Discrete Mathematics in Computer Science Divisibility

Malte Helmert, Gabriele Röger

University of Basel

 $lue{}$ Can we equally share n muffins among m persons without cutting a muffin?

- $lue{}$ Can we equally share n muffins among m persons without cutting a muffin?
- If yes then n is a multiple of m and m divides n.

- Can we equally share n muffins among m persons without cutting a muffin?
- If yes then n is a multiple of m and m divides n.
- We consider a generalization of this concept to the integers.

Definition (divisor, multiple)

Let $m, n \in \mathbb{Z}$. If there exists a $k \in \mathbb{Z}$ such that mk = n, we say that m divides n, m is a divisor of n or n is a multiple of m and write this as $m \mid n$.

Definition (divisor, multiple)

Let $m, n \in \mathbb{Z}$. If there exists a $k \in \mathbb{Z}$ such that mk = n, we say that m divides n, m is a divisor of n or n is a multiple of m and write this as $m \mid n$.

Which of the following are true?

- **2** | 4
- **■** -2 | 4
- **■** 2 | -4
- **4** | 2
- **3** | 4

Divisibility and Linear Combinations

Theorem (Linear combinations)

Let a, b and d be integers. If $d \mid a$ and $d \mid b$ then for all integers x and y it holds that $d \mid xa + yb$.

Divisibility and Linear Combinations

Theorem (Linear combinations)

Let a, b and d be integers. If $d \mid a$ and $d \mid b$ then for all integers x and y it holds that $d \mid xa + yb$.

Proof.

If $d \mid a$ and $d \mid b$ then there are $k, k' \in \mathbb{Z}$ such that kd = a and k'd = b.

It holds that xa + yb = xkd + yk'd = (xk + yk')d.

As x, y, k, k' are integers, xk + yk' is integer, thus $d \mid xa + yb$.

Divisibility and Linear Combinations

Theorem (Linear combinations)

Let a, b and d be integers. If $d \mid a$ and $d \mid b$ then for all integers x and y it holds that $d \mid xa + yb$.

Proof.

If $d \mid a$ and $d \mid b$ then there are $k, k' \in \mathbb{Z}$ such that kd = a and k'd = b.

It holds that xa + yb = xkd + yk'd = (xk + yk')d.

As x, y, k, k' are integers, xk + yk' is integer, thus $d \mid xa + yb$.

Some consequences:

- \bullet $d \mid a b \text{ iff } d \mid b a$
- If $d \mid a$ and $d \mid b$ then $d \mid a + b$ and $d \mid a b$.
- If $d \mid a$ then $d \mid -8a$.

Theorem

Let $a, b, c \in \mathbb{Z}$ and $n \in \mathbb{N}_{>0}$. If $a \mid b$ then $ac \mid bc$ and $a^n \mid b^n$.

Theorem

Let $a, b, c \in \mathbb{Z}$ and $n \in \mathbb{N}_{>0}$. If $a \mid b$ then $ac \mid bc$ and $a^n \mid b^n$.

Proof.

If $a \mid b$ there is a $k \in \mathbb{Z}$ such that ak = b.

Theorem

Let $a, b, c \in \mathbb{Z}$ and $n \in \mathbb{N}_{>0}$. If $a \mid b$ then $ac \mid bc$ and $a^n \mid b^n$.

Proof.

If $a \mid b$ there is a $k \in \mathbb{Z}$ such that ak = b.

Multiplying both sides with c, we get cak = cb and thus $ca \mid cb$.

Theorem

Let $a, b, c \in \mathbb{Z}$ and $n \in \mathbb{N}_{>0}$. If $a \mid b$ then $ac \mid bc$ and $a^n \mid b^n$.

Proof.

If $a \mid b$ there is a $k \in \mathbb{Z}$ such that ak = b.

Multiplying both sides with c, we get cak = cb and thus $ca \mid cb$.

From ak = b, we also get $b^n = (ak)^n = a^n k^n$, so $a^n \mid b^n$.

If we consider only the natural numbers, divisibility is a partial order:

Theorem

Divisibility | over \mathbb{N}_0 is a partial order.

Proof.

. .

If we consider only the natural numbers, divisibility is a partial order:

Theorem

Divisibility | over \mathbb{N}_0 is a partial order.

Proof.

■ reflexivity: For all $m \in \mathbb{N}_0$ it holds that $m \cdot 1 = m$, so $m \mid m$.

. . .

If we consider only the natural numbers, divisibility is a partial order:

$\mathsf{Theorem}$

Divisibility | over \mathbb{N}_0 is a partial order.

Proof.

- reflexivity: For all $m \in \mathbb{N}_0$ it holds that $m \cdot 1 = m$, so $m \mid m$.
- ** transitivity: If $m \mid n$ and $n \mid o$ there are $k, k' \in \mathbb{Z}$ such that mk = n and nk' = o.

 With k'' = kk' it holds then that o = nk' = mkk' = mk'', and consequently $m \mid o$.

. .

Proof (continued).

antisymmetry: We show that if $m \mid n$ and $n \mid m$ then m = n.

Proof (continued).

■ antisymmetry: We show that if $m \mid n$ and $n \mid m$ then m = n. If m = n = 0, there is nothing to show.

Proof (continued).

■ antisymmetry: We show that if $m \mid n$ and $n \mid m$ then m = n.

If m = n = 0, there is nothing to show.

Otherwise, at least one of m and n is positive.

Proof (continued).

a antisymmetry: We show that if $m \mid n$ and $n \mid m$ then m = n.

If m = n = 0, there is nothing to show.

Otherwise, at least one of m and n is positive.

Let this w.l.o.g. (without loss of generality) be m.

Proof (continued).

antisymmetry: We show that if m | n and n | m then m = n.
 If m = n = 0, there is nothing to show.
 Otherwise, at least one of m and n is positive.
 Let this w.l.o.g. (without loss of generality) be m.

If $m \mid n$ and $n \mid m$ then there are $k, k' \in \mathbb{Z}$ such that mk = n and nk' = m.

Proof (continued).

a antisymmetry: We show that if $m \mid n$ and $n \mid m$ then m = n.

If m = n = 0, there is nothing to show.

Otherwise, at least one of m and n is positive.

Let this w.l.o.g. (without loss of generality) be m.

If $m \mid n$ and $n \mid m$ then there are $k, k' \in \mathbb{Z}$ such that mk = n and nk' = m.

Combining these, we get m = nk' = mkk', which implies (with $m \neq 0$) that kk' = 1.

Proof (continued).

■ antisymmetry: We show that if $m \mid n$ and $n \mid m$ then m = n.

If m = n = 0, there is nothing to show.

Otherwise, at least one of m and n is positive.

Let this w.l.o.g. (without loss of generality) be m.

If $m \mid n$ and $n \mid m$ then there are $k, k' \in \mathbb{Z}$ such that mk = n and nk' = m.

Combining these, we get m = nk' = mkk', which implies (with $m \neq 0$) that kk' = 1.

Since k and k' are integers, this implies k = k' = 1 or k = k' = -1. As mk = n, m is positive and n is non-negative, we can conclude that k = 1 and m = n.

Discrete Mathematics in Computer Science Modular Arithmetic

Malte Helmert, Gabriele Röger

University of Basel

Halloween is Coming

- You have *m* sweets.
- There are *k* kids showing up for trick-or-treating.
- To keep everything fair, every kid gets the same amount of treats.
- You may enjoy the rest. :-)
- How much does every kid get, how much do you get?

Euclid's Division Lemma

Theorem (Euclid's division lemma)

For all integers a and b with $b \neq 0$ there are unique integers q and r with a = qb + r and $0 \leq r < |b|$.

Number q is called the quotient and r the remainder.

Without proof.

Euclid's Division Lemma

Theorem (Euclid's division lemma)

For all integers a and b with $b \neq 0$ there are unique integers q and r with a = qb + r and $0 \leq r < |b|$.

Number q is called the quotient and r the remainder.

Without proof.

Examples:

- a = 18, b = 5
- a = 5, b = 18
- a = -18, b = 5
- a = 18, b = −5

■ With a mod b we refer to the remainder of Euclidean division.

- With a mod b we refer to the remainder of Euclidean division.
- Most programming languages have a built-in operator to compute a mod b (for positive integers):

```
int mod = 34 % 7;
// result 6 because 4 * 7 + 6 = 34
```

- With a mod b we refer to the remainder of Euclidean division.
- Most programming languages have a built-in operator to compute a mod b (for positive integers):

```
int mod = 34 % 7;
// result 6 because 4 * 7 + 6 = 34
```

■ Common application: Determine whether a natural number *n* is even.

- With a mod b we refer to the remainder of Euclidean division.
- Most programming languages have a built-in operator to compute a mod b (for positive integers):

```
int mod = 34 % 7;
// result 6 because 4 * 7 + 6 = 34
```

■ Common application: Determine whether a natural number *n* is even.

Languages behave differently with negative operands!

Halloween

We now are no longer interested in the value of the remainder but will consider numbers a and a' as equivalent if the remainder with division by a given number b is equal.

- We now are no longer interested in the value of the remainder but will consider numbers a and a' as equivalent if the remainder with division by a given number b is equal.
- Consider the clock:

- We now are no longer interested in the value of the remainder but will consider numbers a and a' as equivalent if the remainder with division by a given number b is equal.
- Consider the clock:
 - It's now 3 o'clock

- We now are no longer interested in the value of the remainder but will consider numbers a and a' as equivalent if the remainder with division by a given number b is equal.
- Consider the clock:
 - It's now 3 o'clock
 - In 12 hours its 3 o'clock

Congruence Modulo *n*

- We now are no longer interested in the value of the remainder but will consider numbers a and a' as equivalent if the remainder with division by a given number b is equal.
- Consider the clock:
 - It's now 3 o'clock
 - In 12 hours its 3 o'clock
 - Same in 24, 36, 48, ... hours.

Congruence Modulo *n*

- We now are no longer interested in the value of the remainder but will consider numbers a and a' as equivalent if the remainder with division by a given number b is equal.
- Consider the clock:
 - It's now 3 o'clock
 - In 12 hours its 3 o'clock
 - Same in 24, 36, 48, ... hours.
 - 15:00 and 3:00 are shown the same.

Congruence Modulo *n*

- We now are no longer interested in the value of the remainder but will consider numbers a and a' as equivalent if the remainder with division by a given number b is equal.
- Consider the clock:
 - It's now 3 o'clock
 - In 12 hours its 3 o'clock
 - Same in 24, 36, 48, ... hours.
 - 15:00 and 3:00 are shown the same.
 - In the following, we will express this as $3 \equiv 15 \pmod{12}$

Congruence Modulo *n* – Definition

Definition (Congruence modulo *n*)

For integer n > 1, two integers a and b are called congruent modulo n if $n \mid a - b$.

We write this as $a \equiv b \pmod{n}$.

Congruence Modulo n – Definition

Definition (Congruence modulo n)

For integer n > 1, two integers a and b are called congruent modulo n if $n \mid a - b$.

We write this as $a \equiv b \pmod{n}$.

Which of the following statements are true?

- $0 \equiv 5 \pmod{5}$
- $1 \equiv 6 \pmod{5}$
- $4 \equiv 14 \pmod{5}$
- $-8 \equiv 7 \pmod{5}$
- $2 \equiv -3 \pmod{5}$

Congruence Modulo n – Definition

Definition (Congruence modulo *n*)

For integer n > 1, two integers a and b are called congruent modulo n if $n \mid a - b$.

We write this as $a \equiv b \pmod{n}$.

Which of the following statements are true?

- $0 \equiv 5 \pmod{5}$
- $1 \equiv 6 \pmod{5}$
- $4 \equiv 14 \pmod{5}$
- $-8 \equiv 7 \pmod{5}$
- $2 \equiv -3 \pmod{5}$

Why is this the same concept as described in the clock example?!?

$\mathsf{Theorem}$

For integers a and b and integer n>1 it holds that $a\equiv b\pmod n$ iff there are $q,q',r\in\mathbb Z$ with

$$a = qn + r$$
$$b = q'n + r.$$

Theorem

For integers a and b and integer n > 1 it holds that $a \equiv b \pmod{n}$ iff there are $q, q', r \in \mathbb{Z}$ with

$$a = qn + r$$
$$b = q'n + r.$$

Proof sketch.

" \Rightarrow ": If $n \mid a - b$ then there is a $k \in \mathbb{Z}$ with kn = a - b.

$\mathsf{Theorem}$

For integers a and b and integer n > 1 it holds that $a \equiv b \pmod{n}$ iff there are $q, q', r \in \mathbb{Z}$ with

$$a = qn + r$$
$$b = q'n + r.$$

Proof sketch.

" \Rightarrow ": If $n \mid a - b$ then there is a $k \in \mathbb{Z}$ with kn = a - b.

As $n \neq 0$, by Euclid's lemma there are $q, q', r, r' \in \mathbb{Z}$ with a = qn + r and b = q'n + r', where $0 \leq r < |n|$ and $0 \leq r' < |n|$.

$\mathsf{Theorem}$

For integers a and b and integer n > 1 it holds that $a \equiv b \pmod{n}$ iff there are $q, q', r \in \mathbb{Z}$ with

$$a = qn + r$$
$$b = q'n + r.$$

Proof sketch.

" \Rightarrow ": If $n \mid a - b$ then there is a $k \in \mathbb{Z}$ with kn = a - b.

As $n \neq 0$, by Euclid's lemma there are $q, q', r, r' \in \mathbb{Z}$ with a = qn + r and b = q'n + r', where $0 \leq r < |n|$ and $0 \leq r' < |n|$.

Together, we get that kn = qn + r - (q'n + r'), which is the case iff kn + r' = (q - q')n + r. By Euclid's lemma, quotients and remainders are unique, so in particular r' = r.

$\mathsf{Theorem}$

For integers a and b and integer n > 1 it holds that $a \equiv b \pmod{n}$ iff there are $q, q', r \in \mathbb{Z}$ with

$$a = qn + r$$
$$b = q'n + r.$$

Proof sketch.

" \Rightarrow ": If $n \mid a - b$ then there is a $k \in \mathbb{Z}$ with kn = a - b.

As $n \neq 0$, by Euclid's lemma there are $q, q', r, r' \in \mathbb{Z}$ with a = qn + r and b = q'n + r', where $0 \leq r < |n|$ and $0 \leq r' < |n|$.

Together, we get that kn = qn + r - (q'n + r'), which is the case iff kn + r' = (q - q')n + r. By Euclid's lemma, quotients and remainders are unique, so in particular r' = r.

"\(\infty\)": If we subtract the equations, we get a-b=(q-q')n, so $n \mid a-b$ and $a \equiv b \pmod{n}$.

Theorem

Congruence modulo n is an equivalence relation.

Proof sketch.

Theorem

Congruence modulo n is an equivalence relation.

Proof sketch.

Reflexive: $a \equiv a \pmod{n}$ because every integer divides 0.

$\mathsf{Theorem}$

Congruence modulo n is an equivalence relation.

Proof sketch.

Reflexive: $a \equiv a \pmod{n}$ because every integer divides 0.

Symmetric: $a \equiv b \pmod{n}$ iff $n \mid a - b$ iff $n \mid b - a$ iff $b \equiv a \pmod{n}$.

$\mathsf{Theorem}$

Congruence modulo n is an equivalence relation.

Proof sketch.

Reflexive: $a \equiv a \pmod{n}$ because every integer divides 0.

Symmetric: $a \equiv b \pmod{n}$ iff $n \mid a - b$ iff $n \mid b - a$ iff $b \equiv a \pmod{n}$.

Transitive: If $a \equiv b \pmod{n}$ and $b \equiv c \pmod{n}$ then $n \mid a - b$ and $n \mid b - c$. Together, these imply that $n \mid a - b + b - c$. From $n \mid a - c$ we get $a \equiv c \pmod{n}$.

$\mathsf{Theorem}$

Congruence modulo n is an equivalence relation.

Proof sketch.

Reflexive: $a \equiv a \pmod{n}$ because every integer divides 0.

Symmetric: $a \equiv b \pmod{n}$ iff $n \mid a - b$ iff $n \mid b - a$ iff $b \equiv a \pmod{n}$.

Transitive: If $a \equiv b \pmod{n}$ and $b \equiv c \pmod{n}$ then $n \mid a - b$ and $n \mid b - c$. Together, these imply that $n \mid a - b + b - c$. From $n \mid a - c$ we get $a \equiv c \pmod{n}$.

For modulus n, the equivalence class of a is $\bar{a}_n = \{\dots, a-2n, a-n, a, a+n, a+2n, \dots\}$. Set \bar{a}_n is called the congruence class or residue of a modulo n.

Compatibility with Operations

Theorem

Congruence modulo n is compatible with addition, subtraction, multiplication, translation, scaling and exponentiation, i. e. if $a \equiv b \pmod{n}$ and $a' \equiv b' \pmod{n}$ then

- $a + a' \equiv b + b' \pmod{n},$
- $a-a'\equiv b-b' \pmod{n},$
- $aa' \equiv bb' \pmod{n},$
- \blacksquare $a + k \equiv b + k \pmod{n}$ for all $k \in \mathbb{Z}$,
- $ak \equiv bk \pmod{n}$ for all $k \in \mathbb{Z}$, and
- lacksquare $a^k \equiv b^k \pmod{n}$ for all $k \in \mathbb{N}_0$.

Compatibility with Operations

Theorem

Congruence modulo n is compatible with addition, subtraction, multiplication, translation, scaling and exponentiation, i. e. if $a \equiv b \pmod{n}$ and $a' \equiv b' \pmod{n}$ then

- $a + a' \equiv b + b' \pmod{n},$
- $a-a'\equiv b-b' \pmod{n},$
- $\bullet aa' \equiv bb' \pmod{n},$
- $a + k \equiv b + k \pmod{n}$ for all $k \in \mathbb{Z}$,
- $ak \equiv bk \pmod{n}$ for all $k \in \mathbb{Z}$, and
- lacksquare $a^k \equiv b^k \pmod{n}$ for all $k \in \mathbb{N}_0$.

Congruence modulo n is a so-called congruence relation (= equivalence relation compatible with operations).

Fermat's Little Theorem

Theorem (Fermat's Little Theorem)

If $a \in \mathbb{Z}$ is not a multiple of prime number p then $a^{p-1} \equiv 1 \pmod{p}$.

Without proof.

Fermat's Little Theorem

Theorem (Fermat's Little Theorem)

If $a \in \mathbb{Z}$ is not a multiple of prime number p then $a^{p-1} \equiv 1 \pmod{p}$.

Without proof.

Helps finding the remainder when dividing a very large number by a prime number.

Find the remainder when dividing 4^{100000} by 67.

Find the remainder when dividing 4¹⁰⁰⁰⁰⁰ by 67. 67 is prime and 4 is not a multiple of 67, so we can use the theorem.

Find the remainder when dividing 4^{100000} by 67.

67 is prime and 4 is not a multiple of 67, so we can use the theorem.

By the theorem, $4^{66} \equiv 1 \pmod{67}$.

Find the remainder when dividing 4^{100000} by 67.

67 is prime and 4 is not a multiple of 67, so we can use the theorem.

By the theorem, $4^{66} \equiv 1 \pmod{67}$. How does this help?

Find the remainder when dividing 4^{100000} by 67.

67 is prime and 4 is not a multiple of 67, so we can use the theorem.

By the theorem, $4^{66} \equiv 1 \pmod{67}$. How does this help?

Raise both sides to a higher power.

 $100000/66 = 1515.\overline{15} \rightarrow \text{use } 1515$

Find the remainder when dividing 4^{100000} by 67.

67 is prime and 4 is not a multiple of 67, so we can use the theorem.

By the theorem, $4^{66} \equiv 1 \pmod{67}$. How does this help?

Raise both sides to a higher power.

$$100000/66 = 1515.\overline{15}$$
 \rightarrow use 1515

$$(4^{66})^{1515} \equiv 1^{1515} \pmod{67}$$

Find the remainder when dividing 4^{100000} by 67.

67 is prime and 4 is not a multiple of 67, so we can use the theorem.

By the theorem, $4^{66} \equiv 1 \pmod{67}$. How does this help?

Raise both sides to a higher power. $100000/66 = 1515.\overline{15} \rightarrow \text{use } 1515$

$$(4^{66})^{1515} \equiv 1^{1515} \pmod{67}$$
 iff $4^{99990} \equiv 1 \pmod{67}$

Find the remainder when dividing 4^{100000} by 67.

67 is prime and 4 is not a multiple of 67, so we can use the theorem.

By the theorem, $4^{66} \equiv 1 \pmod{67}$. How does this help?

Raise both sides to a higher power. $100000/66 = 1515.\overline{15} \rightarrow \text{use } 1515$

 $(4^{66})^{1515} \equiv 1^{1515} \pmod{67}$ iff $4^{99990} \equiv 1 \pmod{67}$ iff $4^{10}4^{99990} \equiv 4^{10} \pmod{67}$

```
Find the remainder when dividing 4^{100000} by 67.
```

67 is prime and 4 is not a multiple of 67, so we can use the theorem.

```
By the theorem, 4^{66} \equiv 1 \pmod{67}. How does this help?
```

```
Raise both sides to a higher power. 100000/66 = 1515.\overline{15} \quad \to \text{ use } 1515 (4^{66})^{1515} \equiv 1^{1515} \pmod{67} \text{ iff } 4^{99990} \equiv 1 \pmod{67} \text{ iff } 4^{10}4^{99990} \equiv 4^{10} \pmod{67} \text{ iff } (\text{calculator}) 4^{100000} \equiv 26 \pmod{67}
```