedge_{i=1}^{n}\bigvee_{j=1}^{m_{i}}L_{ij}$ 

with  $n, m_i > 0$  (for  $1 \le i \le n$ ), where the  $L_{ij}$  are literals.

German: konjunktive Normalform (KNF)

Example

 $((\neg P \lor Q) \land R \land (P \lor \neg S)) \text{ is in CNF}.$ 

## **Disjunctive Normal Form**

### Definition (Disjunctive Normal Form)

A formula is in disjunctive normal form (DNF) if it is a disjunction of monomials, i. e., if it has the form

$$\bigvee_{i=1}^{n} \bigwedge_{j=1}^{m_i} L_{i_j}$$

with  $n, m_i > 0$  (for  $1 \le i \le n$ ), where the  $L_{ij}$  are literals.

German: disjunktive Normalform (DNF)

$$((\neg P \land Q) \lor R \lor (P \land \neg S))$$
 is in DNF.

Which of the following formulas are in CNF? Which are in DNF?

• 
$$((P \lor \neg Q) \land P)$$

- $((\mathsf{R} \lor \mathsf{Q}) \land \mathsf{P} \land (\mathsf{R} \lor \mathsf{S}))$
- $(\mathsf{P} \lor (\neg \mathsf{Q} \land \mathsf{R}))$

• 
$$((\mathsf{P} \lor \neg \mathsf{Q}) \to \mathsf{P})$$

P

# Construction of CNF (and DNF)

### Algorithm to Construct CNF

- Replace abbreviations → and ↔ by their definitions ((→)-elimination and (↔)-elimination).
   → formula structure: only ∨, ∧, ¬
- Move negations inside using De Morgan and double negation.
   → formula structure: only ∨, ∧, literals
- Oistribute ∨ over ∧ with distributivity (strictly speaking also with commutativity).
   → formula structure: CNF
- optionally: Simplify the formula at the end or at intermediate steps (e.g., with idempotence).

Note: For DNF, distribute  $\land$  over  $\lor$  instead.

### Construction of Conjunctive Normal Form

Given: 
$$\varphi = (((\mathsf{P} \land \neg \mathsf{Q}) \lor \mathsf{R}) \to (\mathsf{P} \lor \neg(\mathsf{S} \lor \mathsf{T})))$$

$$\varphi \equiv (\neg((\mathsf{P} \land \neg \mathsf{Q}) \lor \mathsf{R}) \lor \mathsf{P} \lor \neg(\mathsf{S} \lor \mathsf{T})) \qquad [\mathsf{Step } 1]$$

Given: 
$$\varphi = (((\mathsf{P} \land \neg \mathsf{Q}) \lor \mathsf{R}) \to (\mathsf{P} \lor \neg(\mathsf{S} \lor \mathsf{T})))$$

$$\varphi \equiv (\neg((P \land \neg Q) \lor R) \lor P \lor \neg(S \lor T))$$
[Step 1]  
$$\equiv ((\neg(P \land \neg Q) \land \neg R) \lor P \lor \neg(S \lor T))$$
[Step 2]

### Construction of Conjunctive Normal Form

- $\varphi \equiv (\neg((\mathsf{P} \land \neg \mathsf{Q}) \lor \mathsf{R}) \lor \mathsf{P} \lor \neg(\mathsf{S} \lor \mathsf{T})) \qquad [\mathsf{Step 1}]$ 
  - $\equiv ((\neg (P \land \neg Q) \land \neg R) \lor P \lor \neg (S \lor T))$  [Step 2]

$$\equiv (((\neg P \vee \neg \neg Q) \wedge \neg R) \vee P \vee \neg (S \vee T)) \quad [Step \ 2$$

### Construction of Conjunctive Normal Form

- $\varphi \equiv (\neg((\mathsf{P} \land \neg \mathsf{Q}) \lor \mathsf{R}) \lor \mathsf{P} \lor \neg(\mathsf{S} \lor \mathsf{T})) \qquad [\mathsf{Step 1}]$ 
  - $\equiv ((\neg (P \land \neg Q) \land \neg R) \lor P \lor \neg (S \lor T))$  [Step 2]
  - $\equiv (((\neg P \lor \neg \neg Q) \land \neg R) \lor P \lor \neg (S \lor T)) \quad [Step 2]$
  - $\equiv (((\neg P \lor Q) \land \neg R) \lor P \lor \neg (S \lor T))$  [Step 2]

### Construction of Conjunctive Normal Form

- $\varphi \equiv (\neg((\mathsf{P} \land \neg \mathsf{Q}) \lor \mathsf{R}) \lor \mathsf{P} \lor \neg(\mathsf{S} \lor \mathsf{T})) \qquad [\mathsf{Step 1}]$ 
  - $\equiv ((\neg (P \land \neg Q) \land \neg R) \lor P \lor \neg (S \lor T))$  [Step 2]
  - $\equiv (((\neg P \lor \neg \neg Q) \land \neg R) \lor P \lor \neg (S \lor T)) \quad [Step \ 2]$
  - $\equiv (((\neg P \lor Q) \land \neg R) \lor P \lor \neg (S \lor T))$  [Step 2]
  - $\equiv (((\neg P \lor Q) \land \neg R) \lor P \lor (\neg S \land \neg T))$  [Step 2]

Given: 
$$\varphi = (((\mathsf{P} \land \neg \mathsf{Q}) \lor \mathsf{R}) \to (\mathsf{P} \lor \neg(\mathsf{S} \lor \mathsf{T})))$$

$$\varphi \equiv (\neg((P \land \neg Q) \lor R) \lor P \lor \neg(S \lor T))$$
[Step 1]  
$$\equiv ((\neg(P \land \neg Q) \land \neg R) \lor P \lor \neg(S \lor T))$$
[Step 2]

$$\equiv (((\neg P \lor \neg \neg Q) \land \neg R) \lor P \lor \neg(S \lor T))$$
[Step 2]

$$\equiv (((\neg P \lor Q) \land \neg R) \lor P \lor \neg (S \lor T))$$
 [Step 2]

$$\equiv (((\neg P \lor Q) \land \neg R) \lor P \lor (\neg S \land \neg T))$$
 [Step 2]

$$\equiv ((\neg \mathsf{P} \lor \mathsf{Q} \lor \mathsf{P} \lor (\neg \mathsf{S} \land \neg \mathsf{T})) \land$$

$$(\neg R \lor P \lor (\neg S \land \neg T)))$$
 [Step 3]

Given: 
$$\varphi = (((\mathsf{P} \land \neg \mathsf{Q}) \lor \mathsf{R}) \to (\mathsf{P} \lor \neg(\mathsf{S} \lor \mathsf{T})))$$

$$\begin{split} \varphi &\equiv (\neg((\mathsf{P} \land \neg \mathsf{Q}) \lor \mathsf{R}) \lor \mathsf{P} \lor \neg(\mathsf{S} \lor \mathsf{T})) & [\mathsf{Step 1}] \\ &\equiv ((\neg(\mathsf{P} \land \neg \mathsf{Q}) \land \neg \mathsf{R}) \lor \mathsf{P} \lor \neg(\mathsf{S} \lor \mathsf{T})) & [\mathsf{Step 2}] \\ &\equiv (((\neg\mathsf{P} \lor \neg \neg \mathsf{Q}) \land \neg \mathsf{R}) \lor \mathsf{P} \lor \neg(\mathsf{S} \lor \mathsf{T})) & [\mathsf{Step 2}] \\ &\equiv (((\neg\mathsf{P} \lor \mathsf{Q}) \land \neg \mathsf{R}) \lor \mathsf{P} \lor \neg(\mathsf{S} \lor \mathsf{T})) & [\mathsf{Step 2}] \\ &\equiv (((\neg\mathsf{P} \lor \mathsf{Q}) \land \neg \mathsf{R}) \lor \mathsf{P} \lor (\neg \mathsf{S} \land \neg \mathsf{T})) & [\mathsf{Step 2}] \\ &\equiv (((\neg\mathsf{P} \lor \mathsf{Q}) \land \neg \mathsf{R}) \lor \mathsf{P} \lor (\neg \mathsf{S} \land \neg \mathsf{T})) \land & (\neg\mathsf{R} \lor \mathsf{P} \lor (\neg \mathsf{S} \land \neg \mathsf{T}))) & [\mathsf{Step 3}] \\ &\equiv (\neg\mathsf{R} \lor \mathsf{P} \lor (\neg \mathsf{S} \land \neg \mathsf{T})) & [\mathsf{Step 4}] \end{split}$$

Given: 
$$\varphi = (((\mathsf{P} \land \neg \mathsf{Q}) \lor \mathsf{R}) \to (\mathsf{P} \lor \neg(\mathsf{S} \lor \mathsf{T})))$$

$$\begin{split} \varphi &\equiv (\neg((P \land \neg Q) \lor R) \lor P \lor \neg(S \lor T)) & [Step 1] \\ &\equiv ((\neg(P \land \neg Q) \land \neg R) \lor P \lor \neg(S \lor T)) & [Step 2] \\ &\equiv (((\neg P \lor \neg \neg Q) \land \neg R) \lor P \lor \neg(S \lor T)) & [Step 2] \\ &\equiv (((\neg P \lor Q) \land \neg R) \lor P \lor \neg(S \lor T)) & [Step 2] \\ &\equiv (((\neg P \lor Q) \land \neg R) \lor P \lor (\neg S \land \neg T)) & [Step 2] \\ &\equiv (((\neg P \lor Q) \land \neg R) \lor P \lor (\neg S \land \neg T)) & [Step 2] \\ &\equiv ((\neg P \lor Q \lor P \lor (\neg S \land \neg T)) \land & (\neg R \lor P \lor (\neg S \land \neg T))) & [Step 3] \\ &\equiv (\neg R \lor P \lor (\neg S \land \neg T)) & [Step 4] \\ &\equiv ((\neg R \lor P \lor \neg S) \land (\neg R \lor P \lor \neg T)) & [Step 3] \end{split}$$

### Construct DNF: Example

| Construction of Disjunctive Normal Form                                                  |          |
|------------------------------------------------------------------------------------------|----------|
| Given: $\varphi = (((P \land \neg Q) \lor R) \rightarrow (P \lor \neg (S \lor T)))$      |          |
|                                                                                          |          |
| $\varphi \equiv (\neg((P \land \neg Q) \lor R) \lor P \lor \neg(S \lor T))$              | [Step 1] |
| $\equiv ((\neg(P \land \neg Q) \land \neg R) \lor P \lor \neg(S \lor T))$                | [Step 2] |
| $\equiv (((\neg P \lor \neg \neg Q) \land \neg R) \lor P \lor \neg (S \lor T))$          | [Step 2] |
| $\equiv (((\neg P \lor Q) \land \neg R) \lor P \lor \neg(S \lor T))$                     | [Step 2] |
| $\equiv (((\neg P \lor Q) \land \neg R) \lor P \lor (\neg S \land \neg T))$              | [Step 2] |
| $\equiv ((\neg P \land \neg R) \lor (Q \land \neg R) \lor P \lor (\neg S \land \neg T))$ | [Step 3] |

#### Theorem

For every formula  $\varphi$  there is a logically equivalent formula in CNF and a logically equivalent formula in DNF.

#### Theorem

For every formula  $\varphi$  there is a logically equivalent formula in CNF and a logically equivalent formula in DNF.

"There is a" always means "there is at least one".
 Otherwise we would write "there is exactly one".

#### Theorem

For every formula  $\varphi$  there is a logically equivalent formula in CNF and a logically equivalent formula in DNF.

- "There is a" always means "there is at least one".
   Otherwise we would write "there is exactly one".
- Intuition: algorithm to construct normal form works with any given formula and only uses equivalence rewriting.

#### Theorem

For every formula  $\varphi$  there is a logically equivalent formula in CNF and a logically equivalent formula in DNF.

- "There is a" always means "there is at least one".
   Otherwise we would write "there is exactly one".
- Intuition: algorithm to construct normal form works with any given formula and only uses equivalence rewriting.
- actual proof would use induction over structure of formula

### Size of Normal Forms

- In the worst case, a logically equivalent formula in CNF or DNF can be exponentially larger than the original formula.
- Example: for (x<sub>1</sub> ∨ y<sub>1</sub>) ∧ · · · ∧ (x<sub>n</sub> ∨ y<sub>n</sub>) there is no smaller logically equivalent formula in DNF than:

$$\bigvee_{S\in\mathcal{P}(\{1,\ldots,n\})} \left( \bigwedge_{i\in S} x_i \land \bigwedge_{i\in\{1,\ldots,n\}\setminus S} y_i \right)$$

As a consequence, the construction of the CNF/DNF formula can take exponential time.

### More Theorems

#### Theorem

A formula in CNF is a tautology iff every clause is a tautology.

#### Theorem

A formula in DNF is satisfiable iff at least one of its monomials is satisfiable.

 $\rightsquigarrow$  both proved easily with semantics of propositional logic

# Discrete Mathematics in Computer Science Knowledge Bases

Malte Helmert, Gabriele Röger

University of Basel

## Knowledge Bases: Example



If not DrinkBeer, then EatFish. If EatFish and DrinkBeer, then not EatIceCream. If EatIceCream or not DrinkBeer, then not EatFish.

$$\begin{split} \mathsf{KB} &= \{ (\neg \mathsf{DrinkBeer} \rightarrow \mathsf{EatFish}), \\ &\quad ((\mathsf{EatFish} \land \mathsf{DrinkBeer}) \rightarrow \neg \mathsf{EatIceCream}), \\ &\quad ((\mathsf{EatIceCream} \lor \neg \mathsf{DrinkBeer}) \rightarrow \neg \mathsf{EatFish}) \} \end{split}$$

Exercise from U. Schöning: Logik für Informatiker Picture courtesy of graur razvan ionut / FreeDigitalPhotos.net

### Models for Sets of Formulas

### Definition (Model for Knowledge Base)

Let KB be a knowledge base over A,

i.e., a set of propositional formulas over A.

A truth assignment  $\mathcal{I}$  for A is a model for KB (written:  $\mathcal{I} \models KB$ ) if  $\mathcal{I}$  is a model for every formula  $\varphi \in KB$ .

German: Wissensbasis, Modell

## Properties of Sets of Formulas

- A knowledge base KB is
  - satisfiable if KB has at least one model
  - unsatisfiable if KB is not satisfiable
  - valid (or a tautology) if every interpretation is a model for KB
  - falsifiable if KB is no tautology

German: erfüllbar, unerfüllbar, gültig, gültig/eine Tautologie, falsifizierbar

### Example I

Which of the properties does  $KB = \{(A \land \neg B), \neg (B \lor A)\}$  have?

## Example I

Which of the properties does  $KB = \{(A \land \neg B), \neg (B \lor A)\}$  have?

KB is unsatisfiable: For every model  $\mathcal{I}$  with  $\mathcal{I} \models (A \land \neg B)$  we have  $\mathcal{I}(A) = 1$ . This means  $\mathcal{I} \models (B \lor A)$  and thus  $\mathcal{I} \not\models \neg (B \lor A)$ .

## Example I

Which of the properties does  $KB = \{(A \land \neg B), \neg (B \lor A)\}$  have?

KB is unsatisfiable:

For every model  $\mathcal{I}$  with  $\mathcal{I} \models (A \land \neg B)$  we have  $\mathcal{I}(A) = 1$ . This means  $\mathcal{I} \models (B \lor A)$  and thus  $\mathcal{I} \not\models \neg (B \lor A)$ .

This directly implies that KB is falsifiable, not satisfiable and no tautology.

## Example II

Which of the properties does

$$\begin{split} \mathsf{KB} &= \{ (\neg \mathsf{DrinkBeer} \rightarrow \mathsf{EatFish}), \\ &\quad ((\mathsf{EatFish} \land \mathsf{DrinkBeer}) \rightarrow \neg \mathsf{EatIceCream}), \\ &\quad ((\mathsf{EatIceCream} \lor \neg \mathsf{DrinkBeer}) \rightarrow \neg \mathsf{EatFish}) \} \text{ have} : \end{split}$$

## Example II

Which of the properties does

$$\begin{split} \mathsf{KB} &= \{ (\neg \mathsf{DrinkBeer} \rightarrow \mathsf{EatFish}), \\ &\quad ((\mathsf{EatFish} \land \mathsf{DrinkBeer}) \rightarrow \neg \mathsf{EatIceCream}), \\ &\quad ((\mathsf{EatIceCream} \lor \neg \mathsf{DrinkBeer}) \rightarrow \neg \mathsf{EatFish}) \} \text{ have}? \end{split}$$

- satisfiable, e.g. with  $\mathcal{I} = \{ \text{EatFish} \mapsto 1, \text{DrinkBeer} \mapsto 1, \text{EatIceCream} \mapsto 0 \}$
- thus not unsatisfiable
- falsifiable, e. g. with  $\mathcal{I} = \{ \mathsf{EatFish} \mapsto 0, \mathsf{DrinkBeer} \mapsto 0, \mathsf{EatIceCream} \mapsto 1 \}$
- thus not valid

# Discrete Mathematics in Computer Science Logical Consequences

Malte Helmert, Gabriele Röger

University of Basel

## Logical Consequences: Motivation

### What's the secret of your long life?



I am on a strict diet: If I don't drink beer to a meal, then I always eat fish. Whenever I have fish and beer with the same meal, I abstain from ice cream. When I eat ice cream or don't drink beer, then I never touch fish.

Claim: the woman drinks beer to every meal.

How can we prove this?

Exercise from U. Schöning: Logik für Informatiker Picture courtesy of graur razvan ionut/FreeDigitalPhotos.net

# Logical Consequences

#### Definition (Logical Consequence)

Let KB be a set of formulas and  $\varphi$  a formula.

```
We say that KB logically implies \varphi (written as KB \models \varphi) if all models of KB are also models of \varphi.
```

also: KB logically entails  $\varphi$ ,  $\varphi$  logically follows from KB,  $\varphi$  is a logical consequence of KB

German: KB impliziert  $\varphi$  logisch,  $\varphi$  folgt logisch aus KB,  $\varphi$  ist logische Konsequenz von KB

# Logical Consequences

### Definition (Logical Consequence)

Let KB be a set of formulas and  $\varphi$  a formula.

```
We say that KB logically implies \varphi (written as KB \models \varphi) if all models of KB are also models of \varphi.
```

also: KB logically entails  $\varphi$ ,  $\varphi$  logically follows from KB,  $\varphi$  is a logical consequence of KB

German: KB impliziert  $\varphi$  logisch,  $\varphi$  folgt logisch aus KB,  $\varphi$  ist logische Konsequenz von KB

Attention: the symbol  $\models$  is "overloaded": KB  $\models \varphi$  vs.  $\mathcal{I} \models \varphi$ .

# Logical Consequences

### Definition (Logical Consequence)

Let KB be a set of formulas and  $\varphi$  a formula.

```
We say that KB logically implies \varphi (written as KB \models \varphi) if all models of KB are also models of \varphi.
```

also: KB logically entails  $\varphi$ ,  $\varphi$  logically follows from KB,  $\varphi$  is a logical consequence of KB

German: KB impliziert  $\varphi$  logisch,  $\varphi$  folgt logisch aus KB,  $\varphi$  ist logische Konsequenz von KB

Attention: the symbol  $\models$  is "overloaded": KB  $\models \varphi$  vs.  $\mathcal{I} \models \varphi$ .

What if KB is unsatisfiable or the empty set?

## Logical Consequences: Example

```
Let \varphi = \mathsf{DrinkBeer} and
```

$$\begin{split} \mathsf{KB} &= \{ (\neg \mathsf{DrinkBeer} \rightarrow \mathsf{EatFish}), \\ &\quad ((\mathsf{EatFish} \land \mathsf{DrinkBeer}) \rightarrow \neg \mathsf{EatIceCream}), \\ &\quad ((\mathsf{EatIceCream} \lor \neg \mathsf{DrinkBeer}) \rightarrow \neg \mathsf{EatFish}) \}. \end{split}$$

Show:  $\mathsf{KB} \models \varphi$ 

## Logical Consequences: Example

```
Let \varphi = \mathsf{DrinkBeer} and
```

$$egin{aligned} \mathsf{KB} &= \{(\neg\mathsf{DrinkBeer} 
ightarrow \mathsf{EatFish}), \ & ((\mathsf{EatFish} \land \mathsf{DrinkBeer}) 
ightarrow \neg\mathsf{EatIceCream}), \ & ((\mathsf{EatIceCream} \lor \neg\mathsf{DrinkBeer}) 
ightarrow \neg\mathsf{EatFish})\}. \end{aligned}$$

Show:  $\mathsf{KB} \models \varphi$ 

### Proof sketch.

Proof by contradiction: assume  $\mathcal{I} \models KB$ , but  $\mathcal{I} \not\models DrinkBeer$ . Then it follows that  $\mathcal{I} \models \neg DrinkBeer$ . Because  $\mathcal{I}$  is a model of KB, we also have  $\mathcal{I} \models (\neg DrinkBeer \rightarrow EatFish)$  and thus  $\mathcal{I} \models EatFish$ . (Why?) With an analogous argumentation starting from  $\mathcal{I} \models ((EatIceCream \lor \neg DrinkBeer) \rightarrow \neg EatFish)$ we get  $\mathcal{I} \models \neg EatFish$  and thus  $\mathcal{I} \not\models EatFish$ .  $\rightsquigarrow$  Contradiction!

## Important Theorems about Logical Consequences

| Theorem ( | (Deduction | Theorem) |  |
|-----------|------------|----------|--|
|-----------|------------|----------|--|

$$\mathsf{KB} \cup \{\varphi\} \models \psi \text{ iff } \mathsf{KB} \models (\varphi \to \psi)$$

### German: Deduktionssatz

Theorem (Contraposition Theorem)

 $\mathsf{KB} \cup \{\varphi\} \models \neg \psi \textit{ iff } \mathsf{KB} \cup \{\psi\} \models \neg \varphi$ 

German: Kontrapositionssatz

Theorem (Contradiction Theorem)

 $\mathsf{KB} \cup \{\varphi\} \text{ is unsatisfiable iff } \mathsf{KB} \models \neg \varphi$ 

German: Widerlegungssatz

(without proof)