Discrete Mathematics in Computer Science
 C3. Acyclicity

Malte Helmert, Gabriele Röger

University of Basel

Discrete Mathematics in Computer Science

- C3. Acyclicity

C3.1 Acyclic (Di-) Graphs

C3.2 Unique Paths in Trees

C3.3 Leaves and Edge Counts in Trees and Forests

C3.4 Characterizations of Trees

C3.1 Acyclic (Di-) Graphs

Acyclic

Similarly to connectedness, the presence or absence of cycles is an important practical property for (di-) graphs.

Definition (acyclic, forest, DAG)
A graph or digraph G is called acyclic if there exists no cycle in G.
An acyclic graph is also called a forest.
An acyclic digraph is also called a DAG (directed acyclic graph).
German: azyklisch/kreisfrei, Wald, DAG

Acyclic (Di-) Graphs - Example

Definition (tree)
A connected forest is called a tree.

German: Baum

- Tree is also a word for a recursive data structure, which consists of either a leaf or a parent node with one or more children, which are themselves trees.
- This other kind of tree is also called a rooted tree to distinguish it from a tree as a graph.
- The two meanings of "tree" are distinct but closely related.

Tree Graphs vs. Rooted Trees - Example (1)

rooted tree with root A

Tree Graphs vs. Rooted Trees - Example (2)

Tree Graphs vs. Rooted Trees - Example (3)

From Tree Graphs to Rooted Trees

General procedure for converting tree graphs into rooted trees:

- Select any vertex v. Make v the root of the tree.
- Initially, v is the only pending vertex, and there are no processed vertices.
- As long as there are pending vertices:
- Select any pending vertex u.
- Make all neighbours v of u that are not yet processed children of u and mark them as pending.
- Change u from pending to processed.

We do not prove that this procedure always works. A proof of correctness can be given based on the results we show next.

C3.2 Unique Paths in Trees

Unique Paths in Trees

Theorem
Let $G=(V, E)$ be a graph.
Then G is a tree iff there exists exactly one path from any vertex $u \in V$ to any vertex $v \in V$.

Unique Paths In Trees - Proof (1)

Proof.
$(\Rightarrow): G$ is a tree. Let $u, v \in V$.
We must show that there exists exactly one path from u to v.
We know that at least one path exists because G is connected.
It remains to show that there cannot be two paths from u to v.
If $u=v$, there is only one path (the empty one).
(Any longer path would have to repeat a vertex.)
We assume that there exist two different paths from u to v
($u \neq v$) and derive a contradiction.

Unique Paths In Trees - Proof (2)

Proof (continued).

Let $\pi=\left\langle v_{0}, v_{1}, \ldots, v_{n}\right\rangle$ and $\pi^{\prime}=\left\langle v_{0}^{\prime}, v_{1}^{\prime}, \ldots, v_{m}^{\prime}\right\rangle$ be the two paths (with $v_{0}=v_{0}^{\prime}=u$ and $v_{n}=v_{m}^{\prime}=v$).
Let i be the smallest index with $v_{i} \neq v_{i}^{\prime}$, which must exist because the two paths are different, and neither can be a prefix of the other (else v would be repeated in the longer path).
We have $i \geq 1$ because $v_{0}=v_{0}^{\prime}$.
Let $j \geq i$ be the smallest index such that $v_{j}=v_{k}^{\prime}$ for some $k \geq i$.
Such an index must exist because $v_{n}=v_{m}^{\prime}$.
Then $\left\langle v_{i-1}, \ldots, v_{j-1}, v_{k}^{\prime}, \ldots, v_{i-1}^{\prime}\right\rangle$ is a cycle, which contradicts the requirement that G is a tree.

Unique Paths In Trees - Proof (3)

Proof (continued).

(\Leftarrow) : For all $u, v \in V$, there exists exactly one path from u to v. We must show that G is a tree, i.e., is connected and acyclic. Because there exist paths from all u to all v, G is connected. Proof by contradiction: assume that there exists a cycle in G, $\pi=\left\langle u, v_{1}, \ldots, v_{n}, u\right\rangle$ with $n \geq 2$.
(Note that all cycles have length at least 3.)
From the definition of cycles, we have $v_{1} \neq v_{n}$.
Then $\left\langle u, v_{1}\right\rangle$ and $\left\langle u, v_{n}, \ldots, v_{1}\right\rangle$ are two different paths from u to v_{1}, contradicting that there exists exactly one path from every vertex to every vertex. Hence G must be acyclic.

C3.3 Leaves and Edge Counts in Trees and Forests

Leaves in Trees

Definition
Let $G=(V, E)$ be a tree.
A leaf of G is a vertex $v \in V$ with $\operatorname{deg}(v)=1$.
Theorem
Let $G=(V, E)$ be a tree with $|V| \geq 2$.
Then G has at least two leaves.

Leaves in Trees - Proof

Proof.

Let $\pi=\left\langle v_{0}, \ldots, v_{n}\right\rangle$ be path in G with maximal length among all paths in G.
Because $|V| \geq 2$, we have $n \geq 1$ (else G would not be connected).
We show that vertex v_{n} has degree 1: v_{n-1} is a neighbour in G.
Assume that it were not the only neighbour of v_{n} in G, so u is another neighbour of v_{n}. Then:

- If u is not on the path, then $\left\langle v_{0}, \ldots, v_{n}, u\right\rangle$ is a longer path: contradiction.
- If u is on the path, then $u=v_{i}$ for some $i \neq n$ and $i \neq n-1$. Then $\left\langle v_{i}, \ldots, v_{n}, v_{i}\right\rangle$ is a cycle: contradiction.
By reversing π we can show $\operatorname{deg}\left(v_{0}\right)=1$ in the same way.

Edges in Trees

Theorem
Let $G=(V, E)$ be a tree with $V \neq \emptyset$. Then $|E|=|V|-1$.

Edges in Trees - Proof (1)

> Proof.
> Proof by induction over $n=|V|$.
> Induction base $(n=1)$:
> Then G has 1 vertex and 0 edges.
> We get $|E|=0=1-1=|V|-1$.

Induction step ($n \rightarrow n+1$):
Let $G=(V, E)$ be a tree with $n+1$ vertices $(n \geq 1)$.
From the previous result, G has a leaf u.
Let v be the only neighbour of u.
Let $e=\{u, v\}$ be the connecting edge.

Edges in Trees - Proof (2)

Proof (continued).

Consider the graph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ with $V^{\prime}=V \backslash\{u\}$ and $E^{\prime}=E \backslash\{e\}$.

- G^{\prime} is acyclic: every cycle in G^{\prime} would also be present in G (contradiction).
- G^{\prime} is connected: for all vertices $w \neq u$ and $w^{\prime} \neq u$, G has a path π from w to w^{\prime} because G is connected.
Path π cannot include u because u has only one neighbour, so traversing u requires repeating v. Hence π is also a path in G^{\prime}.
Hence G^{\prime} is a tree with n vertices, and we can apply the induction hypothesis, which gives $\left|E^{\prime}\right|=\left|V^{\prime}\right|-1$.
It follows that

$$
|E|=\left|E^{\prime}\right|+1=\left(\left|V^{\prime}\right|-1\right)+1=\left(\left|V^{\prime}\right|+1\right)-1=|V|-1
$$

Edges in Forests

Theorem
Let $G=(V, E)$ be a forest.
Let C be the set of connected components of G.
Then $|E|=|V|-|C|$.
This result generalizes the previous one.

Edges in Forests - Proof

Proof.
Let $C=\left\{C_{1}, \ldots, C_{k}\right\}$.
For $1 \leq i \leq k$, let $G_{i}=\left(C_{i}, E_{i}\right)$ be G restricted to C_{i}, i.e., the graph whose vertices are C_{i} and whose edges are the edges $e \in E$ with $e \subseteq C_{i}$.
We have $|V|=\sum_{i=1}^{k}\left|C_{i}\right|$ because the connected components form a partition of V.
We have $|E|=\sum_{i=1}^{k}\left|E_{i}\right|$ because every edge belongs to exactly one connected component. (Note that there cannot be edges between different connected components.)
Every graph G_{i} is a tree with at least one vertex:
it is connected because its vertices form a connected component, and it is acyclic because G is. This implies $\left|E_{i}\right|=\left|C_{i}\right|-1$.
Putting this together, we get

$$
|E|=\sum_{i=1}^{k}\left|E_{i}\right|=\sum_{i=1}^{k}\left(\left|C_{i}\right|-1\right)=\sum_{i=1}^{k}\left|C_{i}\right|-k=|V|-|C| .
$$

C3.4 Characterizations of Trees

Characterizations of Trees

Theorem
Let $G=(V, E)$ be a graph with $V \neq \emptyset$.
The following statements are equivalent:
(1) G is a tree.
(2) G is acyclic and connected.
(3) G is acyclic and $|E|=|V|-1$.
(9) G is connected and $|E|=|V|-1$.
(6) For all $u, v \in V$ there exists exactly one path from u to v.

Characterizations of Trees - Proof (1)

Reminder:
(1) G is a tree.
(2) G is acyclic and connected.
(3) G is acyclic and $|E|=|V|-1$.
(4) G is connected and $|E|=|V|-1$.
(5) For all $u, v \in V$ there exists exactly one path from u to v.

Proof.

We know already:

- (1) and (2) are equivalent by definition of trees.
- We have shown that (1) and (5) are equivalent.
- We have shown that (1) implies (3) and (4).

We complete the proof by showing $(3) \Rightarrow(2)$ and $(4) \Rightarrow(2)$.

Characterizations of Trees - Proof (2)

Reminder:
(2) G is acyclic and connected.
(3) G is acyclic and $|E|=|V|-1$.

Proof (continued).
(3) $\Rightarrow(2)$:

Because G is acyclic, it is a forest.
From the previous result, we have $|E|=|V|-|C|$, where C are the connected components of G.
But we also know $|E|=|V|-1$. This implies $|C|=1$. Hence G is connected and therefore a tree.

Characterizations of Trees - Proof (3)

Reminder:
(2) G is acyclic and connected.
(4) G is connected and $|E|=|V|-1$.

Proof (continued).
$(4) \Rightarrow(2)$:
In graphs that are not acyclic, we can remove an edge without changing the connected components: if $\left\langle v_{0}, \ldots, v_{n}, v_{0}\right\rangle(n \geq 2)$ is a cycle, remove the edge $\left\{v_{0}, v_{1}\right\}$ from the graph.
Every walk using this edge can substitute $\left\langle v_{1}, \ldots, v_{n}, v_{0}\right\rangle$ (or the reverse path) for it.
Iteratively remove edges from G in this way while preserving connectedness until this is no longer possible. The resulting graph (V, E^{\prime}) is acyclic and connected and therefore a tree.
This implies $\left|E^{\prime}\right|=|V|-1$, but we also have $|E|=|V|-1$. This yields $|E|=\left|E^{\prime}\right|$ and hence $E^{\prime}=E$: the number of edges removable in this way must be 0 . Hence G is already acyclic.

