Discrete Mathematics in Computer Science

B9. Permutations

Malte Helmert, Gabriele Röger

University of Basel

Discrete Mathematics in Computer Science

- B9. Permutations

B9.1 Permutations

B9.1 Permutations

Coo Coó O゙--0̂́ 0

Permutations as Functions

- A permutation rearranges objects.
- Consider for example sequence $o_{2}, o_{1}, o_{3}, o_{4}$
- Let's rearrange the objects, e.g. to $o_{3}, o_{1}, o_{4}, o_{2}$.
- The object at position 1 was moved to position 4,
- the one from position 3 to position 1,
- the one from position 4 to position 3 and
- the one at position 2 stayed where it was.
- This corresponds to a bijection $\sigma:\{1,2,3,4\} \rightarrow\{1,2,3,4\}$ with $\sigma(1)=4, \sigma(2)=2, \sigma(3)=1, \sigma(4)=3$
- We call such a bijection a permutation.

Permutation - Definition

Definition (Permutation)
Let S be a set. A bijection $\pi: S \rightarrow S$ is called a permutation of S.
We will focus on permutations of finite sets.
The actual objects in S don't matter, so we mostly work with $\{1, \ldots,|S|\}$.
How many permutations are there for a finite set S ?

Two-line and One-line Notation (for Finite Sets)

Consider π with
$\pi(1)=2, \pi(2)=5, \pi(3)=4, \pi(4)=3, \pi(5)=1, \pi(6)=6$.
Two-line notation lists the elements of S in the first row and the image of each element in the second row:

$$
\pi=\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
2 & 5 & 4 & 3 & 1 & 6
\end{array}\right)=\left(\begin{array}{llllll}
3 & 5 & 1 & 6 & 4 & 2 \\
4 & 1 & 2 & 6 & 3 & 5
\end{array}\right)
$$

One-line notation only lists the second row for the natural order of the first row:

$$
\pi=\left(\begin{array}{llllll}
2 & 5 & 4 & 3 & 1 & 6
\end{array}\right)
$$

Composition

- Permutations of the same set can be composed with function composition.
- Instead of $\sigma \circ \pi$, we write $\sigma \pi$.
- We call $\sigma \pi$ the product of π and σ.
- The product of permutations is a permutation. Why?
- Example:

$$
\sigma=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
3 & 2 & 4 & 1 & 5
\end{array}\right) \quad \pi=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
3 & 1 & 5 & 2 & 4
\end{array}\right)
$$

$\sigma \pi=$
$\pi \sigma=$

Cycle Notation - Idea

One-line notation still needs one entry per element and the effect of repeated application is hard to see.
Consider again π with
$\pi(1)=2, \pi(2)=5, \pi(3)=4, \pi(4)=3, \pi(5)=1, \pi(6)=6$.

$$
6 \bigcirc
$$

There is a cycle $\left(\begin{array}{lll}1 & 2 & 5\end{array}\right)=\left(\begin{array}{lll}2 & 5 & 1\end{array}\right)=\left(\begin{array}{lll}5 & 1 & 2\end{array}\right)$ and a cycle $\left(\begin{array}{ll}3 & 4\end{array}\right)=\left(\begin{array}{ll}4 & 3\end{array}\right)$.
Idea: Write π as product of such cycles.

Cycles

Definition (Cycle)
A permutation σ of finite set S has a
k-cycle ($\left.\begin{array}{llll}e_{1} & e_{2} & \ldots & e_{k}\end{array}\right)$ if

- $e_{i} \in S$ for $i \in\{1, \ldots, k\}$
- $e_{i} \neq e_{j}$ for $i \neq j$
- $\sigma\left(e_{i}\right)=e_{i+1}$ for $i \in\{1, \ldots, k-1\}$
- $\sigma\left(e_{k}\right)=e_{1}$
- Don't confuse cycles with permutations in one-line notation.
- A 2-cycle is called a transposition
- A 1 -cycle is called a fixed-point of σ.

Cyclic Permutation

Definition (Cyclic Permutation)

A permutation is cyclic if it has a single k-cycle with $k>1$.
In cycle notation, we represent a cyclic permutation by this cycle.
For example:
Permutation σ of $\{1, \ldots, 5\}$ with $\sigma=\left(\begin{array}{lll}1 & 3 & 4\end{array}\right)$ in cycle representation corresponds to

$$
\sigma=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
3 & 2 & 4 & 1 & 5
\end{array}\right)
$$

in two-line notation.
Question: Is this representation unique (canonical)?

Cycle Notation - Example

We can write every permutation as a product of disjoint cycles.
Consider again π with
$\pi(1)=2, \pi(2)=5, \pi(3)=4, \pi(4)=3, \pi(5)=1, \pi(6)=6$.

There is a cycle $\left(\begin{array}{lll}1 & 2 & 5\end{array}\right)=\left(\begin{array}{lll}2 & 5 & 1\end{array}\right)=\left(\begin{array}{lll}5 & 1 & 2\end{array}\right)$ and a cycle $\left(\begin{array}{ll}3 & 4\end{array}\right)=\left(\begin{array}{ll}4 & 3\end{array}\right)$.

In cycle representation:
$\pi=\left(\begin{array}{lll}1 & 2 & 5\end{array}\right)(3 \quad 4)(6)=\left(\begin{array}{lll}1 & 2 & 5\end{array}\right)(3 \quad 4)$

Cycle Notation - Algorithm

Let π be a permutation of finite set S.
1: function ComputeCycleRepresentation (π, S)
2: \quad remaining $=S$
3: \quad cycles $=\emptyset$
4: while remaining is not empty do
5: \quad Remove any element efrom remaining.
6: \quad Start a new cycle c with e.
7: \quad while $\pi(e) \in$ remaining do
8: \quad remaining $=$ remaining $\backslash\{\pi(e)\}$
9: \quad Extend c with $\pi(e)$.
10: $\quad e=\pi(e)$
11: \quad cycles $=$ cycles $\cup\{c\}$
12: return cycles
The elements of cycles can be arranged in any order. \rightsquigarrow Why?

Disjoint Cycles Commute

Theorem

Let $\pi=\left(\begin{array}{lll}e_{1} & \ldots & e_{n}\end{array}\right)$ and $\pi^{\prime}=\left(\begin{array}{lll}e_{1}^{\prime} & \ldots & e_{m}^{\prime}\end{array}\right)$ be permutations of set S in cycle notation and let π and π^{\prime} be disjoint,
i. e. $e_{i} \neq e_{j}^{\prime}$ for $i \in\{1, \ldots, n\}, j \in\{1, \ldots, m\}$.

Then $\pi \pi^{\prime}=\pi^{\prime} \pi$.

Proof.

Consider an arbitrary element $e \in S$. We distinguish three cases:
If $e=e_{i}$ for some $i \in\{1, \ldots, n\}$ then $\pi(e)=e_{j}$ for some $j \in\{1, \ldots, n\}$. Since the cycles are disjoint, $\pi^{\prime}(e)=e$ and $\pi^{\prime}(\pi(e))=\pi(e)$. Together, this gives $\pi^{\prime}(\pi(e))=\pi\left(\pi^{\prime}(e)\right)$.
If $e=e_{i}^{\prime}$ for some $i \in\{1, \ldots, m\}$, we can use the analogous argument to show that $\pi\left(\pi^{\prime}(e)\right)=\pi^{\prime}(\pi(e))$.
If e occurs in neither cycle then $\pi(e)=e$ and $\pi^{\prime}(e)=e$, so $\pi^{\prime}(\pi(e))=e=\pi\left(\pi^{\prime}(e)\right)$.

In General Cycles Do not Commute

Consider cycles (1 2) and (2 3) and set $S=\{1,2,3\}$.
$\left(\begin{array}{ll}1 & 2\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right)=$
$\left(\begin{array}{lll}2 & 3\end{array}\right)\left(\begin{array}{ll}1 & 2\end{array}\right)=$

Transpositions

Theorem

Every cycle can be expressed as a product of transpositions.
Proof idea.
Consider k-cycle $\sigma=\left(\begin{array}{lll}e_{1} & \ldots & e_{k}\end{array}\right)$.
We can express σ as $\left(e_{1} \quad e_{k}\right)\left(\begin{array}{ll}e_{1} & e_{k-1}\end{array}\right) \ldots\left(\begin{array}{ll}e_{1} & e_{2}\end{array}\right)$.

Inverse

- Every permutation has an inverse, which is again a permuation.
- If π is represented in two-line notation, we get π^{-1} by swapping the rows, e.g.

$$
\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
3 & 2 & 4 & 1 & 5
\end{array}\right)^{-1}=\left(\begin{array}{lllll}
3 & 2 & 4 & 1 & 5 \\
1 & 2 & 3 & 4 & 5
\end{array}\right)
$$

- If π is a cycle, we get π^{-1} by reversing the order of the elements, e.g. (1 $\left.\begin{array}{llll}1 & 3 & 4 & 2\end{array}\right)^{-1}=\left(\begin{array}{llll}2 & 4 & 3 & 1\end{array}\right)$
- $(\pi \sigma)^{-1}=\sigma^{-1} \pi^{-1}$

Example

$$
\begin{aligned}
& \sigma=\left(\begin{array}{ll}
4 & 5
\end{array}\right)\left(\begin{array}{ll}
2 & 3
\end{array}\right) \quad \pi=\left(\begin{array}{ll}
4 & 5
\end{array}\right)\left(\begin{array}{ll}
2 & 1
\end{array}\right) \\
& \sigma \pi^{-1}=
\end{aligned}
$$

Another Example

Determine the arrangement of some objects after applying a permutation that operates on the locations.

and π permutation of $\{1,2,3\}$.
Define f with $f(\circlearrowleft)=1, f(O)=2, f(\bigcirc)=3$ to describe the initial configuration.

Then $\pi \circ f$ describes the resulting configuration.

Last Example

Determine the permutation of locations that leads from one configuration to the other.

$$
0^{4} 0 \Rightarrow 60
$$

Define f with $f(\circlearrowleft)=1, f(O)=2, f(O)=3$ to describe the initial configuration and function g with $g(\circlearrowleft)=2, g(\circlearrowleft)=1, g(\bigcirc)=3$ for the final configuration.

Then $g \circ f^{-1}$ describes the permutation.

