Discrete Mathematics in Computer Science
B11. Divisibility \& Modular Arithmetic

Malte Helmert, Gabriele Röger

University of Basel
B11.1 Divisibility

Discrete Mathematics in Computer Science

- B11. Divisibility \& Modular Arithmetic

B11.1 Divisibility

B11.2 Modular Arithmetic

Divisibility

- Can we equally share n muffins among m persons without cutting a muffin?
- If yes then n is a multiple of m and m divides n.
- We consider a generalization of this concept to the integers.

Divisibility

Definition (divisor, multiple)

Let $m, n \in \mathbb{Z}$. If there exists a $k \in \mathbb{Z}$ such that $m k=n$,
we say that m divides n, m is a divisor of n or n is a multiple of m and write this as $m \mid n$.

Which of the following are true?

- $2 \mid 4$
- $-2 \mid 4$
$-2 \mid-4$
- $4 \mid 2$
- $3 \mid 4$

B11. Divisibility \& Modular Arithmetic

Theorem (Linear combinations)
Let a, b and d be integers. If $d \mid a$ and $d \mid b$ then
for all integers x and y it holds that $d \mid x a+y b$.
Proof.
If $d \mid a$ and $d \mid b$ then there are $k, k^{\prime} \in \mathbb{Z}$
such that $k d=a$ and $k^{\prime} d=b$.
It holds that $x a+y b=x k d+y k^{\prime} d=\left(x k+y k^{\prime}\right) d$.
As x, y, k, k^{\prime} are integers, $x k+y k^{\prime}$ is integer, thus $d \mid x a+y b$.
Some consequences:

- $d \mid a-b$ iff $d \mid b-a$
- If $d \mid a$ and $d \mid b$ then $d \mid a+b$ and $d \mid a-b$.
- If $d \mid a$ then $d \mid-8 a$.

Malte Helmert, Gabriele Röger (University of Discrete Mathematics in Computer Science

Partial Order

If we consider only the natural numbers,
divisibility is a partial order:
Theorem
Divisibility \mid over \mathbb{N}_{0} is a partial order.

Proof

- reflexivity: For all $m \in \mathbb{N}_{0}$ it holds that $m \cdot 1=m$, so $m \mid m$.
- transitivity: If $m \mid n$ and $n \mid o$ there are $k, k^{\prime} \in \mathbb{Z}$ such that $m k=n$ and $n k^{\prime}=0$.
With $k^{\prime \prime}=k k^{\prime}$ it holds then that $o=n k^{\prime}=m k k^{\prime}=m k^{\prime \prime}$, and consequently $m \mid o$.

B11.2 Modular Arithmetic

Let this w.l.o.g. (without loss of generality) be m.
If $m \mid n$ and $n \mid m$ then there are $k, k^{\prime} \in \mathbb{Z}$
such that $m k=n$ and $n k^{\prime}=m$.
Combining these, we get $m=n k^{\prime}=m k k^{\prime}$, which implies (with $m \neq 0$) that $k k^{\prime}=1$.
Since k and k^{\prime} are integers, this implies $k=k^{\prime}=1$ or $k=k^{\prime}=-1$. As $m k=n, m$ is positive and n is non-negative, we can conclude that $k=1$ and $m=n$.

Theorem (Euclid's division lemma)
For all integers a and b with $b \neq 0$
there are unique integers q and r
with $a=q b+r$ and $0 \leq r<|b|$.
Number q is called the quotient and r the remainder.
Without proof.
Examples:

- $a=18, b=5$
- $a=5, b=18$
- $a=-18, b=5$
- $a=18, b=-5$

- With $a \bmod b$ we refer to the remainder of Euclidean division.
- Most programming languages have a built-in operator to compute $a \bmod b$ (for positive integers):

```
int mod = 34 % 7;
// result 6 because 4 * 7 + 6 = 34
```

- Common application: Determine whether a natural number n is even.

$$
\mathrm{n} \% 2=0
$$

- Languages behave differently with negative operands!

Congruence Modulo n - Definition

Definition (Congruence modulo n)

For integer $n>1$, two integers a and b
are called congruent modulo n if $n \mid a-b$. but will consider numbers a and a^{\prime} as equivalent
if the remainder with division by a given number b is equal.

- Consider the clock:
- It's now 3 o'clock
- In 12 hours its 3 o'clock
- Same in $24,36,48, \ldots$ hours.
- 15:00 and 3:00 are shown the same.
- In the following, we will express this as $3 \equiv 15(\bmod 12)$

We write this as $a \equiv b(\bmod n)$.

Which of the following statements are true?

- $0 \equiv 5(\bmod 5)$
- $1 \equiv 6(\bmod 5)$
- $4 \equiv 14(\bmod 5)$
- $-8 \equiv 7(\bmod 5)$
- $2 \equiv-3(\bmod 5)$

Why is this the same concept as described in the clock example?!?

Theorem
For integers a and b and integer $n>1$ it holds that $a \equiv b(\bmod n)$ iff there are $q, q^{\prime}, r \in \mathbb{Z}$ with

$$
\begin{aligned}
& a=q n+r \\
& b=q^{\prime} n+r .
\end{aligned}
$$

Proof sketch.
$" \Rightarrow$ ": If $n \mid a-b$ then there is a $k \in \mathbb{Z}$ with $k n=a-b$.
As $n \neq 0$, by Euclid's lemma there are $q, q^{\prime}, r, r^{\prime} \in \mathbb{Z}$ with $a=q n+r$ and $b=q^{\prime} n+r^{\prime}$, where $0 \leq r<|n|$ and $0 \leq r^{\prime}<|n|$. Together, we get that $k n=q n+r-\left(q^{\prime} n+r^{\prime}\right)$, which is the case iff $k n+r^{\prime}=\left(q-q^{\prime}\right) n+r$. By Euclid's lemma, quotients and remainders are unique, so in particular $r^{\prime}=r$.
" \Leftarrow ": If we subtract the equations, we get $a-b=\left(q-q^{\prime}\right) n$, so $n \mid a-b$ and $a \equiv b(\bmod n)$.
Malte Helmert, Gabriele Röger (University of Discrete Mathematics in Computer Science

Compatibility with Operations

Theorem

Congruence modulo n is compatible with addition, subtraction, multiplication, translation, scaling and exponentiation, i. e. if $a \equiv b(\bmod n)$ and $a^{\prime} \equiv b^{\prime}(\bmod n)$ then

- $a+a^{\prime} \equiv b+b^{\prime}(\bmod n)$,
- $a-a^{\prime} \equiv b-b^{\prime}(\bmod n)$,
- $a a^{\prime} \equiv b b^{\prime}(\bmod n)$,
- $a+k \equiv b+k(\bmod n)$ for all $k \in \mathbb{Z}$,
- ak $\equiv b k(\bmod n)$ for all $k \in \mathbb{Z}$, and
- $a^{k} \equiv b^{k}(\bmod n)$ for all $k \in \mathbb{N}_{0}$.

Congruence modulo n is a so-called congruence relation (= equivalence relation compatible with operations).

Theorem

Congruence modulo n is an equivalence relation.
Proof sketch.
Reflexive: $a \equiv a(\bmod n)$ because every integer divides 0 .
Symmetric: $a \equiv b(\bmod n)$ iff $n \mid a-b$ iff $n \mid b-a$ iff $b \equiv a(\bmod n)$.
Transitive: If $a \equiv b(\bmod n)$ and $b \equiv c(\bmod n)$ then $n \mid a-b$ and $n \mid b-c$. Together, these imply that $n \mid a-b+b-c$. From $n \mid a-c$ we get $a \equiv c(\bmod n)$.

For modulus n, the equivalence class of a is
$\bar{a}_{n}=\{\ldots, a-2 n, a-n, a, a+n, a+2 n, \ldots\}$.
Set \bar{a}_{n} is called the congruence class or residue of a modulo n.

Malte Helmert, Gabriele Röger (University of Discrete Mathematics in Computer Science

Fermat's Little Theorem

Theorem (Fermat's Little Theorem)
If $a \in \mathbb{Z}$ is not a multiple of prime number p
then $a^{p-1} \equiv 1(\bmod p)$.

Without proof.
Helps finding the remainder when dividing a very large number by a prime number.

Fermat's Little Theorem - Application

Find the remainder when dividing 4^{100000} by 67 .
67 is prime and 4 is not a multiple of 67 ,
so we can use the theorem.
By the theorem, $4^{66} \equiv 1(\bmod 67)$. How does this help?
Raise both sides to a higher power.
$100000 / 66=1515 . \overline{15} \quad \rightarrow$ use 1515
$\left(4^{66}\right)^{1515} \equiv 1^{1515}(\bmod 67)$ iff
$4^{99990} \equiv 1(\bmod 67)$ iff
$4^{10} 4^{99990} \equiv 4^{10}(\bmod 67)$ iff (calculator) $4^{100000} \equiv 26(\bmod 67)$

