Discrete Mathematics in Computer Science B10. A Glimpse of Abstract Algebra

Malte Helmert, Gabriele Röger

University of Basel

Malte Helmert, Gabriele Röger (University of Discrete Mathematics in Computer Science

B10. A Glimpse of Abstract Algebra

B10.1 Abstract Groups

Discrete Mathematics in Computer Science – B10. A Glimpse of Abstract Algebra B10.1 Abstract Groups B10.2 Symmetric Group and Permutation Groups

Malte Helmert, Gabriele Röger (University of Discrete Mathematics in Computer Science

1 / 23

Abstract Groups

2 / 23

B10. A Glimpse of Abstract Algebra

Example: $(\mathbb{Z}, +)$

$(\mathbb{Z}, +)$ is a group:

- ▶ \mathbb{Z} is closed under addition, i.e. for $x, y \in \mathbb{Z}$ it holds that $x + y \in \mathbb{Z}$
- ▶ The + operator is associative: for all $x, x, z \in \mathbb{Z}$ it holds that (x + y) + z = x + (y + z).
- Integer 0 is the neutral element: for all integers x it holds that x + 0 = 0 + x = x.
- Every integer x has an inverse element in the integers, namely -x, because x + (-x) = (-x) + x = 0.

$(\mathbb{Z}, +)$ also is an abelian group because for all $x, y \in \mathbb{Z}$ it holds that x + y = y + x.

B10. A Glimpse of Abstract Algebra

Groups

Definition (Group)

	A group $G = (S, \cdot)$ is given by a set S and a binary operation \cdot on S that satisfy the group axioms:
	• Associativity: $(x \cdot y) \cdot z = x \cdot (y \cdot z)$ for all $x, y, z \in S$.
	• Identity element: There exists an $e \in S$ such that for all $x \in S$ it holds that $x \cdot e = e \cdot x = x$
	Element e is called identity or neutral element of the group.
	▶ Inverse element: For every $x \in S$ there is a $y \in S$ such that $x \cdot y = y \cdot x = e$, where <i>e</i> is the identity element.
	A group is called abelian if \cdot is also commutative, i. e. for all $x, y \in S$ it holds that $x \cdot y = y \cdot x$.
	Cardinality $ S $ is called the order of the group.
	Niels Henrik Abel: Norwegian mathematician (1802–1829), cf. Abel prize
6	Iment Gabriele Röger (University of Discrete Mathematics in Computer Science

B10. A Glimpse of Abstract Algebra

Uniqueness of Identity and Inverses

Theorem

Every group $G = (S, \cdot)$ has only one identity element and for each $x \in S$ the inverse of x is unique.

Proof.

identity: Assume that there are two identity elements $e, e' \in S$ with $e \neq e'$. Then for all $x \in S$ it holds that $x \cdot e = e \cdot x = x$ and that $x \cdot e' = e' \cdot x = x$. Using x = e', we get $e' \cdot e = e'$ and using x = e we get $e' \cdot e = e$, so overall e' = e. 4

inverse: homework assignment

We often denote the identity element with 1 and the inverse of x with x^{-1} .

6 / 23

Abstract Groups

Abstract Groups

B10. A Glimpse of Abstract Algebra

Abstract Groups

Division – Right Quotient

Theorem

Let $G = (S, \cdot)$ be a group. Then for all $a, b \in S$ the equation $x \cdot b = a$ has exactly one solution x in S, namely $x = a \cdot b^{-1}$.

We call $a \cdot b^{-1}$ the right-quotient of a by b and also write it as a/b.

Proof.

It is a solution: With $x = a \cdot b^{-1}$ it holds that $x \cdot b = (a \cdot b^{-1}) \cdot b = a \cdot (b^{-1} \cdot b) = a \cdot 1 = a$. The solution is unique: Assume x and x' are distinct solutions. Then $x \cdot b = a = x' \cdot b$. Multiplying both sides by b^{-1} , we get $(x \cdot b) \cdot b^{-1} = (x' \cdot b) \cdot b^{-1}$ and with associativity $x \cdot (b \cdot b^{-1}) = x' \cdot (b \cdot b^{-1})$. With the axiom on inverse elements this leads to $x \cdot 1 = x' \cdot 1$ and with the axiom on the identity element ultimately to x = x'. ξ

alte Helmert, Gabriele Röger (University of Discrete Mathematics in Computer Science

9 / 23

B10. A Glimpse of Abstract Algebra Abstract Groups Quotients in Abelian Groups Theorem If $G = (S, \cdot)$ is an abelian group then it holds for all $x, y \in S$ that $x/y = y \setminus x$. Proof. Consider arbitrary $x, y \in S$. As \cdot is commutative, it holds that $x/y = x \cdot y^{-1} = y^{-1} \cdot x = y \setminus x$.

B10. A Glimpse of Abstract Algebra

Group Homomorphism

A group homomorphism is a function that preserves group structure:

Definition (Group homomorphism) Let $G = (S, \cdot)$ and $G' = (S', \circ)$ be groups. A homomorphism from G to G' is a function $f : S \to S'$ such that for all $x, y \in S$ it holds that $f(x \cdot y) = f(x) \circ f(y)$.

Definition (Group Isomorphism)

A group homomorphism that is bijective is called a group isomorphism. Groups G and H are called isomorphic if there is a group isomorphism from G to H.

From a practical perspective, isomorphic groups are identical up to renaming.

Abstract Group

B10. A Glimpse of Abstract Algebra

Malte Helmert, Gal

B10. A Glimpse of Abstract Algebra

Group Homomorphism – Example

- Consider G = (Z, +) and H = ({1, -1}, ·) with
 1 · 1 = −1 · −1 = 1
 1 · −1 = −1 · 1 = −1
- Let $f : \mathbb{Z} \to \{1, -1\}$ with $f(x) = \begin{cases} 1 & \text{if } x \text{ is even} \\ -1 & \text{if } x \text{ is odd} \end{cases}$
- ▶ f is a homomorphism from G to \hat{H} : for all $x, y \in \mathbb{Z}$ it holds that

$$f(x+y) = \begin{cases} 1 & \text{if } x+y \text{ is even} \\ -1 & \text{if } x+y \text{ is odd} \end{cases}$$
$$= \begin{cases} 1 & \text{if } x \text{ and } y \text{ have the same parity} \\ -1 & \text{if } x \text{ and } y \text{ have different parity} \end{cases}$$
$$= \begin{cases} 1 & \text{if } f(x) = f(y) \\ -1 & \text{if } f(x) \neq f(y) \end{cases}$$
$$= f(x) \cdot f(y)$$
riele Röger (University of Discrete Mathematics in Computer Science 13 / 23

B10.2 Symmetric Group and Permutation Groups

Abstract Groups

Symmetric Group and Permutation Groups

Symmetric Group

Theorem (Symmetric Group)

Let M be a set. Then $Sym(M) = (S, \cdot)$, where

- ► S is the set of all permutations of M, and
- denotes function composition.

is a group, called the symmetric group of M.

For finite set $M = \{1, ..., n\}$, we also use S_n to refer to the symmetric group of M.

Is the symmetric group abelian?

What's the order of S_n ?

Alte Helmert, Gabriele Röger (University of Discrete Mathematics in Computer Science

B10. A Glimpse of Abstract Algebra

Symmetric Group and Permutation Groups

17 / 23

```
Symmetric Group – Proof II
```

Theorem

For set M, Sym(M) = ({ $\sigma : M \to M \mid \sigma \text{ is bijective}$ }, ·) is a group.

Proof.

- Closure: The product of two permutations of M is a permutation of M and hence in the set.
- Associativity: Function composition is always associative.
- ldentity element: Function id : $M \rightarrow M$ with id(x) = x is a permutation and for every permutation σ of Mit holds that $\sigma id = id\sigma = \sigma$.
- \blacktriangleright Inverse element: For every permutation σ of M_{\star} also the inverse function σ^{-1} is a permutation of M and has the required properties.

18 / 23

Symmetric Group and Permutation Groups

Symmetric Group – Proof I For set M, Sym(M) = ({ $\sigma : M \to M \mid \sigma \text{ is bijective}$ }, ·) is a group. Definition (Group) A group $G = (S, \cdot)$ is given by a set S and a binary operation \cdot on S that satisfy the group axioms: Associativity: $(x \cdot y) \cdot z = x \cdot (y \cdot z)$ for all $x, y, z \in S$.

- ▶ Identity element: There exists an $e \in S$ such that for all $x \in S$ it holds that $x \cdot e = e \cdot x = x$. Element *e* is called identity of neutral element of the group.
- **Inverse element**: For every $x \in S$ there is a $y \in S$ such that $x \cdot y = y \cdot x = e$, where *e* is the identity element.

To show: closure, associativity, identity, inverse element

alte Helmert, Gabriele Röger (University of Discrete Mathematics in Computer Science

B10. A Glimpse of Abstract Algebra

B10. A Glimpse of Abstract Algebra

Theorem

Generating Sets

Definition

A generating set of a group $G = (S, \circ)$ is a set $S' \subseteq S$ such that every $e \in S$ can be expressed as a combination (under \circ) of finitely many elements of S' and their inverses.

Empty product is identity by definition, so no need to have it in S'.

- For n > 2, S_n is generated by $\{(i \ i+1) \mid i \in \{1, ..., n-1\}\}$.
- For n > 2, S_n is generated by $\{(1 \ 2), (1 \ \dots \ n)\}$.

Symmetric Group and Permutation Groups

Symmetric Group and Permutation Groups

Generating Sets – Example

$$\left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 2 & 4 \end{pmatrix} \right\} \text{ is a generating set of } S_4$$

B10. A Glimpse of Abstract Algebra Symmetric Group and Permutation Groups Permutation Group – Example 2 3 5 8 6 7 9 10 11 17 18 19 25 26 27 33 34 35 20 21 28 12 13 29 36 37 14 15 16 22 23 24 30 31 32 38 39 40 41 42 43 44 45 46 47 48 Consider all permutations achievable with valid moves. Subgroup of S_{48} with order $43\,252\,003\,274\,489\,856\,000 \approx 4.3 \cdot 10^{19}$ (43 quintillion) • S_{48} has order $48! \approx 1.24 \cdot 10^{61}$

Valte Helmert, Gabriele Röger (University of Discrete Mathematics in Computer Science

21 / 23

Sometimes, we do not want to consider all possible permutations.

Definition (Permutation Group)

A permutation group is a group $G = (S, \cdot)$,

where S is a set of permutations of some set M and

 \cdot is the composition of permutations in *S*.

Every permutation group is a subgroup of a symmetric group and every such subgroup is a permutation group.

Malte Helmert, Gabriele Röger (University of Discrete Mathematics in Computer Science

22 / 23

Symmetric Group and Permutation Groups