Discrete Mathematics in Computer Science Fibonacci Series – Generating Functions

Malte Helmert, Gabriele Röger

University of Basel

Revisiting the Fibonacci Series

- In this section we study generating functions, a powerful method for solving recurrences.
- Generating functions allow us to directly derive closed-form expressions for recurrences.
- Full mastery of generating functions requires solid knowledge of calculus, in particular power series.
- Rather than develop the topic in its full depth, we will look at it within the context of a case study, proving the closed form of the Fibonacci series again.
- We leave out some of the more subtle mathematical aspects, such as the question of convergence of the power series used.

Power Series

Definition (power series)

Let $(a_n)_{n\in\mathbb{N}_0}$ be a sequence of real numbers.

The power series with coefficients (a_n) is the (possibly partial) function $g: \mathbb{R} \to \mathbb{R}$ defined by

$$g(x) = \sum_{n=0}^{\infty} a_n x^n$$
 for all $x \in \mathbb{R}$.

German: Potenzreihe

Notes: more general definitions exist, for example

- using $(x c)^n$ instead of x^n for some $c \in \mathbb{R}$
- using complex instead of real numbers
- using multiple variables

Power Series – Examples

Reminder:
$$g(x) = \sum_{n=0}^{\infty} a_n x^n$$

Examples:

- $a_n = 1$ $\rightsquigarrow g(x) = \frac{1}{1-x}$ (only defined for |x| < 1)
- $a_n = z^n$ for some $z \in \mathbb{R}$ $\Rightarrow g(x) = \frac{1}{1-zx}$ (only defined for |x| < 1/|z|)
- $a_n = \frac{1}{n!}$ $\leadsto g(x) = e^x$ (defined for all x)
- $a_n = \begin{cases} 0 & n \text{ is even} \\ \frac{(-1)^{(n-1)/2}}{n!} & x \text{ is odd} \\ & \Rightarrow g(x) = \sin x \text{ (defined for all } x) \end{cases}$

Uniqueness of Power Series Representation

Theorem

Let g and h be power series with coefficients (a_n) and (b_n) . Let $\varepsilon > 0$ such that for all $|x| < \varepsilon$:

- g and h converge, and
- g(x) = h(x).

Then $a_n = b_n$ for all $n \in \mathbb{N}_0$.

Generating Functions

Definition (generating function)

Let $f: \mathbb{N}_0 \to \mathbb{R}$ be a function over the natural numbers. The generating function for f is the power series with coefficients $(f(n))_{n \in \mathbb{N}_0}$.

German: erzeugende Funktion

We are particularly interested in the case where f is defined by a recurrence.

Generating Functions for Solving Recurrences

General approach for deriving closed-form expressions for a recurrence f using generating functions:

- **1** Let g be the generating function of f.
- ② Use the recurrence to derive an equation for g.
- Use algebra and calculus to solve the equation, i.e., derive a closed-form expression for g.
- ① Use calculus to derive a power series representation $\sum_{n=0}^{\infty} a_n x^n$ for g.
- We get $f(n) = a_n$ as the closed-form expression of the recurrence.

Case Study: Fibonacci Numbers

We now illustrate the approach using the Fibonacci numbers F as an example for the recurrence f.

As a reminder, the Fibonacci numbers are defined as follows:

- F(0) = 0
- F(1) = 1
- F(n) = F(n-1) + F(n-2) for all $n \ge 2$

Case Study: 1. Generating Function

1. Let g be the generating function of f.

$$g(x) = \sum_{n=0}^{\infty} F(n)x^n$$
 for $x \in \mathbb{R}$

Note: The series does not converge for all x, but it converges for $|x| < \varepsilon$ for sufficiently small $\varepsilon > 0$. We omit details.

Case Study: 2. Equation for g from Recurrence

$$F(0) = 0$$
 $F(1) = 1$ $F(n) = F(n-1) + F(n-2)$ for all $n \ge 2$

2. Use the recurrence to derive an equation for g.

$$g(x) = \sum_{n=0}^{\infty} F(n)x^{n} = 0 \cdot x^{0} + 1 \cdot x^{1} + \sum_{n=2}^{\infty} (F(n-1) + F(n-2))x^{n}$$

$$= x + \sum_{n=2}^{\infty} F(n-1)x^{n} + \sum_{n=2}^{\infty} F(n-2)x^{n}$$

$$= x + \sum_{n=1}^{\infty} F(n)x^{n+1} + \sum_{n=0}^{\infty} F(n)x^{n+2}$$

$$= x + x \sum_{n=1}^{\infty} F(n)x^{n} + x^{2} \sum_{n=0}^{\infty} F(n)x^{n}$$

$$= x + x \sum_{n=0}^{\infty} F(n)x^{n} + x^{2} \sum_{n=0}^{\infty} F(n)x^{n}$$

$$= x + x g(x) + x^{2}g(x)$$

Case Study: 3. Solve Equation for g

3. Use algebra and calculus to solve the equation, i.e., derive a closed-form expression for g.

$$g(x) = x + x g(x) + x^{2}g(x)$$

$$\Rightarrow g(x) - x g(x) - x^{2}g(x) = x$$

$$\Rightarrow g(x)(1 - x - x^{2}) = x$$

$$\Rightarrow g(x) = \frac{x}{1 - x - x^{2}}$$

Case Study: 4. Power Series Representation for g(1)

4. Use calculus to derive a power series representation $\sum_{n=0}^{\infty} a_n x^n$ for g.

$$g(x) = \frac{x}{1 - x - x^2} = xh(x)$$
 with $h(x) = \frac{1}{1 - x - x^2}$

Idea: partial fraction decomposition, i.e., find a, b, α, β such that $h(x) = \frac{a}{1-\alpha x} + \frac{b}{1-\beta x}$.

$$\frac{a}{1-\alpha x} + \frac{b}{1-\beta x} = \frac{a(1-\beta x) + b(1-\alpha x)}{(1-\alpha x)(1-\beta x)}$$
$$= \frac{a-a\beta x + b-b\alpha x}{1-\alpha x - \beta x + \alpha \beta x^2}$$
$$= \frac{(a+b) + (-a\beta - b\alpha)x}{1+(-\alpha - \beta)x + \alpha \beta x^2}$$

$$\rightsquigarrow \mathbf{a}+\mathbf{b}=1, \quad -\mathbf{a}\beta-\mathbf{b}\alpha=\mathbf{0}, \quad -\alpha-\beta=-1, \quad \alpha\beta=-1$$

Case Study: 4. Power Series Representation for g (2)

4. Use calculus to derive a power series representation $\sum_{n=0}^{\infty} a_n x^n$ for g.

(1)
$$a + b = 1$$
, (2) $-a\beta - b\alpha = 0$, (3) $-\alpha - \beta = -1$, (4) $\alpha\beta = -1$

- From (3): (5) $\beta = 1 \alpha$
- Substituting (5) into (4):

$$\alpha(1-\alpha) = -1$$

$$\Rightarrow \quad \alpha - \alpha^2 = -1$$

$$\Rightarrow \quad \alpha^2 - \alpha - 1 = 0$$

$$\Rightarrow \quad \alpha = \frac{1}{2} \pm \sqrt{\frac{1}{4} + 1} = \frac{1}{2} \pm \sqrt{\frac{5}{4}}$$

$$\Rightarrow \quad \alpha = \frac{1 \pm \sqrt{5}}{2}$$

The solutions are $\alpha = \varphi$ or $\alpha = \psi$ from the previous chapter. Continue with (6) $\alpha = \varphi$.

Case Study: 4. Power Series Representation for g(3)

- 4. Use calculus to derive a power series representation $\sum_{n=0}^{\infty} a_n x^n$ for g.
- (1) a + b = 1, (2) $-a\beta b\alpha = 0$, (3) $-\alpha \beta = -1$, (4) $\alpha\beta = -1$, (5) $\beta = 1 \alpha$, (6) $\alpha = \varphi$
 - Substituting (6) into (5): (7) $\beta = 1 \alpha = 1 \varphi = \psi$.
 - From (1): (8) b = 1 a
 - Substituting (6), (7), (8) into (2):

$$-a(1-\varphi) - (1-a)\varphi = 0$$

$$\Rightarrow -a + a\varphi - \varphi + a\varphi = 0$$

$$\Rightarrow a(2\varphi - 1) = \varphi$$

$$\Rightarrow a = \frac{\varphi}{2\varphi - 1} = \frac{\varphi}{2 \cdot \frac{1}{2}(1 + \sqrt{5}) - 1} = \frac{1}{\sqrt{5}}\varphi$$

Case Study: 4. Power Series Representation for g (4)

- 4. Use calculus to derive a power series representation $\sum_{n=0}^{\infty} a_n x^n$ for g.
- (8) b = 1 a, (9) $a = \frac{1}{\sqrt{5}}\varphi$
 - Substituting (9) into (8):

$$b = 1 - a$$

$$= 1 - \frac{1}{\sqrt{5}}\varphi$$

$$= \frac{\sqrt{5}}{\sqrt{5}} - \frac{\frac{1}{2}(1 + \sqrt{5})}{\sqrt{5}}$$

$$= -\frac{1}{\sqrt{5}}(-\sqrt{5} + \frac{1}{2} + \frac{1}{2}\sqrt{5})$$

$$= -\frac{1}{\sqrt{5}}(\frac{1}{2} - \frac{1}{2}\sqrt{5})$$

$$= -\frac{1}{\sqrt{5}}\psi$$

Case Study: 4. Power Series Representation for g (5)

4. Use calculus to derive a power series representation $\sum_{n=0}^{\infty} a_n x^n$ for g.

$$g(x) = xh(x), \quad h(x) = \frac{a}{1 - \alpha x} + \frac{b}{1 - \beta x},$$

$$\alpha = \varphi, \quad \beta = \psi, \quad a = \frac{1}{\sqrt{5}}\varphi, \quad b = -\frac{1}{\sqrt{5}}\psi$$

Plugging everything in:

$$\begin{split} g(x) &= x \left(\frac{1}{\sqrt{5}} \varphi \frac{1}{1 - \varphi x} - \frac{1}{\sqrt{5}} \psi \frac{1}{1 - \psi x} \right) = \frac{x}{\sqrt{5}} \left(\varphi \frac{1}{1 - \varphi x} - \psi \frac{1}{1 - \psi x} \right) \\ &= \frac{x}{\sqrt{5}} \left(\varphi \sum_{n=0}^{\infty} \varphi^n x^n - \psi \sum_{n=0}^{\infty} \psi^n x^n \right) \\ &= \frac{1}{\sqrt{5}} \left(\sum_{n=0}^{\infty} \varphi^{n+1} x^{n+1} - \sum_{n=0}^{\infty} \psi^{n+1} x^{n+1} \right) \\ &= \frac{1}{\sqrt{5}} \left(\sum_{n=1}^{\infty} \varphi^n x^n - \sum_{n=1}^{\infty} \psi^n x^n \right) = \sum_{n=1}^{\infty} \frac{1}{\sqrt{5}} (\varphi^n - \psi^n) x^n \\ &= \sum_{n=0}^{\infty} \frac{1}{\sqrt{5}} (\varphi^n - \psi^n) x^n \end{split}$$

Case Study: 5. Extract Closed Form of Recurrence

- 4. Use calculus to derive a power series representation $\sum_{n=0}^{\infty} a_n x^n$ for g.
- 5. We get $f(n) = a_n$ as the closed-form expression of the recurrence.

From

$$g(x) = \sum_{n=0}^{\infty} \frac{1}{\sqrt{5}} (\varphi^n - \psi^n) x^n$$

we conclude:

$$F(n) = \frac{1}{\sqrt{5}}(\varphi^n - \psi^n)$$
 for all $n \in \mathbb{N}_0$

Concluding Remarks

- The approach requires analytical skill, but once understood, it can be applied to many similar recurrences.
- The same basic idea can be used to solve all recurrences of the form
 - $f(0) = a_0$
 - **...**
 - $f(k-1) = a_{k-1}$
 - $f(n) = c_1 f(n-1) + \cdots + c_k f(n-k)$ for all $n \ge k$
- The Fibonacci numbers are the special case where k = 2, $a_0 = 0$, $a_1 = 1$, $c_1 = 1$, $c_2 = 1$.

Discrete Mathematics in Computer Science Master Theorem for Divide-and-Conquer Recurrences

Malte Helmert, Gabriele Röger

University of Basel

Divide-and-Conquer Algorithms

- Recurrences frequently arise in the run-time analysis of divide-and-conquer algorithms.
- Examples:
 - Mergesort: sort a sequence by recursively sorting two smaller sequences, then merging them
 - Binary search: find an element in a sorted sequence by identifying which half of the sequence must contain the element, then recursively searching it
 - Quickselect: find the k-th smallest element in a sequence by recursive partitioning

Asymptotic Growth

- Run-time analysis usually focuses on the asymptotic growth rate of run-time.
- For example, we say "run-time grows at most quadratically" rather than saying that run-time for inputs of size n is $3n^2 + 17n + 8$.

advantages:

- much simpler to study
- can abstract from minor implementation details

Big-O, Big-Ω, Big-Θ

Definition (O, Ω, Θ)

Let $g: \mathbb{R}_0^+ \to \mathbb{R}$ be a function.

The sets of functions $O(g), \Omega(g), \Theta(g)$ are defined as follows:

- $O(g) = \{ f : \mathbb{R}_0^+ \to \mathbb{R} \mid \text{there exist } C, n_0 \in \mathbb{R}$ s.t. $|f(n)| \le C \cdot g(n) \text{ for all } n \ge n_0 \}$
- $\Omega(g) = \{ f : \mathbb{R}_0^+ \to \mathbb{R} \mid \text{there exist } C, n_0 \in \mathbb{R} \\ \text{s.t. } |f(n)| \ge C \cdot g(n) \text{ for all } n \ge n_0 \}$
- $\Theta(g) = O(g) \cap \Omega(g)$

Notation:

- It is convention to say " $5n^2 + 7n\log_2 n = \Theta(n^2)$ " instead of " $f \in \Theta(g)$ for the functions f, g with $f(n) = 5n^2 + 7n\log_2 n$ and $g(n) = n^2$ ".
- ditto for O, Ω

Divide-and-Conquer Recurrences

A common instantiation of the divide-and-conquer algorithm scheme works as follows:

- For inputs of small size n < C, solve the problem directly.
- Otherwise:
 - **1** Construct A smaller inputs of size n/B.
 - Recursively solve these inputs using the same algorithm.
 - 3 Compute the result from the recursively computed results.

If 1.+3. take time f(n), the overall run-time for n > C can be expressed as $T(n) = A \cdot T(n/B) + f(n)$.

- We call this a divide-and-conquer recurrence.
- We do not care about run-time for $n \le C$ because it does not affect asymptotic analysis.

Divide-and-Conquer Recurrences – Examples

Reminder:

- ① Construct A smaller inputs of size n/B.
- 2 Recursively solve these inputs using the same algorithm.
- 3 Compute the result from the recursively computed results.

divide-and-conquer recurrence: $T(n) = A \cdot T(n/B) + f(n)$

Examples:

- Mergesort: A = 2, B = 2, $f(n) = \Theta(n)$
- Binary Search: A = 1, B = 2, $f(n) = \Theta(1)$

Master Theorem for Divide-and-Conquer Recurrences

$\mathsf{Theorem}$

Let $A \ge 1$, $B \ge 1$, and let T satisfy the divide-and-conquer recurrence $T(n) = A \cdot T(n/B) + f(n)$. Then:

- If $f(n) = O(n^{\log_B A \varepsilon})$ for some $\varepsilon > 0$, then $T(n) = \Theta(n^{\log_B A})$.
- If $f(n) = \Theta(n^{\log_B A})$, then $T(n) = \Theta(n^{\log_B A} \log_2 n)$.
- If $f(n) = \Omega(n^{\log_B A + \varepsilon})$ for some $\varepsilon > 0$, then $T(n) = \Theta(f(n))$.

We do not prove the theorem.

Reminder: $T(n) = A \cdot T(n/B) + f(n)$

$$f(n) = O(n^{\log_B A - \varepsilon}) \rightsquigarrow T(n) = \Theta(n^{\log_B A})$$

$$f(n) = \Theta(n^{\log_B A}) \rightsquigarrow T(n) = \Theta(n^{\log_B A} \log_2 n)$$

•
$$f(n) = \Omega(n^{\log_B A + \varepsilon}) \rightsquigarrow T(n) = \Theta(f(n))$$

Mergesort: A = 2, B = 2, $f(n) = \Theta(n)$

 $\rightsquigarrow \log_B A = \log_2 2 = 1$

```
Reminder: T(n) = A \cdot T(n/B) + f(n)

• f(n) = O(n^{\log_B A - \varepsilon}) \rightsquigarrow T(n) = \Theta(n^{\log_B A})

• f(n) = \Theta(n^{\log_B A}) \rightsquigarrow T(n) = \Theta(n^{\log_B A} \log_2 n)

• f(n) = \Omega(n^{\log_B A + \varepsilon}) \rightsquigarrow T(n) = \Theta(f(n))
```

Mergesort: A = 2, B = 2, $f(n) = \Theta(n)$

Reminder:
$$T(n) = A \cdot T(n/B) + f(n)$$

- $f(n) = O(n^{\log_B A \varepsilon}) \rightsquigarrow T(n) = \Theta(n^{\log_B A})$
- $f(n) = \Theta(n^{\log_B A}) \rightsquigarrow T(n) = \Theta(n^{\log_B A} \log_2 n)$
- $f(n) = \Omega(n^{\log_B A + \varepsilon}) \rightsquigarrow T(n) = \Theta(f(n))$

Mergesort:
$$A = 2$$
, $B = 2$, $f(n) = \Theta(n)$

$$\rightsquigarrow \log_B A = \log_2 2 = 1$$

$$f(n) = O(n^{1-\varepsilon}) \rightsquigarrow T(n) = \Theta(n^1)$$

$$f(n) = \Theta(n^1) \rightsquigarrow T(n) = \Theta(n^1 \log_2 n)$$

$$f(n) = \Omega(n^{1+\varepsilon}) \rightsquigarrow T(n) = \Theta(f(n))$$

Reminder:
$$T(n) = A \cdot T(n/B) + f(n)$$

- $f(n) = O(n^{\log_B A \varepsilon}) \rightsquigarrow T(n) = \Theta(n^{\log_B A})$
- $f(n) = \Theta(n^{\log_B A}) \rightsquigarrow T(n) = \Theta(n^{\log_B A} \log_2 n)$
- $f(n) = \Omega(n^{\log_B A + \varepsilon}) \rightsquigarrow T(n) = \Theta(f(n))$

Mergesort:
$$A = 2$$
, $B = 2$, $f(n) = \Theta(n)$

$$\rightsquigarrow \log_B A = \log_2 2 = 1$$

•
$$f(n) = O(n^{1-\varepsilon}) \rightsquigarrow T(n) = \Theta(n^1)$$

$$f(n) = \Theta(n^1) \rightsquigarrow T(n) = \Theta(n^1 \log_2 n)$$

•
$$f(n) = \Omega(n^{1+\varepsilon}) \rightsquigarrow T(n) = \Theta(f(n))$$

$$\rightsquigarrow T(n) = \Theta(n \log n)$$

Reminder: $T(n) = A \cdot T(n/B) + f(n)$

$$f(n) = O(n^{\log_B A - \varepsilon}) \rightsquigarrow T(n) = \Theta(n^{\log_B A})$$

$$f(n) = \Theta(n^{\log_B A}) \rightsquigarrow T(n) = \Theta(n^{\log_B A} \log_2 n)$$

$$f(n) = \Omega(n^{\log_B A + \varepsilon}) \rightsquigarrow T(n) = \Theta(f(n))$$

Binary Search: A = 1, B = 2, $f(n) = \Theta(1)$

```
Reminder: T(n) = A \cdot T(n/B) + f(n)
```

- $f(n) = O(n^{\log_B A \varepsilon}) \rightsquigarrow T(n) = \Theta(n^{\log_B A})$
- $f(n) = \Theta(n^{\log_B A}) \rightsquigarrow T(n) = \Theta(n^{\log_B A} \log_2 n)$
- $f(n) = \Omega(n^{\log_B A + \varepsilon}) \rightsquigarrow T(n) = \Theta(f(n))$

Binary Search:
$$A = 1$$
, $B = 2$, $f(n) = \Theta(1)$
 $\Rightarrow \log_B A = \log_2 1 = 0$

Reminder:
$$T(n) = A \cdot T(n/B) + f(n)$$

- $f(n) = O(n^{\log_B A \varepsilon}) \rightsquigarrow T(n) = \Theta(n^{\log_B A})$
- $f(n) = \Theta(n^{\log_B A}) \rightsquigarrow T(n) = \Theta(n^{\log_B A} \log_2 n)$
- $f(n) = \Omega(n^{\log_B A + \varepsilon}) \rightsquigarrow T(n) = \Theta(f(n))$

Binary Search:
$$A = 1$$
, $B = 2$, $f(n) = \Theta(1)$
 $\Rightarrow \log_B A = \log_2 1 = 0$

- $f(n) = O(n^{0-\varepsilon}) \rightsquigarrow T(n) = \Theta(n^0)$
- $f(n) = \Theta(n^0) \rightsquigarrow T(n) = \Theta(n^0 \log_2 n)$
- $f(n) = \Omega(n^{0+\varepsilon}) \rightsquigarrow T(n) = \Theta(f(n))$

Reminder:
$$T(n) = A \cdot T(n/B) + f(n)$$

- $f(n) = O(n^{\log_B A \varepsilon}) \rightsquigarrow T(n) = \Theta(n^{\log_B A})$
- $f(n) = \Theta(n^{\log_B A}) \rightsquigarrow T(n) = \Theta(n^{\log_B A} \log_2 n)$
- $f(n) = \Omega(n^{\log_B A + \varepsilon}) \rightsquigarrow T(n) = \Theta(f(n))$

Binary Search:
$$A = 1$$
, $B = 2$, $f(n) = \Theta(1)$
 $\Rightarrow \log_B A = \log_2 1 = 0$

- $f(n) = O(n^{0-\varepsilon}) \rightsquigarrow T(n) = \Theta(n^0)$
- $f(n) = \Theta(n^0) \rightsquigarrow T(n) = \Theta(n^0 \log_2 n)$
- $f(n) = \Omega(n^{0+\varepsilon}) \rightsquigarrow T(n) = \Theta(f(n))$

$$\rightsquigarrow T(n) = \Theta(\log n)$$

More Complex Cases

Some divide-and-conquer algorithms have more complicated recurrences because they do not split into even-sized pieces of predictable size.

Example:

- Quicksort with random pivotization: $f(n) = \Theta(n)$; split n uniformly randomly into $1 \le k \le n$ and n-1-k \rightsquigarrow expected runtime $\Theta(n \log n)$
- Quickselect with median-of-median pivotization: $f(n) = \Theta(n)$; one recursion on input size n/5, one recursion on input size at most $n \cdot \frac{7}{10}$ \rightsquigarrow runtime $\Theta(n)$

Here, we can try to use the Master theorem to derive hypotheses and then prove them by mathematical induction.