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Divisibility

m Can we equally share n muffins among m persons
without cutting a muffin?

m If yes then n is a multiple of m and m divides n.

m We consider a generalization of this concept to the integers.
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Divisibility

Definition (divisor, multiple)

Let m,n € Z. If there exists a k € 7Z such that mk = n,
we say that m divides n, m is a divisor of n or n is a multiple of m
and write this as m | n.

Which of the following are true?
m2|4
m 2|4
m2| -4
4|2
m3|4
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Theorem (Linear combinations)

Let a, b and d be integers. If d | a and d | b then
for all integers x and y it holds that d | xa + yb.
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Divisibility and Linear Combinations

Theorem (Linear combinations)

Let a, b and d be integers. If d | a and d | b then
for all integers x and y it holds that d | xa + yb.

If d | aand d | b then there are k, k' € Z
such that kd = a and k'd = b.
It holds that xa + yb = xkd + yk'd = (xk + yk')d.

As x,y, k, k" are integers, xk + yk' is integer, thus d | xa+ yb. [

Some consequences:
md|a—biffd|b—a
mifd|aandd|bthend|a+bandd|a—b.
m If d | athen d| —8a.
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Multiplication and Exponentiation

Let a,b,c € Z and n € Ng.
If a| b then ac | bc and a" | b".

Proof.
If a| b there is a k € Z such that ak = b.
Multiplying both sides with ¢, we get cak = cb and thus ca | cb.
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Multiplication and Exponentiation

Let a,b,c € Z and n € Ng.
If a| b then ac | bc and a" | b".

Proof.
If a| b there is a k € Z such that ak = b.
Multiplying both sides with ¢, we get cak = cb and thus ca | cb.

From ak = b, we also get b" = (ak)" = a"k", so a" | b".

| A\
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Partial Order

If we consider only the natural numbers,
divisibility is a partial order:

Divisibility | over Ny is a partial order. I

m reflexivity: For all m € Ny it holds that m-1=m, so m | m.

m transitivity: If m | nand n| o there are k, k' € Z

such that mk = n and nk’ = o.
With k” = kk’ it holds then that o = nk/ = mkk’ = mk”,

and consequently m | o.
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Proof (continued).

m antisymmetry: We show that if m | n and n | m then m = n.
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m antisymmetry: We show that if m | n and n | m then m = n.
If m = n =0, there is nothing to show.
Otherwise, at least one of m and n is positive.

Let this w.l.o.g. (without loss of generality) be m.




Partial Order

Proof (continued).
m antisymmetry: We show that if m | n and n | m then m = n.
If m = n =0, there is nothing to show.
Otherwise, at least one of m and n is positive.

Let this w.l.o.g. (without loss of generality) be m.
If m| nand n| m then there are k, k' € Z
such that mk = n and nk/ = m.




Partial Order

Proof (continued).
m antisymmetry: We show that if m | n and n | m then m = n.
If m = n =0, there is nothing to show.
Otherwise, at least one of m and n is positive.

Let this w.l.o.g. (without loss of generality) be m.

If m| nand n| m then there are k, k' € Z

such that mk = n and nk/ = m.

Combining these, we get m = nk’ = mkk’, which implies
(with m # 0) that kk’ = 1.




Partial Order

Proof (continued).

m antisymmetry: We show that if m | n and n | m then m = n.
If m = n =0, there is nothing to show.
Otherwise, at least one of m and n is positive.

Let this w.l.o.g. (without loss of generality) be m.

If m| nand n| m then there are k, k' € Z

such that mk = n and nk’ = m.

Combining these, we get m = nk’ = mkk’, which implies
(with m # 0) that kk’ = 1.

Since k and k' are integers, this implies k = k' =1 or

k = k' = —1. As mk = n, m is positive and n is non-negative,
we can conclude that Kk =1 and m = n.
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Halloween is Coming

You have m sweets.

There are k kids showing up for
trick-or-treating.

To keep everything fair, every kid
gets the same amount of treats.

You may enjoy the rest. :-)

How much does every kid get,
how much do you get?



Euclid’s Division Lemma

Theorem (Euclid's division lemma)

For all integers a and b with b # 0
there are unique integers q and r
witha=qgb+r and 0 < r < |b|.

Number q is called the quotient and r the remainder.

Without proof.



Euclid’s Division Lemma

Theorem (Euclid's division lemma)

For all integers a and b with b # 0
there are unique integers q and r
witha=qgb+r and 0 < r < |b|.

Number q is called the quotient and r the remainder.

Without proof.

Examples:
ma=18b=5
ma=5b=18

ma=-18,b=5
ma=18b=-5
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Modulo Operation

m With a mod b we refer to the remainder of Euclidean division.

m Most programming languages have a built-in operator
to compute a mod b (for positive integers):

int mod = 34 Y, 7;
// result 6 because 4 * 7 + 6 = 34

m Common application: Determine whether
a natural number n is even.

n)?2==0

m Languages behave differently with negative operands!



Halloween

O\
W

def share_sweets(no_kids, no_sweets):
print("Each kid gets",
no_sweets // no_kids,
"of the sweets.")
print ("You may keep",
no_sweets 7 no_kids,
"of the sweets.")
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Congruence Modulo n

m We now are no longer interested in the value of the remainder
but will consider numbers a and &’ as equivalent
if the remainder with division by a given number b is equal.

m Consider the clock:

It's now 3 o'clock

In 12 hours its 3 o'clock

Same in 24, 36, 48, ... hours.

15:00 and 3:00 are shown the same.

In the following, we will express this as 3 = 15 (mod 12)




Congruence Modulo n — Definition

Definition (Congruence modulo n)

For integer n > 1, two integers a and b
are called congruent modulo nif n| a— b.

We write this as a = b (mod n).
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Definition (Congruence modulo n)

For integer n > 1, two integers a and b
are called congruent modulo nif n| a— b.

We write this as a = b (mod n).
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Congruence Modulo n — Definition

Definition (Congruence modulo n)

For integer n > 1, two integers a and b
are called congruent modulo nif n| a— b.

We write this as a = b (mod n).

Which of the following statements are true?
m 0=5 (mod5)
m1=6 (mod5)
m 4 =14 (mod 5)
m —8=7 (mod5)
m 2= -3 (mod 5)

Why is this the same concept as described in the clock example?!?
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For integers a and b and integer n > 1 it holds that
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Congruence Corresponds to Equal Remainders

For integers a and b and integer n > 1 it holds that
a= b (mod n) iff there are q,q’, r € Z with

a=qn-+r
b=qgn+r.

Proof sketch.
“=":If n| a— b then there is a k € Z with kn=a — b.

| A

As n # 0, by Euclid’s lemma there are q,q’, r,r' € Z with
a=qn+rand b=¢gn+r', where 0 <r < |nland 0 <r' <|n|.
Together, we get that kn = gn+ r — (¢'n+ r’), which is the case
iff kn+r' = (g — q')n+ r. By Euclid’'s lemma, quotients and
remainders are unique, so in particular r' = r.




Congruence Corresponds to Equal Remainders

For integers a and b and integer n > 1 it holds that
a= b (mod n) iff there are q,q’, r € Z with

a=qn-+r
b=qgn+r.

Proof sketch.
“=":If n| a— b then there is a k € Z with kn=a — b.

As n # 0, by Euclid’s lemma there are q,q’, r,r' € Z with
a=qn+rand b=¢gn+r', where 0 <r < |nland 0 <r' <|n|.

| A

Together, we get that kn = gn+ r — (¢'n+ r’), which is the case
iff kn+r' = (g — q')n+ r. By Euclid’'s lemma, quotients and
remainders are unique, so in particular r' = r.

“<": If we subtract the equations, we get a— b= (g — ¢')n,
son|a—band a=b (mod n).
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Proof sketch.
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Congruence Modulo n is an Equivalence Relation

Congruence modulo n is an equivalence relation. l

Proof sketch.

Reflexive: a = a (mod n) because every integer divides 0.

Symmetric: a=b (mod n) iff n|a—biffn|b—a
iff b=a (mod n).




Congruence Modulo n is an Equivalence Relation

Congruence modulo n is an equivalence relation. I

Proof sketch.
Reflexive: a = a (mod n) because every integer divides 0.

Symmetric: a=b (mod n) iff n|a—biffn|b—a

iff b=a (mod n).

Transitive: If a= b (mod n) and b= c (mod n) thenn|a—b
and n | b— c. Together, these imply that n|a— b+ b —c.
From n| a— c we get a = ¢ (mod n).




Congruence Modulo n is an Equivalence Relation

Congruence modulo n is an equivalence relation. I

Proof sketch.
Reflexive: a = a (mod n) because every integer divides 0.

Symmetric: a=b (mod n) iff n|a—biffn|b—a

iff b=a (mod n).

Transitive: If a= b (mod n) and b= c (mod n) thenn|a—b
and n | b — c. Together, these imply that n|a— b+ b— c.
From n| a— c we get a = ¢ (mod n).

For modulus n, the equivalence class of a is
ap,={...,a—2n,a—n,a,a+na+2n,...}.
Set a, is called the congruence class or residue of a modulo n.



Compatibility with Operations

Theorem

Congruence modulo n is compatible with addition, subtraction,
multiplication, translation, scaling and exponentiation, i. e.
ifa=b (mod n) and & = b’ (mod n) then

mat+a=b+b (modn),

ma—a=b—"b (modn),

m a3’ = bb’' (mod n),
a+k=b+ k (mod n) for all k € Z,
ak = bk (mod n) for all k € Z, and
ak = bk (mod n) for all k € N.




Compatibility with Operations

Theorem

Congruence modulo n is compatible with addition, subtraction,
multiplication, translation, scaling and exponentiation, i. e.
ifa=b (mod n) and & = b’ (mod n) then

mat+a=b+b (modn),

ma—a=b—"b (modn),

m a3’ = bb’' (mod n),
a+k=b+ k (mod n) for all k € Z,
ak = bk (mod n) for all k € Z, and
ak = bk (mod n) for all k € N.

Congruence modulo n is a so-called congruence relation
(= equivalence relation compatible with operations).



Fermat’s Little Theorem

Theorem (Fermat's Little Theorem)

If a € Z is not a multiple of prime number p
then aP~1 =1 (mod p).

Without proof.



Fermat’s Little Theorem

Theorem (Fermat's Little Theorem)

If a € Z is not a multiple of prime number p
then aP~1 =1 (mod p).

Without proof.

Helps finding the remainder when dividing a very large number
by a prime number.
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67 is prime and 4 is not a multiple of 67,
so we can use the theorem.

By the theorem, 4% =1 (mod 67). How does this help?

Raise both sides to a higher power.
100000/66 = 1515.15  — use 1515
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Fermat's Little Theorem — Application

Find the remainder when dividing 4199000 by 67.

67 is prime and 4 is not a multiple of 67,
so we can use the theorem.

By the theorem, 4% =1 (mod 67). How does this help?

Raise both sides to a higher power.
100000/66 = 1515.15  — use 1515
(400)1515 = 11515 (mod 67) iff
49990 =1 (mod 67)



Fermat's Little Theorem — Application

Find the remainder when dividing 4199000 by 67.

67 is prime and 4 is not a multiple of 67,
so we can use the theorem.

By the theorem, 4% =1 (mod 67). How does this help?

Raise both sides to a higher power.
100000/66 = 1515.15  — use 1515

(400)1515 = 11515 (mod 67) iff
499990 =1 (mod 67) iff
410499990 = 410 (mod 67)



Fermat's Little Theorem — Application

Find the remainder when dividing 4199000 by 67.

67 is prime and 4 is not a multiple of 67,
so we can use the theorem.

By the theorem, 4% =1 (mod 67). How does this help?

Raise both sides to a higher power.
100000/66 = 1515.15  — use 1515

(400)1515 = 11515 (mod 67) iff

499990 =1 (mod 67) iff

410499990 = 410 (mod 67) iff (calculator)
4100000 = 26 (mod 67)
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