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Abstract Algebra

m Elementary algebra: “Arithmetics with variables”

moe.g x = —bEVE4¢ describes the solutions of
ax? + bx + ¢ = 0 where a # 0.

m Variables for numbers and operations such as addition,
subtraction, multiplication, division ...

® “What you learn at school.”

m Abstract algebra: Generalization of elementary algebra

m Arbitrary sets and operations on their elements

m e.g. permutations of a given set S plus function composition

m Abstract algebra studies arbitrary sets and operations
based on certain properties (such as associativity).
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Binary operations

m A binary operation on a set S is a function f : $ x § — S.
m e . g. add: Ny x Ng — Ny for addition of natural numbers.

m In infix notation, we write the operator between the operands,
e.g. x + y instead of add(x,y).
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Groups

Definition (Group)

A group G = (S, -) is given by a set S and

a binary operation - on S that satisfy the group axioms:
m Associativity: (x-y)-z=x-(y-z) forall x,y,z€ S.
m |dentity element: There exists an e € S such that

for all x € S it holds that x-e = e - x = x.
Element e is called identity or neutral element of the group.

m Inverse element: For every x € S there is a y € S such that
Xy =y-x=e, where e is the identity element.

A group is called abelian if - is also commutative,
i.e. forall x,y € S it holds that x-y =y - x.

Cardinality |S| is called the order of the group.

Niels Henrik Abel: Norwegian mathematician (1802-1829),
cf. Abel prize
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(Z,+) is a group:
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—x, because x + (—x) = (—x) +x =0.



Example: (Z,+)

(Z,+) is a group:
m 7Z is closed under addition, i.e. for x,y € Z it holds that
x+yeZ

m The + operator is associative: for all x, x,z € Z it holds that
(x+y)+z=x+(y+2)

m Integer O is the neutral element: for all integers x it holds
that x +0=04x = x.

m Every integer x has an inverse element in the integers, namely
—x, because x + (—x) = (—x) +x =0.

(Z,+) also is an abelian group
because for all x,y € Z it holds that x + y = y + x.
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Theorem

Every group G = (S, ) has only one identity element and for each
x € S the inverse of x is unique.

Proof.

identity: Assume that there are two identity elements e,e’ € S
with e # €’. Then for all x € S it holds that x-e = e - x = x and
that x- €’ = €’ - x = x. Using x = €/, we get €’ - e = ¢’ and using
x=ewegete- -e=e sooverall e =e. 4
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We often denote the identity element with 1 and
the inverse of x with x~1.
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Division — Right Quotient

Theorem

Let G = (S,-) be a group. Then for all a,b € S the equation
x - b = a has exactly one solution x in' S, namely x = a- b 1.

We call a- b=! the right-quotient of a by b and also write it as a/b.

Proof.

It is a solution: With x = a- b~1 it holds that
x-b=(a-bY)-b=a-(b1-b)=a-1=a.

The solution is unique:

Assume x and x’ are distinct solutions. Then x-b=a=x’-b.
Multiplying both sides by b1, we get (x- b) - b~ = (x'- b) - b1
and with associativity x - (b- b™1) = x’- (b- b71).

With the axiom on inverse elements this leads to x -1 = x’ - 1 and

with the axiom on the identity element ultimately to x = x". 4 [

V.




Division — Left Quotient

Let G = (S,-) be a group. Then for all a,b € S the equation
b - x = a has exactly one solution x in S, namely x = b~! - a.

We call b1 - a the left-quotient of a by b and also write it as b\ a.

Proof omitted



Quotients in Abelian Groups

Theorem
If G =(S,-) is an abelian group then it holds for all x,y € S

that x/y = y\x.

| \

Proof.
Consider arbitrary x,y € S. As - is commutative, it holds that

xly=x-y b=yl x=y\x O

4




Group Homomorphism

A group homomorphism is a function that preserves group
structure:

Definition (Group homomorphism)

Let G =(S,-) and G’ = (5, 0) be groups.
A homomorphism from G to G’ is a function f : S — S’ such that
for all x,y € S it holds that f(x - y) = f(x) o f(y).




Group Homomorphism

A group homomorphism is a function that preserves group
structure:

Definition (Group homomorphism)

Let G =(S,-) and G’ = (5, 0) be groups.
A homomorphism from G to G’ is a function f : S — S’ such that
for all x,y € S it holds that f(x - y) = f(x) o f(y).

Definition (Group Isomorphism)

A group homomorphism that is bijective is called
a group isomorophism. Groups G and H are called isomorphic
if there is a group isomorphism from G to H.

From a practical perspective, isomorphic groups are identical
up to renaming.
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Group Homomorphism — Example

m Consider G = (Z,+) and H = ({1, —1}, ) with
ml-l=-1.-1=1
ml —1=-1.1=-1
1 if x is even
—1 if x is odd
m f is a homomorphism from G to H:
for all x,y € Z it holds that

mlet f:7Z — {1,—1} with f(x) =

1 if x+ y is even

fix+y)=
bety) {—1 if x + y is odd

)1 if x and y have the same parity
~]-1 ifxand y have different parity

=1 if f(x) # f(y)
=f(x)-f(y)

{1 if £(x) = f(y)



Outlook

m A subgroup of G =(S,) is a group H=(S",0) with S’ C S
and o the restriction of - to S’ x §.
m S’ always contains the identity element and
is closed under group operation and inverse
m group homomorphisms preserve many properties of subgroups



Outlook

m A subgroup of G =(S,) is a group H=(S",0) with S’ C S
and o the restriction of - to S’ x §'.
m S’ always contains the identity element and
is closed under group operation and inverse

m group homomorphisms preserve many properties of subgroups
m Other algebraic structures, e. g.

m Semi-group: requires only associativity

m Monoid: requires associativity and identity element

m Ringoids: algebraic structures with two binary operations
® multiplication and addition

® multiplication distributes over addition
®m e.g. ring and field
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Reminder: Permutations
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Definition (Permutation)

Let S be a set. A bijection 7: S — S is called a permutation of S.




Symmetric Group

Theorem (Symmetric Group)
Let M be a set. Then Sym(M) = (S, ), where

m S is the set of all permutations of M, and

m - denotes function composition,

is a group, called the symmetric group of M.

For finite set M = {1,...,n}, we also use S, to refer to the
symmetric group of M.
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Symmetric Group

Theorem (Symmetric Group)
Let M be a set. Then Sym(M) = (S, ), where

m S is the set of all permutations of M, and

m - denotes function composition,

is a group, called the symmetric group of M.

For finite set M = {1,...,n}, we also use S, to refer to the
symmetric group of M.

Is the symmetric group abelian?
What's the order of S,?



Symmetric Group — Proof |

For set M, Sym(M) = ({0 : M — M | o is bijective},-) is a group.

Definition (Group)

A group G = (S, ") is given by a set S and
a binary operation - on S that satisfy the group axioms:
m Associativity: (x-y)-z=x-(y-z) forall x,y,z€ S.
m Identity element: There exists an e € S such that
for all x € S it holds that x - e = e - x = x.
Element e is called identity of neutral element of the group.

m Inverse element: For every x € S there is a y € S such that
X -y =y-x=e, where e is the identity element.

To show: closure, associativity, identity, inverse element



Symmetric Group — Proof Il

For set M, Sym(M) = ({0 : M — M | o is bijective},-) is a group.

m Closure: The product of two permutations of M
is a permutation of M and hence in the set.

m Associativity: Function composition is always associative.

m |dentity element: Function id : M — M with id(x) = x is a
permutation and for every permutation o of M
it holds that gid = ido = o.

m Inverse element: For every permutation o of M,
also the inverse function o1 is a permutation of M and has
the required properties.

Ol
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Generating Sets

Definition

A generating set of a group G = (S,0) isaset S’ C S
such that every e € S can be expressed as a combination (under o)
of finitely many elements of S’ and their inverses.

Empty product is identity by definition, so no need to have it in S’.



Generating Sets

Definition

A generating set of a group G = (S,0) isaset S’ C S
such that every e € S can be expressed as a combination (under o)
of finitely many elements of S’ and their inverses.

Empty product is identity by definition, so no need to have it in S’.

m Forn>2, S, is generated by {(i 7i+1)|ie{l,...,n—1}}.
m For n > 2, S, is generated by {(1 2),(1 ... n)}.



Generating Sets — Example

1 2 3 4 1 2 3 4\). i tof S
> 3 4 1)°\3 1 o a)(s@generating set of 5,.
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Permutation Group

Sometimes, we do not want to consider all possible permutations.

Definition (Permutation Group)

A permutation group is a group G = (S, ),
where S is a set of permutations of some set M and
- is the composition of permutations in S.

Every permutation group is a subgroup of a symmetric group and
every such subgroup is a permutation group.



Permutation Group — Example

25‘26‘27

33

28 29

36

30‘31‘32

38

34 | 35

39 | 40

m Consider all permutations achievable with valid moves.

m Subgroup of Sug with order

43252003 274 489 856 000 ~ 4.3 - 101% (43 quintillion)

m Sug has order 48! ~ 1.24 - 106!

44 45

46 ‘ 47 | 48
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