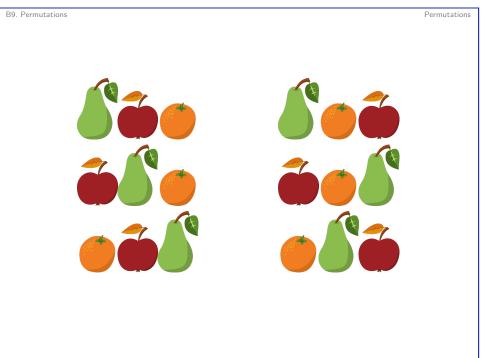


B9. Permutations B9.1 Permutations Discrete Mathematics in Computer Science — B9. Permutations

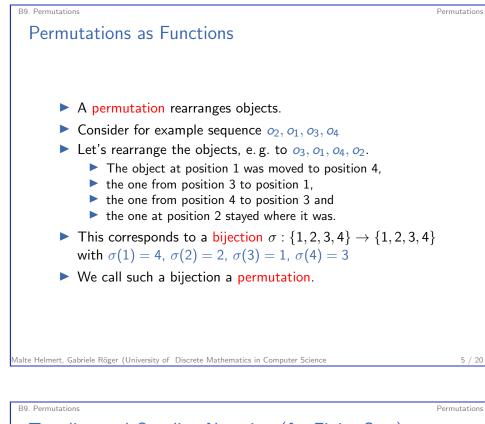
B9.1 Permutations

Malte Helmert, Gabriele Röger (University of Discrete Mathematics in Computer Science



Permutations

2 / 20



Two-line and One-line Notation (for Finite Sets)

Consider π with

 $\pi(1) = 2, \pi(2) = 5, \pi(3) = 4, \pi(4) = 3, \pi(5) = 1, \pi(6) = 6.$

Two-line notation lists the elements of S in the first row and the image of each element in the second row:

 $\pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 5 & 4 & 3 & 1 & 6 \end{pmatrix} = \begin{pmatrix} 3 & 5 & 1 & 6 & 4 & 2 \\ 4 & 1 & 2 & 6 & 3 & 5 \end{pmatrix}$

One-line notation only lists the second row for the natural order of the first row:

$$\pi = (2 \ 5 \ 4 \ 3 \ 1 \ 6)$$

B9. Permutations

Permutation – Definition

Definition (Permutation)

Let S be a set. A bijection $\pi: S \to S$ is called a permutation of S.

We will focus on permutations of finite sets. The actual objects in S don't matter, so we mostly work with $\{1, \ldots, |S|\}$. How many permutations are there for a finite set S?

Aalte Helmert, Gabriele Röger (University of Discrete Mathematics in Computer Science

B9. Permutations

Composition

- Permutations of the same set can be composed with function composition.
- lnstead of $\sigma \circ \pi$, we write $\sigma \pi$.
- We call $\sigma\pi$ the product of π and σ .
- The product of permutations is a permutation. Why?
- Example:

 $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 4 & 1 & 5 \end{pmatrix} \qquad \pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 5 & 2 & 4 \end{pmatrix}$

 $\sigma\pi =$

 $\pi\sigma =$

7 / 20

6 / 20

Permutations

B9. Permutations

Cycle Notation – Idea

One-line notation still needs one entry per element and the effect of repeated application is hard to see.

Consider again π with

$$\pi(1) = 2, \pi(2) = 5, \pi(3) = 4, \pi(4) = 3, \pi(5) = 1, \pi(6) = 6.$$

$$1 \xrightarrow{\leftarrow} 2 \qquad 3 \xrightarrow{\leftarrow} 4 \qquad 5 \qquad 6 \supseteq$$

There is a cycle $(1 \ 2 \ 5) = (2 \ 5 \ 1) = (5 \ 1 \ 2)$ and a cycle $(3 \ 4) = (4 \ 3)$.

Idea: Write π as product of such cycles.

Malte Helmert, Gabriele Röger (University of Discrete Mathematics in Computer Science

B9. Permutations

Cyclic Permutation

Definition (Cyclic Permutation)

A permutation is cyclic if it has a single k-cycle with k > 1.

In cycle notation, we represent a cyclic permutation by this cycle.

For example:

Permutation σ of $\{1, \ldots, 5\}$ with $\sigma = \begin{pmatrix} 1 & 3 & 4 \end{pmatrix}$ in cycle representation corresponds to

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 4 & 1 & 5 \end{pmatrix}$$

in two-line notation.

Question: Is this representation unique (canonical)?

B9. Permutations
Permutation
$$\mathcal{G}$$
 permutation σ of finite set S has a
 k -cycle $(e_1 \quad e_2 \quad \dots \quad e_k)$ if
 $e_i \in S$ for $i \in \{1, \dots, k\}$
 $e_i \neq e_j$ for $i \neq j$
 $\sigma(e_i) = e_{i+1}$ for $i \in \{1, \dots, k-1\}$
 $\sigma(e_k) = e_1$
Don't confuse cycles with permutations in one-line notation.
 A 2-cycle is called a transposition

• A 1-cycle is called a fixed-point of σ .

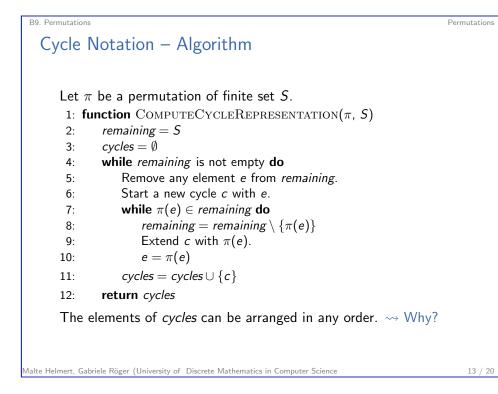
Malte Helmert, Gabriele Röger (University of Discrete Mathematics in Computer Science

B9. Permutations Cycle Notation – Example We can write every permutation as a product of disjoint cycles. Consider again π with $\pi(1) = 2, \pi(2) = 5, \pi(3) = 4, \pi(4) = 3, \pi(5) = 1, \pi(6) = 6.$ $1 \rightarrow 2 \quad 3 \rightarrow 4 \quad 5 \quad 6 \rightarrow$ There is a cycle $(1 \quad 2 \quad 5) = (2 \quad 5 \quad 1) = (5 \quad 1 \quad 2)$ and a cycle $(3 \quad 4) = (4 \quad 3).$ In cycle representation: $\pi = (1 \quad 2 \quad 5)(3 \quad 4)(6) = (1 \quad 2 \quad 5)(3 \quad 4)$

9 / 20

Permutations

10 / 20



Permutations In General Cycles Do not Commute Consider cycles (1 2) and (2 3) and set $S = \{1, 2, 3\}$. (1 2)(2 3) = (2 3)(1 2) =

```
B9. Permutations
```

Disjoint Cycles Commute

Theorem

Let $\pi = (e_1 \dots e_n)$ and $\pi' = (e'_1 \dots e'_m)$ be permutations of set *S* in cycle notation and let π and π' be disjoint, *i*. e. $e_i \neq e'_i$ for $i \in \{1, \dots, n\}, j \in \{1, \dots, m\}$.

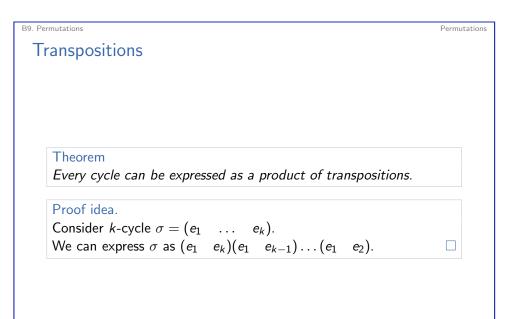
Then $\pi\pi' = \pi'\pi$.

Proof.

Consider an arbitrary element $e \in S$. We distinguish three cases:

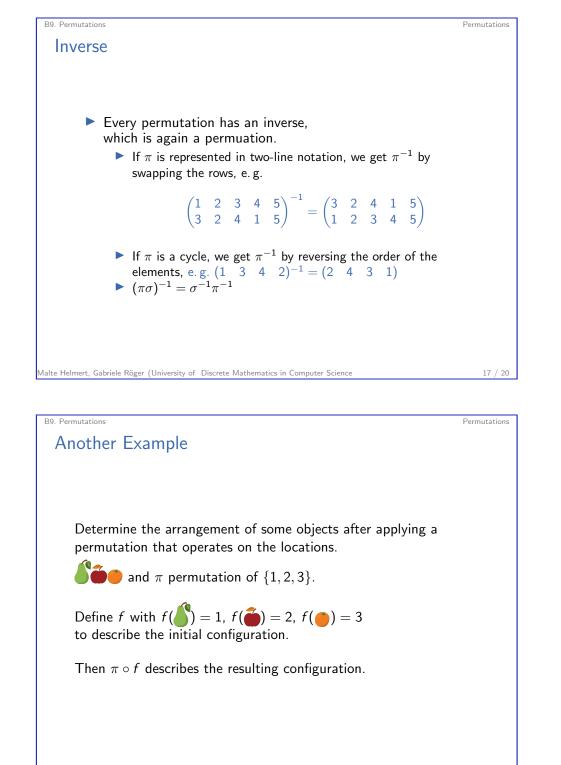
If $e = e_i$ for some $i \in \{1, ..., n\}$ then $\pi(e) = e_j$ for some $j \in \{1, ..., n\}$. Since the cycles are disjoint, $\pi'(e) = e$ and $\pi'(\pi(e)) = \pi(e)$. Together, this gives $\pi'(\pi(e)) = \pi(\pi'(e))$. If $e = e'_i$ for some $i \in \{1, ..., m\}$, we can use the analogous argument to show that $\pi(\pi'(e)) = \pi'(\pi(e))$. If e occurs in neither cycle then $\pi(e) = e$ and $\pi'(e) = e$, so $\pi'(\pi(e)) = e = \pi(\pi'(e))$.

```
lalte Helmert, Gabriele Röger (University of Discrete Mathematics in Computer Science
```



Permutations

14 / 20



B9. Permutations	Permutation
Example	
$\sigma = (4 5)(2 3) \qquad \pi = (4 5)(2 1)$	
$\sigma \pi^{-1} =$	
0 //	
Ite Helmert, Gabriele Röger (University of Discrete Mathematics in Computer Science	18 / 2

B9. Permutations Last Example Determine the permutation of locations that leads from one configuration to the other. f(f) = f(f) = 1, f(f) = 2, f(f) = 3to describe the initial configuration and function g with g(f) = 2, g(f) = 1, g(f) = 3for the final configuration. Then $g \circ f^{-1}$ describes the permutation.