Discrete Mathematics in Computer Science Fibonacci Series - Generating Functions

Malte Helmert, Gabriele Röger

University of Basel

Revisiting the Fibonacci Series

■ In this section we study generating functions, a powerful method for solving recurrences.

- Generating functions allow us to directly derive closed-form expressions for recurrences.
- Full mastery of generating functions requires solid knowledge of calculus, in particular power series.
- Rather than develop the topic in its full depth, we will look at it within the context of a case study, proving the closed form of the Fibonacci series again.
- We leave out some of the more subtle mathematical aspects, such as the question of convergence of the power series used.

Power Series

Definition (power series)

Let $\left(a_{n}\right)_{n \in \mathbb{N}_{0}}$ be a sequence of real numbers.
The power series with coefficients $\left(a_{n}\right)$ is the (possibly partial) function $g: \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
g(x)=\sum_{n=0}^{\infty} a_{n} x^{n} \quad \text { for all } x \in \mathbb{R}
$$

German: Potenzreihe
Notes: more general definitions exist, for example
\square using $(x-c)^{n}$ instead of x^{n} for some $c \in \mathbb{R}$

- using complex instead of real numbers
- using multiple variables

Power Series - Examples

Reminder: $g(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$

Examples:

■ $a_{n}=1$
$\rightsquigarrow g(x)=\frac{1}{1-x}($ only defined for $|x|<1)$
$\square a_{n}=z^{n}$ for some $z \in \mathbb{R}$
$\rightsquigarrow g(x)=\frac{1}{1-z x}$ (only defined for $\left.|x|<1 /|z|\right)$

- $a_{n}=\frac{1}{n!}$
$\rightsquigarrow g(x)=e^{x}$ (defined for all x)
$\square a_{n}= \begin{cases}0 & n \text { is even } \\ \frac{(-1)^{(n-1) / 2}}{n!} & x \text { is odd }\end{cases}$
$\rightsquigarrow g(x)=\sin x$ (defined for all x)

Uniqueness of Power Series Representation

Theorem

Let g and h be power series with coefficients $\left(a_{n}\right)$ and $\left(b_{n}\right)$. Let $\varepsilon>0$ such that for all $|x|<\varepsilon$:

- g and h converge, and
- $g(x)=h(x)$.

Then $a_{n}=b_{n}$ for all $n \in \mathbb{N}_{0}$.

Generating Functions

Definition (generating function)
Let $f: \mathbb{N}_{0} \rightarrow \mathbb{R}$ be a function over the natural numbers.
The generating function for f is the power series with coefficients $(f(n))_{n \in \mathbb{N}_{0}}$.

German: erzeugende Funktion
We are particularly interested in the case where f is defined by a recurrence.

Generating Functions for Solving Recurrences

General approach for deriving closed-form expressions for a recurrence f using generating functions:
(1) Let g be the generating function of f.
(2) Use the recurrence to derive an equation for g.
(3) Use algebra and calculus to solve the equation, i.e., derive a closed-form expression for g.
(1) Use calculus to derive a power series representation $\sum_{n=0}^{\infty} a_{n} x^{n}$ for g.
(6) We get $f(n)=a_{n}$ as the closed-form expression of the recurrence.

Case Study: Fibonacci Numbers

We now illustrate the approach using the Fibonacci numbers F as an example for the recurrence f.

As a reminder, the Fibonacci numbers are defined as follows:

- $F(0)=0$
- $F(1)=1$
- $F(n)=F(n-1)+F(n-2)$ for all $n \geq 2$

Case Study: 1. Generating Function

1. Let g be the generating function of f.

$$
g(x)=\sum_{n=0}^{\infty} F(n) x^{n} \quad \text { for } x \in \mathbb{R}
$$

Note: The series does not converge for all x, but it converges for $|x|<\varepsilon$ for sufficiently small $\varepsilon>0$. We omit details.

Case Study: 2. Equation for g from Recurrence

$$
F(0)=0 \quad F(1)=1 \quad F(n)=F(n-1)+F(n-2) \text { for all } n \geq 2
$$

2. Use the recurrence to derive an equation for g.

$$
\begin{aligned}
g(x) & =\sum_{n=0}^{\infty} F(n) x^{n}=0 \cdot x^{0}+1 \cdot x^{1}+\sum_{n=2}^{\infty}(F(n-1)+F(n-2)) x^{n} \\
& =x+\sum_{n=2}^{\infty} F(n-1) x^{n}+\sum_{n=2}^{\infty} F(n-2) x^{n} \\
& =x+\sum_{n=1}^{\infty} F(n) x^{n+1}+\sum_{n=0}^{\infty} F(n) x^{n+2} \\
& =x+x \sum_{n=1}^{\infty} F(n) x^{n}+x^{2} \sum_{n=0}^{\infty} F(n) x^{n} \\
& =x+x \sum_{n=0}^{\infty} F(n) x^{n}+x^{2} \sum_{n=0}^{\infty} F(n) x^{n} \\
& =x+x g(x)+x^{2} g(x)
\end{aligned}
$$

Case Study: 3. Solve Equation for g

3. Use algebra and calculus to solve the equation, i.e., derive a closed-form expression for g.

$$
\begin{aligned}
g(x) & =x+x g(x)+x^{2} g(x) \\
\Rightarrow \quad g(x)-x g(x)-x^{2} g(x) & =x \\
\Rightarrow \quad g(x)\left(1-x-x^{2}\right) & =x \\
\Rightarrow \quad g(x)=\frac{x}{1-x-x^{2}} &
\end{aligned}
$$

Case Study: 4. Power Series Representation for g (1)

4. Use calculus to derive a power series representation $\sum_{n=0}^{\infty} a_{n} x^{n}$ for g.
$g(x)=\frac{x}{1-x-x^{2}}=x h(x)$ with $h(x)=\frac{1}{1-x-x^{2}}$
Idea: partial fraction decomposition, i.e., find a, b, α, β such that $h(x)=\frac{a}{1-\alpha x}+\frac{b}{1-\beta x}$.

$$
\begin{aligned}
\frac{a}{1-\alpha x}+\frac{b}{1-\beta x} & =\frac{a(1-\beta x)+b(1-\alpha x)}{(1-\alpha x)(1-\beta x)} \\
& =\frac{a-a \beta x+b-b \alpha x}{1-\alpha x-\beta x+\alpha \beta x^{2}} \\
& =\frac{(a+b)+(-a \beta-b \alpha) x}{1+(-\alpha-\beta) x+\alpha \beta x^{2}}
\end{aligned}
$$

$\rightsquigarrow a+b=1, \quad-a \beta-b \alpha=0, \quad-\alpha-\beta=-1, \quad \alpha \beta=-1$

Case Study: 4. Power Series Representation for g (2)

4. Use calculus to derive a power series representation $\sum_{n=0}^{\infty} a_{n} x^{n}$ for g.
(1) $a+b=1$,
(2) $-a \beta-b \alpha=0$,
(3) $-\alpha-\beta=-1$,
(4) $\alpha \beta=-1$

- From (3): (5) $\beta=1-\alpha$
- Substituting (5) into (4):

$$
\begin{aligned}
& \alpha(1-\alpha)=-1 \\
\Rightarrow & \alpha-\alpha^{2}=-1 \\
\Rightarrow & \alpha^{2}-\alpha-1=0 \\
\Rightarrow & \alpha=\frac{1}{2} \pm \sqrt{\frac{1}{4}+1}=\frac{1}{2} \pm \sqrt{\frac{5}{4}} \\
\Rightarrow & \alpha=\frac{1 \pm \sqrt{5}}{2}
\end{aligned}
$$

\rightsquigarrow The solutions are $\alpha=\varphi$ or $\alpha=\psi$ from the previous chapter. Continue with (6) $\alpha=\varphi$.

Case Study: 4. Power Series Representation for g (3)

4. Use calculus to derive a power series representation $\sum_{n=0}^{\infty} a_{n} x^{n}$ for g.
(1) $a+b=1$,
(2) $-a \beta-b \alpha=0$,
(3) $-\alpha-\beta=-1$,
(4) $\alpha \beta=-1$,
(5) $\beta=1-\alpha$,
(6) $\alpha=\varphi$

■ Substituting (6) into (5): (7) $\beta=1-\alpha=1-\varphi=\psi$.

- From (1): (8) $b=1-a$

■ Substituting (6), (7), (8) into (2):

$$
\begin{aligned}
& -a(1-\varphi)-(1-a) \varphi=0 \\
\Rightarrow & -a+a \varphi-\varphi+a \varphi=0 \\
\Rightarrow & a(2 \varphi-1)=\varphi \\
\Rightarrow & a=\frac{\varphi}{2 \varphi-1}=\frac{\varphi}{2 \cdot \frac{1}{2}(1+\sqrt{5})-1}=\frac{1}{\sqrt{5}} \varphi
\end{aligned}
$$

Case Study: 4. Power Series Representation for g (4)

4. Use calculus to derive a power series representation $\sum_{n=0}^{\infty} a_{n} x^{n}$ for g.
(8) $b=1-a, \quad$ (9) $a=\frac{1}{\sqrt{5}} \varphi$

■ Substituting (9) into (8):

$$
\begin{aligned}
b & =1-a \\
& =1-\frac{1}{\sqrt{5}} \varphi \\
& =\frac{\sqrt{5}}{\sqrt{5}}-\frac{\frac{1}{2}(1+\sqrt{5})}{\sqrt{5}} \\
& =-\frac{1}{\sqrt{5}}\left(-\sqrt{5}+\frac{1}{2}+\frac{1}{2} \sqrt{5}\right) \\
& =-\frac{1}{\sqrt{5}}\left(\frac{1}{2}-\frac{1}{2} \sqrt{5}\right) \\
& =-\frac{1}{\sqrt{5}} \psi
\end{aligned}
$$

Case Study: 4. Power Series Representation for g (5)

4. Use calculus to derive a power series representation $\sum_{n=0}^{\infty} a_{n} x^{n}$ for g. $g(x)=x h(x), \quad h(x)=\frac{a}{1-\alpha x}+\frac{b}{1-\beta x}$,
$\alpha=\varphi, \quad \beta=\psi, \quad a=\frac{1}{\sqrt{5}} \varphi, \quad b=-\frac{1}{\sqrt{5}} \psi$
Plugging everything in:

$$
\begin{aligned}
g(x) & =x\left(\frac{1}{\sqrt{5}} \varphi \frac{1}{1-\varphi x}-\frac{1}{\sqrt{5}} \psi \frac{1}{1-\psi x}\right)=\frac{x}{\sqrt{5}}\left(\varphi \frac{1}{1-\varphi x}-\psi \frac{1}{1-\psi x}\right) \\
& =\frac{x}{\sqrt{5}}\left(\varphi \sum_{n=0}^{\infty} \varphi^{n} x^{n}-\psi \sum_{n=0}^{\infty} \psi^{n} x^{n}\right) \\
& =\frac{1}{\sqrt{5}}\left(\sum_{n=0}^{\infty} \varphi^{n+1} x^{n+1}-\sum_{n=0}^{\infty} \psi^{n+1} x^{n+1}\right) \\
& =\frac{1}{\sqrt{5}}\left(\sum_{n=1}^{\infty} \varphi^{n} x^{n}-\sum_{n=1}^{\infty} \psi^{n} x^{n}\right)=\sum_{n=1}^{\infty} \frac{1}{\sqrt{5}}\left(\varphi^{n}-\psi^{n}\right) x^{n} \\
& =\sum_{n=0}^{\infty} \frac{1}{\sqrt{5}}\left(\varphi^{n}-\psi^{n}\right) x^{n}
\end{aligned}
$$

Case Study: 5. Extract Closed Form of Recurrence

4. Use calculus to derive a power series representation $\sum_{n=0}^{\infty} a_{n} x^{n}$ for g.
5. We get $f(n)=a_{n}$ as the closed-form expression of the recurrence.

From

$$
g(x)=\sum_{n=0}^{\infty} \frac{1}{\sqrt{5}}\left(\varphi^{n}-\psi^{n}\right) x^{n}
$$

we conclude:

$$
F(n)=\frac{1}{\sqrt{5}}\left(\varphi^{n}-\psi^{n}\right) \quad \text { for all } n \in \mathbb{N}_{0}
$$

Concluding Remarks

- The approach requires analytical skill, but once understood, it can be applied to many similar recurrences.
- The same basic idea can be used to solve all recurrences of the form
- $f(0)=a_{0}$
- $f(k-1)=a_{k-1}$
- $f(n)=c_{1} f(n-1)+\cdots+c_{k} f(n-k) \quad$ for all $n \geq k$
- The Fibonacci numbers are the special case where $k=2, a_{0}=0, a_{1}=1, c_{1}=1, c_{2}=1$.

Discrete Mathematics in Computer Science Master Theorem for Divide-and-Conquer Recurrences

Malte Helmert, Gabriele Röger

University of Basel

Divide-and-Conquer Algorithms

- Recurrences frequently arise in the run-time analysis of divide-and-conquer algorithms.
- Examples:
- Mergesort: sort a sequence by recursively sorting two smaller sequences, then merging them
- Binary search: find an element in a sorted sequence by identifying which half of the sequence must contain the element, then recursively searching it
- Quickselect: find the k-th smallest element in a sequence by recursive partitioning

Asymptotic Growth

- Run-time analysis usually focuses on the asymptotic growth rate of run-time.
■ For example, we say "run-time grows at most quadratically" rather than saying that run-time for inputs of size n is $3 n^{2}+17 n+8$.
advantages:
- much simpler to study
- can abstract from minor implementation details

Big $-O$, $\operatorname{Big}-\Omega, \operatorname{Big}-\Theta$

Definition (O, Ω, Θ)

Let $g: \mathbb{R}_{0}^{+} \rightarrow \mathbb{R}$ be a function.
The sets of functions $O(g), \Omega(g), \Theta(g)$ are defined as follows:
■ $O(g)=\left\{f: \mathbb{R}_{0}^{+} \rightarrow \mathbb{R} \mid\right.$ there exist $C, n_{0} \in \mathbb{R}$

$$
\text { s.t. } \left.|f(n)| \leq C \cdot g(n) \text { for all } n \geq n_{0}\right\}
$$

$■ \Omega(g)=\left\{f: \mathbb{R}_{0}^{+} \rightarrow \mathbb{R} \mid\right.$ there exist $C, n_{0} \in \mathbb{R}$
s.t. $|f(n)| \geq C \cdot g(n)$ for all $\left.n \geq n_{0}\right\}$
$■ \Theta(g)=O(g) \cap \Omega(g)$

Notation:

- It is convention to say " $5 n^{2}+7 n \log _{2} n=\Theta\left(n^{2}\right)$ " instead of " $f \in \Theta(g)$ for the functions f, g with $f(n)=5 n^{2}+7 n \log _{2} n$ and $g(n)=n^{2 "}$.
- ditto for O, Ω

Divide-and-Conquer Recurrences

A common instantiation of the divide-and-conquer algorithm scheme works as follows:

■ For inputs of small size $n<C$, solve the problem directly.
■ Otherwise:
(1) Construct A smaller inputs of size n / B.
(2) Recursively solve these inputs using the same algorithm.
(3) Compute the result from the recursively computed results.

If 1. +3 . take time $f(n)$, the overall run-time for $n>C$ can be expressed as $T(n)=A \cdot T(n / B)+f(n)$.

■ We call this a divide-and-conquer recurrence.

- We do not care about run-time for $n \leq C$ because it does not affect asymptotic analysis.

Divide-and-Conquer Recurrences - Examples

Reminder:

(1) Construct A smaller inputs of size n / B.
(2) Recursively solve these inputs using the same algorithm.
(3) Compute the result from the recursively computed results.
divide-and-conquer recurrence: $T(n)=A \cdot T(n / B)+f(n)$
Examples:

- Mergesort: $A=2, B=2, f(n)=\Theta(n)$
- Binary Search: $A=1, B=2, f(n)=\Theta(1)$

Master Theorem for Divide-and-Conquer Recurrences

Theorem

Let $A \geq 1, B \geq 1$, and let T satisfy the divide-and-conquer recurrence $T(n)=A \cdot T(n / B)+f(n)$. Then:

- If $f(n)=O\left(n^{\log _{B} A-\varepsilon}\right)$ for some $\varepsilon>0$, then $T(n)=\Theta\left(n^{\log _{B} A}\right)$.
- If $f(n)=\Theta\left(n^{\log _{B} A}\right)$,
then $T(n)=\Theta\left(n^{\log _{B} A} \log _{2} n\right)$.
- If $f(n)=\Omega\left(n^{\log _{B} A+\varepsilon}\right)$ for some $\varepsilon>0$, then $T(n)=\Theta(f(n))$.

We do not prove the theorem.

Application: Mergesort

Reminder: $T(n)=A \cdot T(n / B)+f(n)$

- $f(n)=O\left(n^{\log _{B} A-\varepsilon}\right) \rightsquigarrow T(n)=\Theta\left(n^{\log _{B} A}\right)$
- $f(n)=\Theta\left(n^{\log _{B} A}\right) \rightsquigarrow T(n)=\Theta\left(n^{\log _{B} A} \log _{2} n\right)$
- $f(n)=\Omega\left(n^{\log _{B} A+\varepsilon}\right) \rightsquigarrow T(n)=\Theta(f(n))$

Mergesort: $A=2, B=2, f(n)=\Theta(n)$

Application: Mergesort

Reminder: $T(n)=A \cdot T(n / B)+f(n)$

- $f(n)=O\left(n^{\log _{B} A-\varepsilon}\right) \rightsquigarrow T(n)=\Theta\left(n^{\log _{B} A}\right)$
- $f(n)=\Theta\left(n^{\log _{B} A}\right) \rightsquigarrow T(n)=\Theta\left(n^{\log _{B} A} \log _{2} n\right)$
- $f(n)=\Omega\left(n^{\log _{B} A+\varepsilon}\right) \rightsquigarrow T(n)=\Theta(f(n))$

Mergesort: $A=2, B=2, f(n)=\Theta(n)$
$\rightsquigarrow \log _{B} A=\log _{2} 2=1$

Application: Mergesort

Reminder: $T(n)=A \cdot T(n / B)+f(n)$

- $f(n)=O\left(n^{\log _{B} A-\varepsilon}\right) \rightsquigarrow T(n)=\Theta\left(n^{\log _{B} A}\right)$
- $f(n)=\Theta\left(n^{\log _{B} A}\right) \rightsquigarrow T(n)=\Theta\left(n^{\log _{B} A} \log _{2} n\right)$
- $f(n)=\Omega\left(n^{\log _{B} A+\varepsilon}\right) \rightsquigarrow T(n)=\Theta(f(n))$

Mergesort: $A=2, B=2, f(n)=\Theta(n)$
$\rightsquigarrow \log _{B} A=\log _{2} 2=1$

- $f(n)=O\left(n^{1-\varepsilon}\right) \rightsquigarrow T(n)=\Theta\left(n^{1}\right)$

■ $f(n)=\Theta\left(n^{1}\right) \rightsquigarrow T(n)=\Theta\left(n^{1} \log _{2} n\right)$
■ $f(n)=\Omega\left(n^{1+\varepsilon}\right) \rightsquigarrow T(n)=\Theta(f(n))$

Application: Mergesort

Reminder: $T(n)=A \cdot T(n / B)+f(n)$

- $f(n)=O\left(n^{\log _{B} A-\varepsilon}\right) \rightsquigarrow T(n)=\Theta\left(n^{\log _{B} A}\right)$
- $f(n)=\Theta\left(n^{\log _{B} A}\right) \rightsquigarrow T(n)=\Theta\left(n^{\log _{B} A} \log _{2} n\right)$
- $f(n)=\Omega\left(n^{\log _{B} A+\varepsilon}\right) \rightsquigarrow T(n)=\Theta(f(n))$

Mergesort: $A=2, B=2, f(n)=\Theta(n)$
$\rightsquigarrow \log _{B} A=\log _{2} 2=1$

- $f(n)=O\left(n^{1-\varepsilon}\right) \rightsquigarrow T(n)=\Theta\left(n^{1}\right)$

■ $f(n)=\Theta\left(n^{1}\right) \rightsquigarrow T(n)=\Theta\left(n^{1} \log _{2} n\right)$

- $f(n)=\Omega\left(n^{1+\varepsilon}\right) \rightsquigarrow T(n)=\Theta(f(n))$
$\rightsquigarrow T(n)=\Theta(n \log n)$

Application: Binary Search

Reminder: $T(n)=A \cdot T(n / B)+f(n)$

- $f(n)=O\left(n^{\log _{B} A-\varepsilon}\right) \rightsquigarrow T(n)=\Theta\left(n^{\log _{B} A}\right)$
- $f(n)=\Theta\left(n^{\log _{B} A}\right) \rightsquigarrow T(n)=\Theta\left(n^{\log _{B} A} \log _{2} n\right)$
- $f(n)=\Omega\left(n^{\log _{B} A+\varepsilon}\right) \rightsquigarrow T(n)=\Theta(f(n))$

Binary Search: $A=1, B=2, f(n)=\Theta(1)$

Application: Binary Search

Reminder: $T(n)=A \cdot T(n / B)+f(n)$

- $f(n)=O\left(n^{\log _{B} A-\varepsilon}\right) \rightsquigarrow T(n)=\Theta\left(n^{\log _{B} A}\right)$
- $f(n)=\Theta\left(n^{\log _{B} A}\right) \rightsquigarrow T(n)=\Theta\left(n^{\log _{B} A} \log _{2} n\right)$
- $f(n)=\Omega\left(n^{\log _{B} A+\varepsilon}\right) \rightsquigarrow T(n)=\Theta(f(n))$

Binary Search: $A=1, B=2, f(n)=\Theta(1)$
$\rightsquigarrow \log _{B} A=\log _{2} 1=0$

Application: Binary Search

Reminder: $\quad T(n)=A \cdot T(n / B)+f(n)$

- $f(n)=O\left(n^{\log _{B} A-\varepsilon}\right) \rightsquigarrow T(n)=\Theta\left(n^{\log _{B} A}\right)$
- $f(n)=\Theta\left(n^{\log _{B} A}\right) \rightsquigarrow T(n)=\Theta\left(n^{\log _{B} A} \log _{2} n\right)$
- $f(n)=\Omega\left(n^{\log _{B} A+\varepsilon}\right) \rightsquigarrow T(n)=\Theta(f(n))$

Binary Search: $A=1, B=2, f(n)=\Theta(1)$
$\rightsquigarrow \log _{B} A=\log _{2} 1=0$

- $f(n)=O\left(n^{0-\varepsilon}\right) \rightsquigarrow T(n)=\Theta\left(n^{0}\right)$

■ $f(n)=\Theta\left(n^{0}\right) \rightsquigarrow T(n)=\Theta\left(n^{0} \log _{2} n\right)$

- $f(n)=\Omega\left(n^{0+\varepsilon}\right) \rightsquigarrow T(n)=\Theta(f(n))$

Application: Binary Search

Reminder: $T(n)=A \cdot T(n / B)+f(n)$

- $f(n)=O\left(n^{\log _{B} A-\varepsilon}\right) \rightsquigarrow T(n)=\Theta\left(n^{\log _{B} A}\right)$
- $f(n)=\Theta\left(n^{\log _{B} A}\right) \rightsquigarrow T(n)=\Theta\left(n^{\log _{B} A} \log _{2} n\right)$
- $f(n)=\Omega\left(n^{\log _{B} A+\varepsilon}\right) \rightsquigarrow T(n)=\Theta(f(n))$

Binary Search: $A=1, B=2, f(n)=\Theta(1)$
$\rightsquigarrow \log _{B} A=\log _{2} 1=0$

- $f(n)=O\left(n^{0-\varepsilon}\right) \rightsquigarrow T(n)=\Theta\left(n^{0}\right)$
- $f(n)=\Theta\left(n^{0}\right) \rightsquigarrow T(n)=\Theta\left(n^{0} \log _{2} n\right)$
- $f(n)=\Omega\left(n^{0+\varepsilon}\right) \rightsquigarrow T(n)=\Theta(f(n))$
$\rightsquigarrow T(n)=\Theta(\log n)$

More Complex Cases

Some divide-and-conquer algorithms have more complicated recurrences because they do not split into even-sized pieces of predictable size.

Example:

■ Quicksort with random pivotization: $f(n)=\Theta(n)$; split n uniformly randomly into $1 \leq k \leq n$ and $n-1-k$ \rightsquigarrow expected runtime $\Theta(n \log n)$

- Quickselect with median-of-median pivotization: $f(n)=\Theta(n)$; one recursion on input size $n / 5$, one recursion on input size at most $n \cdot \frac{7}{10}$
\rightsquigarrow runtime $\Theta(n)$
Here, we can try to use the Master theorem to derive hypotheses and then prove them by mathematical induction.

