Discrete Mathematics in Computer Science

Fibonacci Series — Generating Functions

Malte Helmert, Gabriele Roger

University of Basel

Revisiting the Fibonacci Series

m In this section we study generating functions,
a powerful method for solving recurrences.

m Generating functions allow us to directly derive
closed-form expressions for recurrences.

m Full mastery of generating functions requires
solid knowledge of calculus, in particular power series.

m Rather than develop the topic in its full depth,
we will look at it within the context of a case study,
proving the closed form of the Fibonacci series again.

m We leave out some of the more subtle mathematical aspects,
such as the question of convergence of the power series used.

Power Series

Definition (power series)

Let (an)nen, be a sequence of real numbers.
The power series with coefficients (a,) is the (possibly partial)
function g : R — R defined by

g(x) = Z S for all x € R.
n=0

German: Potenzreihe

Notes: more general definitions exist, for example
m using (x — ¢)" instead of x” for some c € R
m using complex instead of real numbers

m using multiple variables

Power Series — Examples

Reminder: g(x) = >"2, anx"

Examples:

an=1

~ g(x) = 2 (only defined for [x| < 1)

ap = z" for some z € R

~ g(x) = 2 (only defined for x| < 1/|z|)

1
an:m

~ g(x) = e* (defined for all x)

0 nis even
an = _1)(n—1)/2 .
% x is odd

~ g(x) = sin x (defined for all x)

Uniqueness of Power Series Representation

Let g and h be power series with coefficients (a,) and (by).
Let € > 0 such that for all |x| < e:

m g and h converge, and

m g(x) = h(x).
Then a, = b, for all n € Np.

Generating Functions

Definition (generating function)

Let f : Ng — R be a function over the natural numbers.
The generating function for f is the power series
with coefficients (f(n))neny, -

German: erzeugende Funktion

We are particularly interested in the case where f is defined
by a recurrence.

Generating Functions for Solving Recurrences

General approach for deriving closed-form expressions
for a recurrence f using generating functions:

o
2]
o

Let g be the generating function of f.

Use the recurrence to derive an equation for g.

Use algebra and calculus to solve the equation, i.e.,
derive a closed-form expression for g.

Use calculus to derive a power series representation
> anx" for g.

We get f(n) = a, as the closed-form expression

of the recurrence.

Case Study: Fibonacci Numbers

We now illustrate the approach using the Fibonacci numbers F
as an example for the recurrence f.
As a reminder, the Fibonacci numbers are defined as follows:
m F(0)=0
mF(1)=1
m F(n)=F(n—-1)+F(n—2)foralln>2

Case Study: 1. Generating Function

1. Let g be the generating function of f.

g(x) = Z F(n)x" forxeR
n=0

Note: The series does not converge for all x, but it converges
for |x| < e for sufficiently small € > 0. We omit details.

Case Study: 2. Equation for g from Recurrence

F(0)=0 F(1)=1 F(n)=F(n—1)+ F(n—2) forall n>2

2. Use the recurrence to derive an equation for g.

g(x)=> F(mx"=0-x"+1-x'+> (F(n—1)+ F(n—2))x"
n=0 n=2
:X+iF(nf 1)x”+iF(nf2)x"
n=2 n=2
=x+ i F(n)x™ + i F(n)x"?
n=1 n=0

(o9} o
=x+ XZ F(n)x" + x> Z F(nm)x"
n=1 n=0

o (o9}
=x+ XZ F(n)x" + x* Z F(nm)x"
n=0 n=0

= x+xg(x) + x°g(x)

Case Study: 3. Solve Equation for g

3. Use algebra and calculus to solve the equation, i.e.,
derive a closed-form expression for g.

g(x) = x + xg(x) + x°g(x)
= g(x) —xg(x) — xg(x) = x
= g(x)(1 —x—x2) =X

= =T

Case Study: 4. Power Series Representation for g (1)

4. Use calculus to derive a power series representation » > anx" for g.

g(x) = =% = xh(x) with h(x) =

1—x—x2
Idea: partial fraction decomposition, i.e.,
find a, b, a, B such that h(x) = 12— + ﬁ.

a b a(l—px)+ b(1—ax)
1—ax+1—ﬁx_ (1 —ax)(1-p5x)
_a—afx+ b— bax
T 1—ax — Bx+ afBx?

_ (a4 b)+ (—aB — ba)x

14 (—a— B)x + aBx?

~a+b=1 —-af—-ba=0, —-a—-p=-1 af=-1

Case Study: 4. Power Series Representation for g (2)

4. Use calculus to derive a power series representation > 7° a,x" for g.
(1)a+b=1, (2) —af—ba=0, (3) —a—-p=-1, (4 af=-1
m From (3): (5) 8=1—-a
m Substituting (5) into (4):

a(l-—a)=-1
= a—-ao’=-1

= a’-a-1=0

1,1 1, /5
=44/ 11 =244/2
“T2EVI T \/;
1445

=
@ 2

~» The solutions are o = ¢ or a = v from the previous
chapter. Continue with (6) a = .

Case Study: 4. Power Series Representation for g (3)

4. Use calculus to derive a power series representation > 7° a,x" for g.
(1)a+b:17 (2)7aﬂ7ba:07 (3) —a—-pB=-1, (4)Clﬂ:71,

B)f=1-a (B)a=¢
m Substituting (6) into (5): (7) B=1—a=1—p=1).
m From (1): (8) b=1—a
m Substituting (6), (7), (8) into (2):

—a(l—p)—(1-2a)p=0
= —atap—p+ap=0
= al2p—-1)=¢
® © 1

= a—= = = —
201 2.11+vB) -1 B

Case Study: 4. Power Series Representation for g (4)

4. Use calculus to derive a power series representation » > anx" for g.
1
B)b=1-a, (9 a=_z¢

m Substituting (9) into (8):

:\/3\/5

Case Study: 4. Power Series Representation for g (5)

4. Use calculus to derive a power series representation > >° a,x" for g.
b
g(X) :Xh(X)7 (X) 1 ax 1—Bx’

o=, B:w3 3—\/5807 b:_%d)

Plugging everything in:

gx) = (\lf 11x \1f¢1—1¢x>_\;§<¢1—1w_w1—1¢x)

w2
G pr
% (i oLyt iwﬂxnﬂ)
1 (& > 1
:ﬁ ;wnxn_nz_;wnxn> ; 5%0 _wn n
= Ly

3
I
<)

Case Study: 5. Extract Closed Form of Recurrence

4. Use calculus to derive a power series representation » > anx" for g.

5. We get f(n) = a, as the closed-form expression of the recurrence.
From

_ ,(ﬁn)xn

SI

we conclude:

F(n) = %(gp” — ") for all n € Ny

Concluding Remarks

m The approach requires analytical skill, but once understood,
it can be applied to many similar recurrences.

m The same basic idea can be used to solve all recurrences

of the form
] f(O):ao
[
n f(k—l):ak_l
mf(n)=af(n—1)+---+cf(n—k) forall n>k

m The Fibonacci numbers are the special case where
k:2, 30:0, 31:1, C1:]., C2:1.

Discrete Mathematics in Computer Science

Master Theorem for Divide-and-Conquer Recurrences

Malte Helmert, Gabriele Roger

University of Basel

Divide-and-Conquer Algorithms

m Recurrences frequently arise in the run-time analysis
of divide-and-conquer algorithms.
m Examples:
m Mergesort: sort a sequence by recursively sorting
two smaller sequences, then merging them
m Binary search: find an element in a sorted sequence
by identifying which half of the sequence must contain
the element, then recursively searching it
m Quickselect: find the k-th smallest element in a sequence
by recursive partitioning

Asymptotic Growth

m Run-time analysis usually focuses on
the asymptotic growth rate of run-time.

m For example, we say “run-time grows at most quadratically”
rather than saying that run-time for inputs of size n
is 3n? +17n + 8.

advantages:
® much simpler to study

m can abstract from minor implementation details

Big-O, Big-{2, Big-©

Definition (O, Q, ©)
Let g:]R{aL — R be a function.
The sets of functions O(g),(g),©(g) are defined as follows:
m O(g) = {f : Ry — R | there exist C,ny € R
s.t. [f(n)] < C-g(n) for all n > ng}
m Q(g) = {f : R{ — R | there exist C,np € R
s.t. |[f(n)| > C - g(n) forall n> ng}

= O(g) = O(g) NQg)

Notation:

m It is convention to say “5n® + 7nlog, n = ©(n?)"
instead of “f € ©(g) for the functions f, g
with f(n) = 5n? + 7nlog, n and g(n) = n?".

m ditto for O, Q

Divide-and-Conquer Recurrences

A common instantiation of the divide-and-conquer

algorithm scheme works as follows:
m For inputs of small size n < C, solve the problem directly.
m Otherwise:

@ Construct A smaller inputs of size n/B.
@ Recursively solve these inputs using the same algorithm.
© Compute the result from the recursively computed results.

If 1.4-3. take time f(n), the overall run-time for n > C
can be expressed as T(n) = A- T(n/B)+ f(n).
m We call this a divide-and-conquer recurrence.

m We do not care about run-time for n < C
because it does not affect asymptotic analysis.

Divide-and-Conquer Recurrences — Examples

Reminder:

@ Construct A smaller inputs of size n/B.

@ Recursively solve these inputs using the same algorithm.

© Compute the result from the recursively computed results.
divide-and-conquer recurrence: T(n) = A- T(n/B) + f(n)
Examples:

m Mergesort: A=2, B=2, f(n) =0(n)

m Binary Search: A=1, B=2, f(n)=0(1)

Master Theorem for Divide-and-Conquer Recurrences

Let A>1,B>1, and let T satisfy the divide-and-conquer
recurrence T(n) = A- T(n/B) + f(n). Then:
m If f(n) = O(n'°88 A=) for some ¢ > 0,
then T(n) = ©(n'°8s4).
m If f(n) = O(n'°8eA),
then T(n) = ©(n'°854 log, n).
m If f(n) = Q(n'°%& A+€) for some ¢ > 0,
then T(n) = ©(f(n)).

We do not prove the theorem.

Application: Mergesort

Reminder: T(n)=A-T(n/B)+ f(n)
m f(n)= O(n'°g3 A’E) ~ T(n) = @(n'°gBA)
m f(n) = ©O(n'884) « T(n) = O(n'8log, n)
w f(n) = Q(n°E %)~ T(n) = ©(f(n))

Mergesort: A =2, B=2, f(n) =0(n)

Application: Mergesort

Reminder: T(n)=A-T(n/B)+ f(n)
m f(n)= O(n'°g3 A’E) ~ T(n) = @(n'°gBA)
m f(n) = ©O(n'884) « T(n) = O(n'8log, n)
w f(n) = Q(n°E %)~ T(n) = ©(f(n))

Mergesort: A =2, B=2, f(n) =0(n)
~ loggA=log,2=1

Application: Mergesort

Reminder: T(n)=A- T(n/B)+ f(n)
m f(n) = O(n'8847¢) ~ T(n) = ©(n'es4)
m f(n) = ©(n'"884) ~ T(n) = ©(n'%8*log, n)
m f(n) = Q(n°%24*%) ~ T(n) = ©(f(n))

Mergesort: A =2, B=2, f(n) =0(n)

~ loggA=log,2=1
m f(n) = O(n'~%) ~ T(n) = O(n?)
m f(n) = O(nt) ~ T(n) = O(n'log, n)
m f(n) = Q(n'*¢) ~ T(n) = ©(f(n))

Application: Mergesort

Reminder: T(n)=A- T(n/B)+ f(n)
m f(n)= O(n'°g3 A’E) ~ T(n) = @(n'°gBA)
m f(n) = ©O(n'884) « T(n) = O(n'8log, n)
w f(n) = Q(n°E %)~ T(n) = ©(f(n))

Mergesort: A =2, B=2, f(n) =0(n)
~ loggA=log,2=1

m f(n) = O(n'~%) ~ T(n) = O(n?)
m f(n) = 0O(n') ~ T(n) = O(n"log, n)
m f(n) = Q(n'*°) ~ T(n) = O(f(n))

~» T(n) = O(nlog n)

Application: Binary Search

Reminder: T(n)=A-T(n/B)+ f(n)
m f(n)= O(n'°g3 A’E) ~ T(n) = @(n'°gBA)
m f(n) = ©O(n'884) « T(n) = O(n'8log, n)
w f(n) = Q(n°E %)~ T(n) = ©(f(n))

Binary Search: A=1, B=2, f(n) = ©(1)

Application: Binary Search

Reminder: T(n)=A-T(n/B)+ f(n)
m f(n) = O(n'8847¢) ~ T(n) = ©(n'es4)
m f(n) = ©O(n'884) « T(n) = O(n'8log, n)
m f(n) = Q(n88) ~ T(n) = O(f(n))

Binary Search: A=1, B=2, f(n) = ©(1)
~+ logg A=log,1 =0

Application: Binary Search

Reminder: T(n)=A- T(n/B)+ f(n)
m f(n)= O(n'°g3 A’S) ~ T(n) = @(n'°gBA)
m f(n) = ©O(n'884) « T(n) = O(n'8log, n)
w f(n) = Q(n°E %)~ T(n) = ©(f(n))

Binary Search: A=1, B=2, f(n) = ©(1)
~+ logg A=log,1 =0
m f(n) = O(n°=¢) ~ T(n) = O(n°)
m f(n) = O(n°) ~ T(n) =O(n’log, n)
m f(n) =Q(n’") ~ T(n) = O(f(n))

Application: Binary Search

Reminder: T(n)=A-T(n/B)+ f(n)
m f(n)= O(n'°g3 A’E) ~ T(n) = @(n'°gBA)
m f(n) = ©O(n'884) « T(n) = O(n'8log, n)
w f(n) = Q(n°E %)~ T(n) = ©(f(n))

Binary Search: A=1, B=2, f(n) = ©(1)
~+ logg A=log,1 =0

m f(n) = O(n°=¢) ~ T(n) = O(n°)

m f(n) =O(n°) ~ T(n) = O(n°log, n)
m f(n) =Q(n’") ~ T(n) = O(f(n))

~» T(n) = O(log n)

More Complex Cases

Some divide-and-conquer algorithms have more complicated
recurrences because they do not split into even-sized pieces
of predictable size.

Example:

m Quicksort with random pivotization: f(n) = ©(n);
split n uniformly randomly into 1 < k<nandn—1-—k
~+ expected runtime ©(nlog n)

m Quickselect with median-of-median pivotization: f(n) = ©(n);
one recursion on input size n/5,
one recursion on input size at most n - 17—0
~> runtime ©(n)

Here, we can try to use the Master theorem to derive hypotheses
and then prove them by mathematical induction.

	Fibonacci Series – Generating Functions
	

	Master Theorem for Divide-and-Conquer Recurrences
	

