# Discrete Mathematics in Computer Science Recurrences 

Malte Helmert, Gabriele Röger

University of Basel

The concept of recursion is very common in computer science and discrete mathematics.

■ When designing algorithms, recursion relates to the idea of solving a problem by solving smaller subproblems of the same kind.

- Examples:
- For example, we can sort a sequence by sorting smaller subsequences and then combining the result $\rightsquigarrow$ mergesort
- We can find an element in a sorted sequence by identifying which half of the sequence the element must be located in, and then searching this half $\rightsquigarrow$ binary search
- We can insert elements into a search tree by identifying which child of the root node the element must be added to, then recursively inserting it there $\rightsquigarrow$ trees as data structures

The concept of recursion is very common in computer science and discrete mathematics.

- When designing data structures, it is often helpful to think of a data structures as being composed of smaller data structures of the same kind.
- Examples:
- A rooted binary tree is either a leaf or an inner node with two children, which are themselves rooted binary trees.
■ A singly linked list is either empty or a head element followed by a tail, which is itself a linked list.
- A logical formula is either an atomic formula or a composite formula, which consists of one or two formulas connected by logical connectives ("and", "or", "not").

The concept of recursion is very common in computer science and discrete mathematics.

■ In combinatorial counting problems, counting things often involves solving smaller counting problems of the same type and combining the results.

- Examples:
- counting the number of subsets of size $k$ of a set of size $n$
- counting the number of permutations of a set of size $n$
- counting the number of rooted binary trees with $n$ leaves


## Recurrences

In this part of the lecture, we study recurrences, i.e., recursively defined functions $f: \mathbb{N}_{0} \rightarrow \mathbb{R}$ where $f(n)$ is defined in terms of the values $f(m)$ for $m<n$.

- Such recurrences naturally arise in all mentioned applications.
- They are particularly useful for studying the runtime of algorithms, especially recursive algorithms.


## Learning Objectives

- Recurrences are a wide topic, and in our brief coverage we will only scratch the surface.
■ Our aim is to equip you with enough knowledge to
■ understand what recurrences are
- understand where they arise

■ understand why they are of interest
■ get to know some important examples of recurrences, such as the Fibonacci series
■ get a feeling for some mathematical techniques used to solve recurrences, in particular:

■ mathematical induction
■ generating functions

- the master theorem for divide-and-conquer recurrences

■ apply the master theorem in practice

# Discrete Mathematics in Computer Science <br> Examples of Recurrences 

Malte Helmert, Gabriele Röger

University of Basel

## Examples of Recurrences

In this section, we look at three recurrences that arise in combinatorics, i.e., when counting things:

- factorials: counting permutations
- binomial coefficients: counting subsets of a certain size

■ Catalan numbers: counting rooted binary trees
We also have a first look at the Fibonacci series, perhaps the most famous recurrence in mathematics.

## Counting Permutations

Let $S$ be a finite set, and let $n=|S|$.
Question: How many permutations of $S$ exist?

## Counting Permutations

Let $S$ be a finite set, and let $n=|S|$.
Question: How many permutations of $S$ exist?
We answer this question by answering the following slightly more general question:
Let $X$ and $Y$ be finite sets, and let $n=|X|=|Y|$.
Question: How many bijective functions from $X$ to $Y$ exist?
The permutation question is the special case where $S=X=Y$.

## Counting Bijections - Derivation

How many bijective functions from $X$ to $Y$ exist, where $n=|X|=|Y|$ ?
Denote this number by $f(n)$.

## Counting Bijections - Derivation

How many bijective functions from $X$ to $Y$ exist, where $n=|X|=|Y|$ ?
Denote this number by $f(n)$.

- We have $f(0)=1$ : there exists one possible function from $X=\emptyset$ to $Y=\emptyset$ (the empty function), and it is bijective.


## Counting Bijections - Derivation

How many bijective functions from $X$ to $Y$ exist, where $n=|X|=|Y|$ ?
Denote this number by $f(n)$.

- We have $f(0)=1$ : there exists one possible function from $X=\emptyset$ to $Y=\emptyset$ (the empty function), and it is bijective.
■ For $n \geq 1$, let $x \in X$ be any element of $X$.


## Counting Bijections - Derivation

How many bijective functions from $X$ to $Y$ exist, where $n=|X|=|Y|$ ?
Denote this number by $f(n)$.

- We have $f(0)=1$ : there exists one possible function from $X=\emptyset$ to $Y=\emptyset$ (the empty function), and it is bijective.
$\square$ For $n \geq 1$, let $x \in X$ be any element of $X$.
- Every bijection $g: X \rightarrow Y$ maps $x$ to some element $g(x)=y \in Y$.


## Counting Bijections - Derivation

How many bijective functions from $X$ to $Y$ exist, where $n=|X|=|Y|$ ?
Denote this number by $f(n)$.

- We have $f(0)=1$ : there exists one possible function from $X=\emptyset$ to $Y=\emptyset$ (the empty function), and it is bijective.
$\square$ For $n \geq 1$, let $x \in X$ be any element of $X$.
- Every bijection $g: X \rightarrow Y$ maps $x$ to some element $g(x)=y \in Y$.
- There are $n=|Y|$ possible choices for $y$.


## Counting Bijections - Derivation

How many bijective functions from $X$ to $Y$ exist, where $n=|X|=|Y|$ ?
Denote this number by $f(n)$.

- We have $f(0)=1$ : there exists one possible function from $X=\emptyset$ to $Y=\emptyset$ (the empty function), and it is bijective.
- For $n \geq 1$, let $x \in X$ be any element of $X$.
- Every bijection $g: X \rightarrow Y$ maps $x$ to some element $g(x)=y \in Y$.
- There are $n=|Y|$ possible choices for $y$.
- In order to be bijective, $g$ must bijectively map all other elements in $X$ to other elements of $Y$.


## Counting Bijections - Derivation

How many bijective functions from $X$ to $Y$ exist, where $n=|X|=|Y|$ ?
Denote this number by $f(n)$.
■ We have $f(0)=1$ : there exists one possible function from $X=\emptyset$ to $Y=\emptyset$ (the empty function), and it is bijective.

- For $n \geq 1$, let $x \in X$ be any element of $X$.
- Every bijection $g: X \rightarrow Y$ maps $x$ to some element $g(x)=y \in Y$.
- There are $n=|Y|$ possible choices for $y$.

■ In order to be bijective, $g$ must bijectively map all other elements in $X$ to other elements of $Y$.

- Hence, $g$ restricted to $X \backslash\{x\}$ is a bijective function from $X \backslash\{x\}$ to $Y \backslash\{y\}$.
- Because $|X \backslash\{x\}|=|Y \backslash\{y\}|=n-1$, there are $f(n-1)$ choices for these mappings.


## Counting Bijections - Derivation

How many bijective functions from $X$ to $Y$ exist, where $n=|X|=|Y|$ ?
Denote this number by $f(n)$.
■ We have $f(0)=1$ : there exists one possible function from $X=\emptyset$ to $Y=\emptyset$ (the empty function), and it is bijective.

- For $n \geq 1$, let $x \in X$ be any element of $X$.
- Every bijection $g: X \rightarrow Y$ maps $x$ to some element $g(x)=y \in Y$.
- There are $n=|Y|$ possible choices for $y$.

■ In order to be bijective, $g$ must bijectively map all other elements in $X$ to other elements of $Y$.

- Hence, $g$ restricted to $X \backslash\{x\}$ is a bijective function from $X \backslash\{x\}$ to $Y \backslash\{y\}$.
- Because $|X \backslash\{x\}|=|Y \backslash\{y\}|=n-1$, there are $f(n-1)$ choices for these mappings.
- This gives us $f(n)=n \cdot f(n-1)$ for all $n \geq 1$.


## Counting Bijections - Result

## Theorem

The number of bijections between finite sets of size $n$, or equivalently the number of permutations of a finite set of size $n$, is given by the recurrence:

$$
\begin{aligned}
& f(0)=1 \\
& f(n)=n \cdot f(n-1) \quad \text { for all } n \geq 1
\end{aligned}
$$

Closed-form solution:

$$
f(n)=n!
$$

## Counting k-Subsets

Let $S$ be a finite set, let $n=|S|$, and let $k \in\{0, \ldots, n\}$.
Question: How many subsets of $S$ of size $k$ exist?

## Counting k-Subsets

Let $S$ be a finite set, let $n=|S|$, and let $k \in\{0, \ldots, n\}$.
Question: How many subsets of $S$ of size $k$ exist?
Denote this number by $\binom{n}{k}$.

## Counting k-Subsets

Let $S$ be a finite set, let $n=|S|$, and let $k \in\{0, \ldots, n\}$.
Question: How many subsets of $S$ of size $k$ exist?
Denote this number by $\binom{n}{k}$.

- We have $\binom{n}{0}=1$ : the only subset of size 0 is $\emptyset$.


## Counting k-Subsets

Let $S$ be a finite set, let $n=|S|$, and let $k \in\{0, \ldots, n\}$.
Question: How many subsets of $S$ of size $k$ exist?
Denote this number by $\binom{n}{k}$.

- We have $\binom{n}{0}=1$ : the only subset of size 0 is $\emptyset$.

■ We have $\binom{n}{n}=1$ : the only subset of size $n$ is $S$ itself.

## Counting k-Subsets

Let $S$ be a finite set, let $n=|S|$, and let $k \in\{0, \ldots, n\}$.
Question: How many subsets of $S$ of size $k$ exist?
Denote this number by $\binom{n}{k}$.
$\square$ We have $\binom{n}{0}=1$ : the only subset of size 0 is $\emptyset$.

- We have $\binom{n}{n}=1$ : the only subset of size $n$ is $S$ itself.

■ For all other cases, we count proper, nontrivial subsets. Let $x \in S$ be any element.

## Counting $k$-Subsets

Let $S$ be a finite set, let $n=|S|$, and let $k \in\{0, \ldots, n\}$.
Question: How many subsets of $S$ of size $k$ exist?
Denote this number by $\binom{n}{k}$.
$\square$ We have $\binom{n}{0}=1$ : the only subset of size 0 is $\emptyset$.

- We have $\binom{n}{n}=1$ : the only subset of size $n$ is $S$ itself.

■ For all other cases, we count proper, nontrivial subsets. Let $x \in S$ be any element.
■ There are two kinds of subsets of $S$ of size $k$ :

- subsets that do not include $x$ :

Such subsets include $k$ elements of the set $S \backslash\{x\}$.
Because $|S \backslash\{x\}|=n-1$, there are $\binom{n-1}{k}$ such subsets.

- subsets that include $x$ :

Such subsets include $k-1$ elements of $S \backslash\{x\}$.
Because $|S \backslash\{x\}|=n-1$, there are $\binom{n-1}{k-1}$ such subsets.

- In summary: $\binom{n}{k}=\binom{n-1}{k}+\binom{n-1}{k-1}$ for all $n \geq 1$ and $0<k<n$.


## Counting k-Subsets - Result

## Theorem

Let $S$ be a finite set with $n$ elements, and let $k \in\{0, \ldots, n\}$. Then $S$ has $\binom{n}{k}$ subsets of size $k$, where

$$
\begin{aligned}
& \binom{n}{0}=1 \\
& \binom{n}{n}=1 \\
& \binom{n}{k}=\binom{n-1}{k}+\binom{n-1}{k-1} \quad \text { for all } n \geq 1,0<k<n
\end{aligned}
$$

Closed-form solution:

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!}
$$

## Counting $k$-Subsets - Proof of Closed-Form Solution

To prove that the given closed-form solution is correct, it suffices to verify that it satisfies the recurrence:

■ case $k=0: \frac{n!}{k!(n-k)!}=\frac{n!}{0!(n-0)!}=\frac{n!}{1 \cdot n!}=1=\binom{n}{0}$.
■ case $k=n: \frac{n!}{k!(n-k)!}=\frac{n!}{n!(n-n)!}=\frac{n!}{n!\cdot 0!}=\frac{n!}{n!\cdot 1}=1=\binom{n}{n}$.

## Counting $k$-Subsets - Proof of Closed-Form Solution

To prove that the given closed-form solution is correct, it suffices to verify that it satisfies the recurrence:

■ case $k=0: \frac{n!}{k!(n-k)!}=\frac{n!}{0!(n-0)!}=\frac{n!}{1 \cdot n!}=1=\binom{n}{0}$.
■ case $k=n: \frac{n!}{k!(n-k)!}=\frac{n!}{n!(n-n)!}=\frac{n!}{n!\cdot 0!}=\frac{n!}{n!\cdot 1}=1=\binom{n}{n}$.

- case $0<k<n$ :

$$
\begin{aligned}
& \frac{(n-1)!}{k!((n-1)-k)!}+\frac{(n-1)!}{(k-1)!((n-1)-(k-1)!} \\
= & \frac{(n-1)!}{k!(n-k-1)!}+\frac{(n-1)!}{(k-1)!(n-k)!} \\
= & \frac{(n-1)!\cdot(n-k)}{k!(n-k-1)!\cdot(n-k)}+\frac{(n-1)!\cdot k}{(k-1)!\cdot k \cdot(n-k)!} \\
= & \frac{(n-1)!\cdot(n-k)}{k!(n-k)!}+\frac{(n-1)!\cdot k}{k!\cdot(n-k)!} \\
= & \frac{(n-1)!\cdot((n-k)+k)}{k!(n-k)!}=\frac{(n-1)!\cdot n}{k!(n-k)!}=\frac{n!}{k!(n-k)!}
\end{aligned}
$$

## Binary Trees

## Definition (binary tree)

A binary tree is inductively defined as a tuple of the following form:

- The empty tree () is a binary tree. Such a tree is called a leaf.
- If $L$ and $R$ are binary trees, then $(L, R)$ is a binary tree.

Such a tree is called an inner node with left child $L$ and right child $R$.

## German: Binärbaum

Note: With these kinds of trees, the order of children matters, i.e., $(L, R)$ and $(R, L)$ are different trees (unless $L=R$ ).

## Counting Binary Trees

Question: How many binary trees with $n+1$ leaves exist? (Why $n+1$ ?)

## Counting Binary Trees

Question: How many binary trees with $n+1$ leaves exist? (Why $n+1$ ?)

Denote this number by $C(n)$.

## Counting Binary Trees

Question: How many binary trees with $n+1$ leaves exist? (Why $n+1$ ?)

Denote this number by $C(n)$.
$\square$ We have $C(0)=1:()$ is the only tree with one leaf.

## Counting Binary Trees

Question: How many binary trees with $n+1$ leaves exist?
(Why $n+1$ ?)
Denote this number by $C(n)$.

- We have $C(0)=1:()$ is the only tree with one leaf.
- For $n \geq 1$, the tree must be an inner node. Each child must have between 1 and $n$ leaves. The number of leaves of the children must sum to $n+1$.


## Counting Binary Trees

Question: How many binary trees with $n+1$ leaves exist?
(Why $n+1$ ?)
Denote this number by $C(n)$.

- We have $C(0)=1:()$ is the only tree with one leaf.
- For $n \geq 1$, the tree must be an inner node.

Each child must have between 1 and $n$ leaves.
The number of leaves of the children must sum to $n+1$.

- Hence, if the left child has $k+1$ leaves, the right child has $(n+1)-(k+1)=n-k=(n-k-1)+1$ leaves.


## Counting Binary Trees

Question: How many binary trees with $n+1$ leaves exist?
(Why $n+1$ ?)
Denote this number by $C(n)$.

- We have $C(0)=1:()$ is the only tree with one leaf.
- For $n \geq 1$, the tree must be an inner node.

Each child must have between 1 and $n$ leaves.
The number of leaves of the children must sum to $n+1$.

- Hence, if the left child has $k+1$ leaves, the right child has $(n+1)-(k+1)=n-k=(n-k-1)+1$ leaves.
- We obtain: $C(n)=\sum_{k=0}^{n-1} C(k) C(n-k-1)$.


## Counting Binary Trees - Result

## Theorem

There are $C(n)$ binary trees with $n+1$ leaves, where

$$
\begin{aligned}
& C(0)=1 \\
& C(n)=\sum_{k=0}^{n-1} C(k) C(n-k-1) \quad \text { for all } n \geq 1
\end{aligned}
$$

Closed-form solution (without proof):

$$
C(n)=\frac{1}{n+1}\binom{2 n}{n}
$$

## Catalan Numbers

The numbers $C(n)$ are called Catalan numbers after 19th century Belgian mathematician Eugène Charles Catalan.

First terms of the Catalan sequence:
$1,1,2,5,14,42,132,429,1430,4862,16796,58786,208012, \ldots$

## Fibonacci Series

- The last recurrence we consider in this section is the famous Fibonacci series (or Fibonacci sequence).
- We directly introduce it with its definition as a recurrence rather than via an application.


## Fibonacci Series - Definition

## Definition (Fibonacci series)

The Fibonacci series $F$ is defined as follows:

$$
\begin{aligned}
& F(0)=0 \\
& F(1)=1 \\
& F(n)=F(n-1)+F(n-2) \quad \text { for all } n \geq 2
\end{aligned}
$$

German: Fibonacci-Folge
First terms of the Fibonacci series:
$0,1,1,2,3,5,8,13,21,34,55,89,144,233, \ldots$
Closed-form solution: $\rightsquigarrow$ next section

## Fibonacci Series - Trivia

■ The Fibonacci series is named after Leonardo of Pisa a.k.a. Fibonacci (son of Bonacci), who introduced it to Western Europe in the 13th century.

- It has been known outside Europe much earlier, dating back to the Indian mathematician Pingala (3rd century BCE).
- The series has many, many applications.

■ There exist mathematical journals solely dedicated to it, the most famous one being "Fibonacci Quarterly".

# Discrete Mathematics in Computer Science 

Fibonacci Series - Mathematical Induction

Malte Helmert, Gabriele Röger

University of Basel

- In this section, we prove a closed-form expression for the Fibonacci series.
- We do this because the result itself is interesting (because of the many applications of the Fibonacci series), but also to practice proving closed-form expressions for recurrences by mathematical induction.
- In the next section, we describe a more advanced technique with which we cannot just prove the given expression but also derive it ourselves.


## Golden Ratio

## Definition (golden ratio)

The number

$$
\varphi=\frac{1+\sqrt{5}}{2}
$$

is called the golden ratio.
German: goldener Schnitt
■ Numerically, $\varphi=1.618034$ (approximately).

- The golden ratio is a famous mathematical constant because it naturally occurs in many contexts and because of its aesthetical properties.


## Negative Inverse of the Golden Ratio

Definition (negative inverse of the golden ratio)
The

$$
\psi=\frac{1-\sqrt{5}}{2}
$$

is called the negative inverse of the golden ratio.
■ Numerically, $\psi=-0.618034$ (approximately).

- The name for $\psi$ derives from the fact that $\psi=-\frac{1}{\varphi}$. However, we do not need this property here, and therefore we do not prove it.

Fibonacci Series - Closed-Form Expression

## Theorem

$$
\begin{array}{rlr}
F(n) & =\frac{1}{\sqrt{5}}\left(\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right) & \\
& =\frac{1}{\sqrt{5}}\left(\varphi^{n}-\psi^{n}\right) & \text { for all } n \geq 0
\end{array}
$$

## Fibonacci Series - Closed-Form Expression

## Theorem

$$
\begin{array}{rlr}
F(n) & =\frac{1}{\sqrt{5}}\left(\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right) & \\
& =\frac{1}{\sqrt{5}}\left(\varphi^{n}-\psi^{n}\right) & \text { for all } n \geq 0
\end{array}
$$

Before we prove the theorem, we prove a number of lemmas.
■ Note that $|\psi|<1$ and hence $\psi^{n} \rightarrow 0$ as $n \rightarrow \infty$.

- With some calculation, we see that we can alternatively compute $F(n)$ by rounding $\frac{1}{\sqrt{5}} \varphi^{n}$ to the nearest integer, ignoring the $\psi^{n}$ term.

First Lemma
Lemma

$$
\psi=1-\varphi
$$

## First Lemma

## Lemma

$$
\psi=1-\varphi
$$

Proof.

$$
\begin{aligned}
\psi & =\frac{1-\sqrt{5}}{2} \\
& =\frac{1+1-1-\sqrt{5}}{2} \\
& =\frac{2-(1+\sqrt{5})}{2} \\
& =\frac{2}{2}-\frac{1+\sqrt{5}}{2} \\
& =1-\varphi
\end{aligned}
$$

## Second Lemma

## Lemma

$$
\varphi^{2}=\varphi+1
$$

## Second Lemma

## Lemma

$$
\varphi^{2}=\varphi+1
$$

## Proof.

$$
\begin{aligned}
\varphi^{2} & =\left(\frac{1+\sqrt{5}}{2}\right)^{2}=\frac{1}{4}(1+\sqrt{5})^{2} \\
& =\frac{1}{4}(1+2 \sqrt{5}+5) \\
& =\frac{1}{4}(2+2 \sqrt{5}+4)=\frac{1}{4}(2+2 \sqrt{5})+\frac{4}{4} \\
& =\frac{1}{2}(1+\sqrt{5})+1 \\
& =\varphi+1
\end{aligned}
$$

Third Lemma

$$
\psi^{2}=\psi+1
$$

Third Lemma

## Lemma

$$
\psi^{2}=\psi+1
$$

Proof.

$$
\begin{aligned}
\psi^{2} & =(1-\varphi)^{2} \\
& =1-2 \varphi+\varphi^{2} \\
& =1-2 \varphi+\varphi+1 \\
& =1-\varphi+1 \\
& =(1-\varphi)+1 \\
& =\psi+1
\end{aligned}
$$

## Main Proof (1)

Reminders:

$$
\begin{array}{lll}
F(0)=0 & F(1)=1 & F(n)=F(n-1)+F(n-2) \text { for all } n \geq 2 \\
\varphi^{2}=\varphi+1 & \psi^{2}=\psi+1 & \text { Claim: } F(n)=\frac{1}{\sqrt{5}}\left(\varphi^{n}-\psi^{n}\right)
\end{array}
$$

## Proof.

Proof by (strong) induction over $n$.

Main Proof (1)

Reminders:
$F(0)=0$
$F(1)=1$
$F(n)=F(n-1)+F(n-2)$ for all $n \geq 2$
$\varphi^{2}=\varphi+1 \quad \psi^{2}=\psi+1$
Claim: $F(n)=\frac{1}{\sqrt{5}}\left(\varphi^{n}-\psi^{n}\right)$

## Proof.

Proof by (strong) induction over $n$.
First base case $n=0$ :
$\frac{1}{\sqrt{5}}\left(\varphi^{0}-\psi^{0}\right)=\frac{1}{\sqrt{5}}(1-1)=0=F(0)$

## Main Proof (1)

Reminders:
$F(0)=0$
$F(1)=1$
$F(n)=F(n-1)+F(n-2)$ for all $n \geq 2$
$\varphi^{2}=\varphi+1 \quad \psi^{2}=\psi+1$
Claim: $F(n)=\frac{1}{\sqrt{5}}\left(\varphi^{n}-\psi^{n}\right)$

## Proof.

Proof by (strong) induction over $n$.
First base case $n=0$ :
$\frac{1}{\sqrt{5}}\left(\varphi^{0}-\psi^{0}\right)=\frac{1}{\sqrt{5}}(1-1)=0=F(0)$
Second base case $n=1$ :

$$
\begin{aligned}
& \frac{1}{\sqrt{5}}\left(\varphi^{1}-\psi^{1}\right)=\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}-\frac{1-\sqrt{5}}{2}\right)=\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}-1+\sqrt{5}}{2}\right) \\
& =\frac{1}{\sqrt{5}}\left(\frac{2 \sqrt{5}}{2}\right)=1=F(1)
\end{aligned}
$$

## Main Proof (2)

Reminders:

$$
F(0)=0 \quad F(1)=1 \quad F(n)=F(n-1)+F(n-2) \text { for all } n \geq 2
$$

$$
\varphi^{2}=\varphi+1 \quad \psi^{2}=\psi+1 \quad \text { Claim: } F(n)=\frac{1}{\sqrt{5}}\left(\psi^{n}-\psi^{n}\right)
$$

## Proof (continued).

Induction step ( $n$ building on $n-1$ and $n-2$ ):

$$
\begin{aligned}
F(n) & =F(n-1)+F(n-2) \\
& =\frac{1}{\sqrt{5}}\left(\varphi^{n-1}-\psi^{n-1}\right)+\frac{1}{\sqrt{5}}\left(\varphi^{n-2}-\psi^{n-2}\right) \\
& =\frac{1}{\sqrt{5}}\left(\varphi^{n-1}+\varphi^{n-2}-\left(\psi^{n-1}+\psi^{n-2}\right)\right) \\
& =\frac{1}{\sqrt{5}}\left(\varphi^{n-2}(\varphi+1)-\psi^{n-2}(\psi+1)\right) \\
& =\frac{1}{\sqrt{5}}\left(\varphi^{n-2} \cdot \varphi^{2}-\psi^{n-2} \cdot \psi^{2}\right)=\frac{1}{\sqrt{5}}\left(\varphi^{n}-\psi^{n}\right)
\end{aligned}
$$

