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Divisibility

» Can we equally share n muffins among m persons
without cutting a muffin?

> If yes then n is a multiple of m and m divides n.
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> We consider a generalization of this concept to the integers.

Divisibility
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Divisibility

Definition (divisor, multiple)

Let m, n € Z. If there exists a k € Z such that mk = n,

we say that m divides n, m is a divisor of n or nis a multiple of m
and write this as m | n.

Which of the following are true?
> 2|4

> 214

> 2| -4

> 42

> 3|4
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Divisibility and Linear Combinations

Theorem (Linear combinations)
Let a, b and d be integers. If d | a and d | b then
for all integers x and y it holds that d | xa + yb.

Proof.

If d | aand d | b then there are k, k' € Z

such that kd = a and k'd = b.

It holds that xa + yb = xkd + yk'd = (xk + yk')d.

Divisibility
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Multiplication and Exponentiation

Theorem
Let a,b,c € Z and n € Ny.
If a| b then ac | bc and a" | b".

Proof.
If a| b there is a k € Z such that ak = b.

Multiplying both sides with ¢, we get cak = cb and thus ca | cb.
From ak = b, we also get b" = (ak)" = a"k", so a" | b". O
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As x,y, k, k' are integers, xk + yk’ is integer, thus d | xa+ yb. [
Some consequences:
» dla—biffd|b—a
» Ifd|aandd|bthend|a+bandd|a—b.
» If d | a then d | —8a.
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Partial Order
If we consider only the natural numbers,
divisibility is a partial order:
Theorem
Divisibility | over Ng is a partial order.
Proof.
> reflexivity: For all m € Ny it holds that m-1=m, so m | m.
» transitivity: If m| nand n| o there are k, k' € Z
such that mk = n and nk’ = o.
With k" = kk' it holds then that o = nk’ = mkk’ = mk"”,
and consequently m | o.
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Partial Order

Proof (continued).
» antisymmetry: We show that if m | n and n | m then m = n.
If m= n =20, there is nothing to show.
Otherwise, at least one of m and n is positive.

Let this w.l.o.g. (without loss of generality) be m.
If m| nand n| m then there are k, k' € Z
such that mk = n and nk’ = m.
Combining these, we get m = nk’ = mkk’, which implies
(with m # 0) that kk’ = 1.
Since k and k’ are integers, this implies k = k' =1 or
k = k' = —1. As mk = n, m is positive and n is non-negative,
we can conclude that k =1 and m = n.
[]
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B11.2 Modular Arithmetic
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Halloween is Coming

> You have m sweets.

» There are k kids showing up for
trick-or-treating.

> To keep everything fair, every kid
gets the same amount of treats.

> You may enjoy the rest. :-)

> How much does every kid get,
how much do you get?
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Euclid’'s Division Lemma

Theorem (Euclid’s division lemma)
For all integers a and b with b # 0
there are unique integers q and r
with a = qb+r and 0 < r < |b|.

Number q is called the quotient and r the remainder.

Without proof.

Examples:
> a=18,b=5
> a=5b=18

> a=-18,b=5
> a=18,b= -5
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Modulo Operation Halloween

» With a mod b we refer to the remainder of Euclidean division.
> Most programming languages have a built-in operator
to compute a mod b (for positive integers):
int mod = 34 % 7;
// result 6 because 4 * 7 + 6 = 34

» Common application: Determine whether
a natural number n is even.

def share_sweets(no_kids, no_sweets):
print ("Each kid gets",
no_sweets // no_kids,

0 —_—
nj 2 == "of the sweets.")
> Languages behave differently with negative operands! print ("You may keep",
no_sweets 7 no_kids,
"of the sweets.")
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Congruence Modulo n Congruence Modulo n — Definition

Definition (Congruence modulo n)
For integer n > 1, two integers a and b
» We now are no longer interested in the value of the remainder are called congruent modulo nif n | a — b.
but will consider numbers a and &’ as equivalent
if the remainder with division by a given number b is equal.
» Consider the clock:
> It's now 3 o'clock

We write this as a2 = b (mod n).

Which of the following statements are true?

In 12 hours its 3 o'clock > 0=5 (mod 5)
Same in 24, 36, 48, ... hours. » 1=6 (mod5)
15:00 and 3:00 are shown the same. > 4 =14 (mod 5)
In the following, we will express this as 3 =15 (mod 12)

vyvyy

» —8=7 (mod 5)
> 2= -3 (mod 5)

Why is this the same concept as described in the clock example?!?
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Congruence Corresponds to Equal Remainders

Theorem
For integers a and b and integer n > 1 it holds that
a= b (mod n) iff there are q,q',r € Z with

a=qn+r
b=gq¢n+r.

Proof sketch.
“=":If n| a— b then there is a k € Z with kn=a — b.

As n # 0, by Euclid's lemma there are q,q’, r, r’ € Z with
a=qgn+rand b=g'n+r', where 0 <r < |nfand 0 <r < |n|.
Together, we get that kn = gn+ r — (¢'n + r’), which is the case
iff kn+r' = (g — ¢')n+ r. By Euclid's lemma, quotients and
remainders are unique, so in particular r' = r.

‘

‘=" If we subtract the equations, we get a— b= (q — ¢')n,
son|a—band a=b (mod n).
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Congruence Modulo n is an Equivalence Relation

Theorem
Congruence modulo n is an equivalence relation.

Proof sketch.

Reflexive: a = a (mod n) because every integer divides 0.
Symmetric: a=b (mod n) iffn|a—biffn|b—a

iff b=a (mod n).

Transitive: If a=b (mod n) and b= c (mod n) thenn|a—b
and n | b — c. Together, these imply that n|a— b+ b —c.
From n| a— c we get a = ¢ (mod n).

For modulus n, the equivalence class of a is
ap,=4{...,a—2n,a—n,a,a+n,a+2n,...}.

Set 3, is called the congruence class or residue of a modulo n.
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Compatibility with Operations

Theorem
Congruence modulo n is compatible with addition, subtraction,
multiplication, translation, scaling and exponentiation, i. e.
ifa= b (mod n) and & = b’ (mod n) then
> a+a =b+ b (mod n),
a—a =b-—b (mod n),
aa’ = bb' (mod n),
a+ k=b+ k (mod n) for all k € Z,
ak = bk (mod n) for all k € Z, and
ak = bk (mod n) for all k € N.

vvYvyyvyy

Congruence modulo n is a so-called congruence relation
(= equivalence relation compatible with operations).
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Fermat's Little Theorem

Theorem (Fermat's Little Theorem)
If a € Z is not a multiple of prime number p
then aP~1 =1 (mod p).

Without proof.

Helps finding the remainder when dividing a very large number
by a prime number.
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Fermat's Little Theorem — Application

Find the remainder when dividing 4100000 by 67.

67 is prime and 4 is not a multiple of 67,
so we can use the theorem.

By the theorem, 40 = 1 (mod 67). How does this help?

Raise both sides to a higher power.
100000/66 = 1515.15  — use 1515

(460)1515 = 11515 (mod 67) iff

499990 = 1 (mod 67) iff

410499990 = 410 (mod 67) iff (calculator)
4100000 = 26 (mod 67)
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