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Permutations as Functions

A permutation rearranges objects.

Consider for example sequence 05, 01, 03, 04
m Let's rearrange the objects, e. g. to 03,01, 04, 0o.
m The object at position 1 was moved to position 4,
the one from position 3 to position 1,
the one from position 4 to position 3 and
the one at position 2 stayed where it was.
This corresponds to a bijection o : {1,2,3,4} — {1,2,3,4}
with 0(1) =4, 0(2) =2,0(3) =1, 0(4) =3

m We call such a bijection a permutation.



Permutation — Definition

Definition (Permutation)

Let S be a set. A bijection m: S — S is called a permutation of S.




Permutation — Definition

Definition (Permutation)
Let S be a set. A bijection m: S — S is called a permutation of S.

We will focus on permutations of finite sets.

The actual objects in S don't matter,
so we mostly work with {1,...,[S|}.



Permutation — Definition

Definition (Permutation)
Let S be a set. A bijection m: S — S is called a permutation of S.

We will focus on permutations of finite sets.

The actual objects in S don't matter,
so we mostly work with {1,...,|S|}.

How many permutations are there for a finite set 57



Two-line and One-line Notation (for Finite Sets)
Consider 7 with
(1) =2,7(2) =5,7(3) = 4,7(4) = 3,n(5) = 1,7(6) = 6.

Two-line notation lists the elements of S in the first row and the
image of each element in the second row:



Two-line and One-line Notation (for Finite Sets)
Consider 7 with
(1) =2,7(2) =5,7(3) = 4,7(4) = 3,n(5) = 1,7(6) = 6.

Two-line notation lists the elements of S in the first row and the
image of each element in the second row:

One-line notation only lists the second row for the natural order of
the first row:

T=(2 5 4 3 1 6)
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Composition

Permutations of the same set can be composed
with function composition.

Instead of o o 7, we write o.
We call om the product of 7w and o.
The product of permutations is a permutation. Why?
Example:

1 2 3 45 1 2 3 45

g = m =

32 415 315 2 4

om =

o —
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Cycle Notation — Idea

One-line notation still needs one entry per element and
the effect of repeated application is hard to see.

Consider again 7 with
(1) =2,7(2) =5,7(3) = 4,7(4) = 3,7(5) = 1,7(6) = 6.

Thereisacycle(l1 2 5)=(2 5 1)=(5 1 2)
and a cycle (3 4)=(4 3).

Idea: Write 7 as product of such cycles.



Cycles

Definition (Cycle)

A permutation o of finite set S has a
k-cycle (e1 e ... e)if
meecSforied{l,... k}
me Fefori#j
mo(e)=eip1forie{l,....k—1}

] a(ek) =&

Don't confuse cycles with permutations in one-line notation.

A 2-cycle is called a transposition

A 1-cycle is called a fixed-point of .



Cyclic Permutation

Definition (Cyclic Permutation)

A permutation is cyclic if it has a single k-cycle with k > 1.

In cycle notation, we represent a cyclic permutation by this cycle.



Cyclic Permutation

Definition (Cyclic Permutation)

A permutation is cyclic if it has a single k-cycle with k > 1.

In cycle notation, we represent a cyclic permutation by this cycle.

For example:
Permutation o of {1,...,5} witho = (1 3 4)in cycle
representation corresponds to

/123 45
77\3 2 4 1 5

in two-line notation.



Cyclic Permutation

Definition (Cyclic Permutation)

A permutation is cyclic if it has a single k-cycle with k > 1.

In cycle notation, we represent a cyclic permutation by this cycle.

For example:
Permutation o of {1,...,5} witho = (1 3 4)in cycle
representation corresponds to

(123 45
77\3 2 4 1 5

Question: Is this representation unique (canonical)?

in two-line notation.



Cycle Notation — Example

We can write every permutation as a product of disjoint cycles.

Consider again m with
(1) =2,7(2) =5,7(3) = 4,7(4) = 3,7(5) = 1,7(6) = 6.

Thereisacycle (1 2 5)=(2 5 1)=(5 1 2)
and a cycle (3 4)=(4 3).

In cycle representation:
T=(1 2 5)(3 4)6)=(1 2 5)(3 4)



Cycle Notation — Algorithm

Let m be a permutation of finite set S.

: function COMPUTECYCLEREPRESENTATION(7, S)
remaining = S
cycles = ()
while remaining is not empty do
Remove any element e from remaining.
Start a new cycle ¢ with e.
while 7(e) € remaining do
remaining = remaining \ {m(e)}
Extend ¢ with 7(e).
e=m(e)

[y

©COoNARLDN

e
= O

cycles = cycles U {c}
12: return cycles

The elements of cycles can be arranged in any order.



Cycle Notation — Algorithm

Let m be a permutation of finite set S.

: function COMPUTECYCLEREPRESENTATION(7, S)
remaining = S
cycles = ()
while remaining is not empty do
Remove any element e from remaining.
Start a new cycle ¢ with e.
while 7(e) € remaining do
remaining = remaining \ {m(e)}
Extend ¢ with 7(e).
e=m(e)

[y

©COoNARLDN

e
= O

cycles = cycles U {c}
12: return cycles

The elements of cycles can be arranged in any order. ~~ Why?



Disjoint Cycles Commute

Let 7 = (& er) and 7' = (€] el) be permutations
of set S in cycle notation and let ™ and 7' be disjoint,
i.e.ej# ¢ fori€{l,...,n},je{l,...,m}.

Then ! = /7.
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Theorem

Letm=(er ... e,)andn’ = (e} ... e,) bepermutations
of set S in cycle notation and let ™ and 7' be disjoint,
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Proof.

Consider an arbitrary element e € S. We distinguish three cases:
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Disjoint Cycles Commute

Theorem

Letm=(er ... e,)andn’ = (e} ... e,) bepermutations
of set S in cycle notation and let ™ and 7' be disjoint,
i.e.ej# ¢ fori€{l,...,n},je{l,...,m}.

Then ! = /7.

Proof.
Consider an arbitrary element e € S. We distinguish three cases:

| A\

If e = e for some i € {1,...,n} then w(e) = ¢ for some
J€{1,...,n}. Since the cycles are disjoint, 7’(e) = e and
7'(w(e)) = w(e). Together, this gives 7'(w(e)) = w(7'(e)).
If e = el for some i € {1,..., m}, we can use the analogous
argument to show that 7 (7'(e)) = 7'(n(e)).

If e occurs in neither cycle then w(e) = e and 7'(e) = e, so

7'(n(e)) = e = n(7'(e)). O

A




In General Cycles Do not Commute

Consider cycles (1 2) and (2 3) and set S ={1,2,3}.

1 2)2 3)=

2 31 2)=



Transpositions

Every cycle can be expressed as a product of transpositions. I

Proof idea.

Consider k-cycle 0 = (&1 ... ex).
We can express o as (1 ex)(e1 ex—1)...(e1 ). O




Inverse

m Every permutation has an inverse,
which is again a permuation.

m If 7 is represented in two-line notation, we get 7! by
swapping the rows, e.g.

1 23 45\ " (32415
32415 “\1234°5

m If 7 is a cycle, we get 7! by reversing the order of the

elements, e.g. (1 3 4 2)'=(2 4 3 1)

B (o) t=0"1x!



Example

c=(4 52 3) 7=(4 52 1)

or~ 1l =



Another Example

Determine the arrangement of some objects after applying a
permutation that operates on the locations.
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Another Example

Determine the arrangement of some objects after applying a
permutation that operates on the locations.

f‘q' .
O@® and 7 permutation of {1,2,3}.

T -
Define £ with ([)) = 1, (@) = 2. f(@) =3
to describe the initial configuration.

Then 7o f describes the resulting configuration.
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Last Example

Determine the permutation of locations that leads from one
configuration to the other.

£Q.-, - KQ
D00 -000.

£ -
Define £ with £([)) = 1, /(@) = 2. f(@) =3
to describe the initial configuration and

£ -
function g with g( J) =2, g(@=1¢g@)=3
for the final configuration.

Then g o f~1 describes the permutation.
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