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D1. Introduction to Recurrences Recurrences

Recursion (1)

The concept of recursion is very common in computer science
and discrete mathematics.

▶ When designing algorithms, recursion relates to the idea
of solving a problem by solving smaller subproblems
of the same kind.

▶ Examples:
▶ For example, we can sort a sequence by sorting smaller

subsequences and then combining the result ⇝ mergesort
▶ We can find an element in a sorted sequence by identifying

which half of the sequence the element must be located in,
and then searching this half ⇝ binary search

▶ We can insert elements into a search tree by identifying
which child of the root node the element must be added to,
then recursively inserting it there ⇝ trees as data structures
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Recursion (2)

The concept of recursion is very common in computer science
and discrete mathematics.

▶ When designing data structures, it is often helpful
to think of a data structures as being composed of
smaller data structures of the same kind.

▶ Examples:
▶ A rooted binary tree is either a leaf or an inner node

with two children, which are themselves rooted binary trees.
▶ A singly linked list is either empty or a head element

followed by a tail, which is itself a linked list.
▶ A logical formula is either an atomic formula

or a composite formula, which consists of one or two formulas
connected by logical connectives (“and”, “or”, “not”).
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Recursion (3)

The concept of recursion is very common in computer science
and discrete mathematics.

▶ In combinatorial counting problems, counting things often
involves solving smaller counting problems of the same type
and combining the results.

▶ Examples:
▶ counting the number of subsets of size k of a set of size n
▶ counting the number of permutations of a set of size n
▶ counting the number of rooted binary trees with n leaves
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Recurrences

In this part of the lecture, we study recurrences, i.e.,
recursively defined functions f : N0 → R where
f (n) is defined in terms of the values f (m) for m < n.

▶ Such recurrences naturally arise in all mentioned applications.

▶ They are particularly useful for studying the runtime
of algorithms, especially recursive algorithms.
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Learning Objectives

▶ Recurrences are a wide topic, and in our brief coverage
we will only scratch the surface.

▶ Our aim is to equip you with enough knowledge to
▶ understand what recurrences are
▶ understand where they arise
▶ understand why they are of interest
▶ get to know some important examples of recurrences,

such as the Fibonacci series
▶ get a feeling for some mathematical techniques used to solve

recurrences, in particular:
▶ mathematical induction
▶ generating functions
▶ the master theorem for divide-and-conquer recurrences

▶ apply the master theorem in practice
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Examples of Recurrences

In this section, we look at three recurrences that arise
in combinatorics, i.e., when counting things:

▶ factorials: counting permutations

▶ binomial coefficients: counting subsets of a certain size

▶ Catalan numbers: counting rooted binary trees

We also have a first look at the Fibonacci series,
perhaps the most famous recurrence in mathematics.
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Counting Permutations

Let S be a finite set, and let n = |S |.
Question: How many permutations of S exist?

We answer this question by answering the following
slightly more general question:

Let X and Y be finite sets, and let n = |X | = |Y |.
Question: How many bijective functions from X to Y exist?

The permutation question is the special case where S = X = Y .
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Counting Bijections – Derivation

How many bijective functions from X to Y exist, where n = |X | = |Y |?

Denote this number by f (n).

▶ We have f (0) = 1: there exists one possible function
from X = ∅ to Y = ∅ (the empty function), and it is bijective.

▶ For n ≥ 1, let x ∈ X be any element of X .
▶ Every bijection g : X → Y maps x

to some element g(x) = y ∈ Y .
▶ There are n = |Y | possible choices for y .

▶ In order to be bijective, g must bijectively map
all other elements in X to other elements of Y .
▶ Hence, g restricted to X \ {x} is a bijective function

from X \ {x} to Y \ {y}.
▶ Because |X \ {x}| = |Y \ {y}| = n − 1,

there are f (n − 1) choices for these mappings.

▶ This gives us f (n) = n · f (n − 1) for all n ≥ 1.
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Counting Bijections – Result

Theorem
The number of bijections between finite sets of size n,
or equivalently the number of permutations of a finite set of size n,
is given by the recurrence:

f (0) = 1

f (n) = n · f (n − 1) for all n ≥ 1

Closed-form solution:
f (n) = n!
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Counting k-Subsets

Let S be a finite set, let n = |S |, and let k ∈ {0, . . . , n}.
Question: How many subsets of S of size k exist?

Denote this number by
(n
k

)
.

▶ We have
(n
0

)
= 1: the only subset of size 0 is ∅.

▶ We have
(n
n

)
= 1: the only subset of size n is S itself.

▶ For all other cases, we count proper, nontrivial subsets.
Let x ∈ S be any element.

▶ There are two kinds of subsets of S of size k :
▶ subsets that do not include x :

Such subsets include k elements of the set S \ {x}.
Because |S \ {x}| = n − 1, there are

(
n−1
k

)
such subsets.

▶ subsets that include x :
Such subsets include k − 1 elements of S \ {x}.
Because |S \ {x}| = n − 1, there are

(
n−1
k−1

)
such subsets.

▶ In summary:
(n
k

)
=
(n−1

k

)
+
(n−1
k−1

)
for all n ≥ 1 and 0 < k < n.
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Counting k-Subsets – Result

Theorem

Let S be a finite set with n elements, and let k ∈ {0, . . . , n}.
Then S has

(n
k

)
subsets of size k , where(

n

0

)
= 1(

n

n

)
= 1(

n

k

)
=

(
n − 1

k

)
+

(
n − 1

k − 1

)
for all n ≥ 1, 0 < k < n

Closed-form solution: (
n

k

)
=

n!

k!(n − k)!
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Counting k-Subsets – Proof of Closed-Form Solution

To prove that the given closed-form solution is correct,
it suffices to verify that it satisfies the recurrence:
▶ case k = 0: n!

k!(n−k)! =
n!

0!(n−0)! =
n!
1·n! = 1 =

(n
0

)
.

▶ case k = n: n!
k!(n−k)! =

n!
n!(n−n)! =

n!
n!·0! =

n!
n!·1 = 1 =

(n
n

)
.

▶ case 0 < k < n:

(n − 1)!

k!((n − 1)− k)!
+

(n − 1)!

(k − 1)!((n − 1)− (k − 1)!

=
(n − 1)!

k!(n − k − 1)!
+

(n − 1)!

(k − 1)!(n − k)!

=
(n − 1)! · (n − k)

k!(n − k − 1)! · (n − k)
+

(n − 1)! · k
(k − 1)! · k · (n − k)!

=
(n − 1)! · (n − k)

k!(n − k)!
+

(n − 1)! · k
k! · (n − k)!

=
(n − 1)! · ((n − k) + k)

k!(n − k)!
=

(n − 1)! · n
k!(n − k)!

=
n!

k!(n − k)!
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Binary Trees

Definition (binary tree)

A binary tree is inductively defined as a tuple of the following form:

▶ The empty tree () is a binary tree.
Such a tree is called a leaf.

▶ If L and R are binary trees, then (L,R) is a binary tree.
Such a tree is called an inner node
with left child L and right child R.

German: Binärbaum

Note: With these kinds of trees, the order of children matters, i.e.,
(L,R) and (R, L) are different trees (unless L = R).
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Counting Binary Trees

Question: How many binary trees with n + 1 leaves exist?
(Why n + 1?)

Denote this number by C (n).

▶ We have C (0) = 1: () is the only tree with one leaf.

▶ For n ≥ 1, the tree must be an inner node.
Each child must have between 1 and n leaves.
The number of leaves of the children must sum to n + 1.

▶ Hence, if the left child has k + 1 leaves, the right child
has (n + 1)− (k + 1) = n − k = (n − k − 1) + 1 leaves.

▶ We obtain: C (n) =
∑n−1

k=0 C (k)C (n − k − 1).
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Counting Binary Trees – Result

Theorem

There are C (n) binary trees with n + 1 leaves, where

C (0) = 1

C (n) =
n−1∑
k=0

C (k)C (n − k − 1) for all n ≥ 1

Closed-form solution (without proof):

C (n) =
1

n + 1

(
2n

n

)
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Catalan Numbers

The numbers C (n) are called Catalan numbers
after 19th century Belgian mathematician Eugène Charles Catalan.

First terms of the Catalan sequence:
1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, . . .
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Fibonacci Series

▶ The last recurrence we consider in this section
is the famous Fibonacci series (or Fibonacci sequence).

▶ We directly introduce it with its definition as a recurrence
rather than via an application.
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Fibonacci Series – Definition

Definition (Fibonacci series)

The Fibonacci series F is defined as follows:

F (0) = 0

F (1) = 1

F (n) = F (n − 1) + F (n − 2) for all n ≥ 2

German: Fibonacci-Folge

First terms of the Fibonacci series:
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, . . .

Closed-form solution: ⇝ next section
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Fibonacci Series – Trivia

▶ The Fibonacci series is named after Leonardo of Pisa
a.k.a. Fibonacci (son of Bonacci), who introduced it
to Western Europe in the 13th century.

▶ It has been known outside Europe much earlier, dating back
to the Indian mathematician Pingala (3rd century BCE).

▶ The series has many, many applications.

▶ There exist mathematical journals solely dedicated to it,
the most famous one being “Fibonacci Quarterly”.
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Overview

▶ In this section, we prove a closed-form expression
for the Fibonacci series.

▶ We do this because the result itself is interesting
(because of the many applications of the Fibonacci series),
but also to practice proving closed-form expressions
for recurrences by mathematical induction.

▶ In the next section, we describe a more advanced technique
with which we cannot just prove the given expression
but also derive it ourselves.

Malte Helmert, Gabriele Röger (University of Basel)Discrete Mathematics in Computer Science 25 / 33



D1. Introduction to Recurrences Fibonacci Series – Mathematical Induction

Golden Ratio

Definition (golden ratio)

The number

φ =
1 +

√
5

2

is called the golden ratio.

German: goldener Schnitt

▶ Numerically, φ = 1.618034 (approximately).

▶ The golden ratio is a famous mathematical constant
because it naturally occurs in many contexts
and because of its aesthetical properties.
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Negative Inverse of the Golden Ratio

Definition (negative inverse of the golden ratio)

The

ψ =
1−

√
5

2

is called the negative inverse of the golden ratio.

▶ Numerically, ψ = −0.618034 (approximately).

▶ The name for ψ derives from the fact that ψ = − 1
φ .

However, we do not need this property here,
and therefore we do not prove it.
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Fibonacci Series – Closed-Form Expression

Theorem

F (n) =
1√
5

((
1 +

√
5

2

)n

−

(
1−

√
5

2

)n)
=

1√
5
(φn − ψn) for all n ≥ 0

Before we prove the theorem, we prove a number of lemmas.

▶ Note that |ψ| < 1 and hence ψn → 0 as n → ∞.

▶ With some calculation, we see that we can alternatively
compute F (n) by rounding 1√

5
φn to the nearest integer,

ignoring the ψn term.
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First Lemma

Lemma

ψ = 1− φ

Proof.

ψ =
1−

√
5

2

=
1 + 1− 1−

√
5

2

=
2− (1 +

√
5)

2

=
2

2
− 1 +

√
5

2
= 1− φ
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Second Lemma

Lemma

φ2 = φ+ 1

Proof.

φ2 =

(
1 +

√
5

2

)2

=
1

4
(1 +

√
5)2

=
1

4
(1 + 2

√
5 + 5)

=
1

4
(2 + 2

√
5 + 4) =

1

4
(2 + 2

√
5) +

4

4

=
1

2
(1 +

√
5) + 1

= φ+ 1
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Third Lemma

Lemma

ψ2 = ψ + 1

Proof.

ψ2 = (1− φ)2

= 1− 2φ+ φ2

= 1− 2φ+ φ+ 1

= 1− φ+ 1

= (1− φ) + 1

= ψ + 1
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Main Proof (1)

Reminders:
F (0) = 0 F (1) = 1 F (n) = F (n − 1) + F (n − 2) for all n ≥ 2

φ2 = φ+ 1 ψ2 = ψ + 1 Claim: F (n) = 1√
5
(φn − ψn)

Proof.

Proof by (strong) induction over n.

First base case n = 0:
1√
5
(φ0 − ψ0) = 1√

5
(1− 1) = 0 = F (0)

Second base case n = 1:
1√
5
(φ1 − ψ1) = 1√

5
(1+

√
5

2 − 1−
√
5

2 ) = 1√
5
(1+

√
5−1+

√
5

2 )

= 1√
5
(2

√
5

2 ) = 1 = F (1) . . .

Malte Helmert, Gabriele Röger (University of Basel)Discrete Mathematics in Computer Science 32 / 33
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Main Proof (2)

Reminders:
F (0) = 0 F (1) = 1 F (n) = F (n − 1) + F (n − 2) for all n ≥ 2

φ2 = φ+ 1 ψ2 = ψ + 1 Claim: F (n) = 1√
5
(φn − ψn)

Proof (continued).

Induction step (n building on n − 1 and n − 2):

F (n) = F (n − 1) + F (n − 2)

=
1√
5
(φn−1 − ψn−1) +

1√
5
(φn−2 − ψn−2)

=
1√
5
(φn−1 + φn−2 − (ψn−1 + ψn−2))

=
1√
5
(φn−2(φ+ 1)− ψn−2(ψ + 1))

=
1√
5
(φn−2 · φ2 − ψn−2 · ψ2) =

1√
5
(φn − ψn)
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