

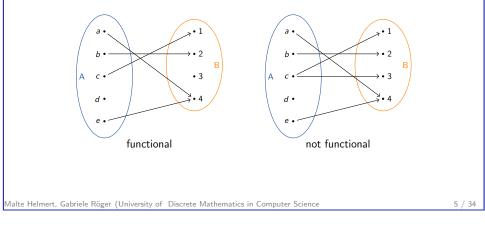
Discrete Mathematics in Computer Science — B8. Functions	
B8.1 Partial and Total Functions	
B8.2 Operations on Partial Functions	
B8.3 Properties of Functions	
Malte Helmert, Gabriele Röger (University of Discrete Mathematics in Computer Science	2 / 34

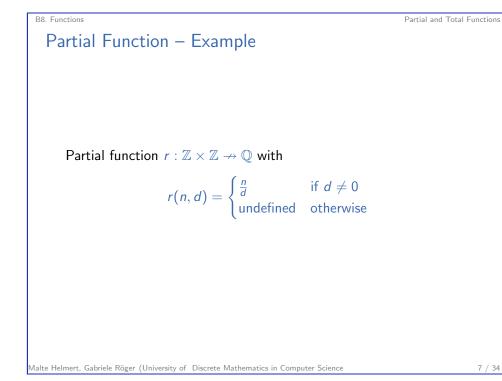
B8. Functions Important Building Blocks of Discrete Mathematics Important building blocks: Sets relations functions In principle, functions are just a special kind of relations: $f : \mathbb{N}_0 \to \mathbb{N}_0$ with $f(x) = x^2$ relation R over \mathbb{N}_0 with $R = \{(x, y) \mid x, y \in \mathbb{N}_0 \text{ and } y = x^2\}$.

Partial and Total Functions

Functional Relations

Definition A binary relation R over sets A and B is functional if for every $a \in A$ there is at most one $b \in B$ with $(a, b) \in R$.





B8. Functions Partial and T	Total Functions
Functions – Examples	
• $f: \mathbb{N}_0 \to \mathbb{N}_0$ with $f(x) = x^2 + 1$	
• $abs: \mathbb{Z} \to \mathbb{N}_0$ with	
$\int x \text{if } x \ge 0$	
$abs(x) = egin{cases} x & ext{if } x \geq 0 \ -x & ext{otherwise} \end{cases}$	
• distance : $\mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ with	
$distance((x_1, y_1), (x_2, y_2)) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$	
Alte Helmert, Gabriele Röger (University of Discrete Mathematics in Computer Science	6 / 34

B8. Functions

Partial Functions

Definition (Partial function) A partial function f from set A to set B (written $f : A \rightarrow B$) is given by a functional relation G over A and B. Relation G is called the graph of f. We write f(x) = y for $(x, y) \in G$ and say y is the image of x under f. If there is no $y \in B$ with $(x, y) \in G$, then f(x) is undefined.

Partial function $r : \mathbb{Z} \times \mathbb{Z} \twoheadrightarrow \mathbb{Q}$ with

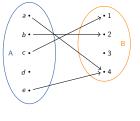
 $r(n,d) = \begin{cases} \frac{n}{d} & \text{if } d \neq 0\\ \text{undefined} & \text{otherwise} \end{cases}$

has graph $\{((n, d), \frac{n}{d}) \mid n \in \mathbb{Z}, d \in \mathbb{Z} \setminus \{0\}\} \subseteq \mathbb{Z}^2 \times \mathbb{Q}.$

Partial and Total Functions

Domain (of Definition), Codomain, Image

Definition (domain of definition, codomain, image) Let $f : A \rightarrow B$ be a partial function. Set A is called the domain of f, set B is its codomain. The domain of definition of f is the set dom $(f) = \{x \in A \mid \text{there is a } y \in B \text{ with } f(x) = y\}$. The image (or range) of f is the set img $(f) = \{y \mid \text{there is an } x \in A \text{ with } f(x) = y\}$.



f : {a, b, c, d, e} \Rightarrow {1,2,3,4} f : {a, b, c, d, e} \Rightarrow {1,2,3,4} f(a) = 4, f(b) = 2, f(c) = 1, f(e) = 4 domain {a, b, c, d, e} codomain {1,2,3,4} domain of definition dom(f) = {a, b, c, e} image img(f) = {1,2,4}

Alte Helmert, Gabriele Röger (University of Discrete Mathematics in Computer Science

Partial and Total Functions

9 / 34

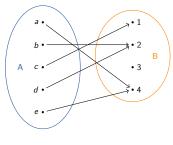
Total Functions

B8. Functions

Definition (Total function)

A (total) function $f : A \to B$ from set A to set B is a partial function from A to B such that f(x) is defined for all $x \in A$.

 \rightarrow no difference between the domain and the domain of definition

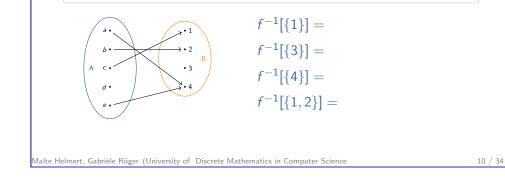


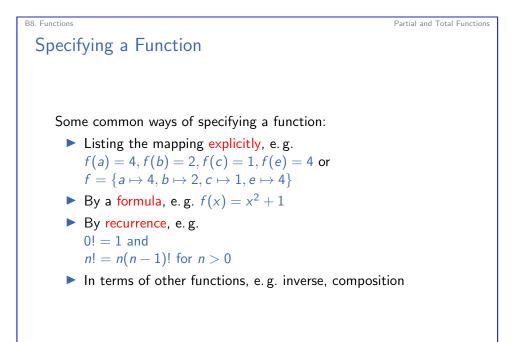
B8. Functions

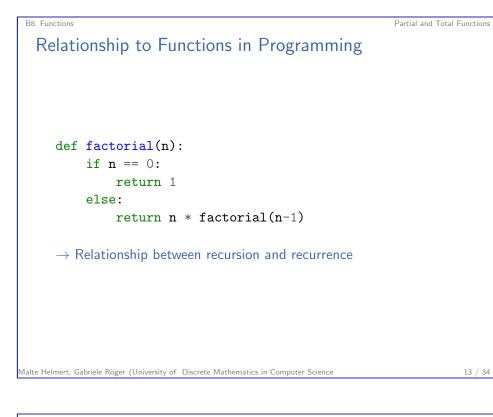
Preimage

The preimage contains all elements of the domain that are mapped to given elements of the codomain.

Definition (Preimage) Let $f : A \rightarrow B$ be a partial function and let $Y \subseteq B$. The preimage of Y under f is the set $f^{-1}[Y] = \{x \in A \mid f(x) \in Y\}.$

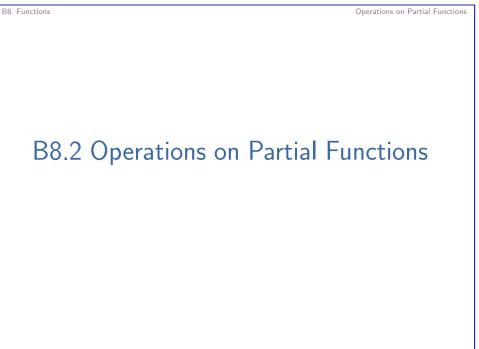






Relationship to Functions in Programming def foo(n): value = ... while <some condition>: value = ... return value -> Does possibly not terminate on all inputs. -> Value is undefined for such inputs. -> Theoretical computer science: partial function Mutue Humer, Gabrie Röger (University of Discret Mathematics in Computer Science 14 / 34

B8. Functions



Partial and Total Functions

Operations on Partial Functions

Restrictions and Extensions

Definition (restriction and extension)

Let $f : A \rightarrow B$ be a partial function and let $X \subseteq A$. The restriction of f to X is the partial function $f|_X : X \rightarrow B$ with $f|_X(x) = f(x)$ for all $x \in X$.

A function $f' : A' \rightarrow B$ is called an extension of f if $A \subseteq A'$ and $f'|_A = f$.

The restriction of f to its domain of definition is a total function. What's the graph of the restriction? What's the restriction of f to its domain?

Malte Helmert, Gabriele Röger (University of Discrete Mathematics in Computer Science

B8. Functions Properties of Function Composition Function composition is not commutative: $f: \mathbb{N}_0 \to \mathbb{N}_0$ with $f(x) = x^2$ $g: \mathbb{N}_0 \to \mathbb{N}_0$ with g(x) = x + 3 $g(g \circ f)(x) = x^2 + 3$ $(f \circ g)(x) = (x + 3)^2$ associative, i.e. $h \circ (g \circ f) = (h \circ g) \circ f$ \rightarrow analogous to associativity of relation composition

```
B8. Functions
```

Function Composition

Definition (Composition of partial functions) Let $f : A \rightarrow B$ and $g : B \rightarrow C$ be partial functions. The composition of f and g is $g \circ f : A \rightarrow C$ with

$$(g \circ f)(x) = \begin{cases} g(f(x)) & \text{if } f \text{ is defined for } x \text{ and} \\ g \text{ is defined for } f(x) \\ \text{undefined otherwise} \end{cases}$$

Corresponds to relation composition of the graphs. If f and g are functions, their composition is a function. Example:

$$egin{aligned} f : \mathbb{N}_0 & o \mathbb{N}_0 & ext{with } f(x) = x^2 \ g : \mathbb{N}_0 & o \mathbb{N}_0 & ext{with } g(x) = x+3 \ (g \circ f)(x) = \end{aligned}$$

Malte Helmert, Gabriele Röger (University of Discrete Mathematics in Computer Science

```
B8. Functions Operations on Partial Functions
Function Composition in Programming
We implicitly compose functions all the time...
def foo(n):
    ...
    x = somefunction(n)
    y = someotherfunction(x)
    ...
Many languages also allow explicit composition of functions,
    e.g. in Haskell:
    incr x = x + 1
    square x = x * x
    squareplusone = incr . square
```

17 / 34

18 / 34

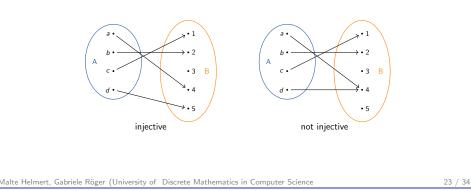
Properties of Functions

Injective Functions

An injective function maps distinct elements of its domain to distinct elements of its co-domain.

Definition (Injective Function)

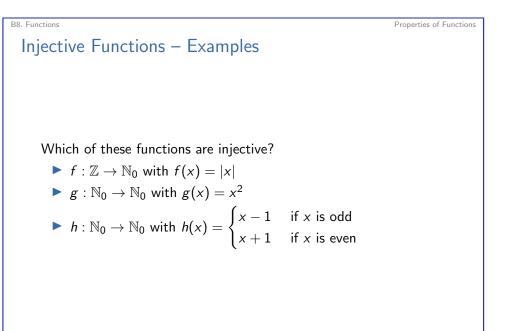
A function $f : A \rightarrow B$ is injective (also one-to-one or an injection) if for all $x, y \in A$ with $x \neq y$ it holds that $f(x) \neq f(y)$.



Properties of Functions

- Partial functions map every element of their domain to at most one element of their codomain. total functions map it to exactly one such value.
- Different elements of the domain can have the same image.
- ► There can be values of the codomain that aren't the image of any element of the domain.
- We often want to exclude such cases \rightarrow define additional properties to say this quickly

/alte Helmert, Gabriele Röger (University of Discrete Mathematics in Computer Science



22 / 34

Properties of Functions

25 / 34

Composition of Injective Functions

Theorem If $f : A \rightarrow B$ and $g : B \rightarrow C$ are injective functions then also $g \circ f$ is injective.

Proof.

Consider arbitrary elements $x, y \in A$ with $x \neq y$. Since f is injective, we know that $f(x) \neq f(y)$. As g is injective, this implies that $g(f(x)) \neq g(f(y))$. With the definition of $g \circ f$, we conclude that $(g \circ f)(x) \neq (g \circ f)(y).$ Overall, this shows that $g \circ f$ is injective.

Alte Helmert, Gabriele Röger (University of Discrete Mathematics in Computer Science

B8. Functions Properties of Functions Surjective Functions – Examples Which of these functions are surjective? ▶ $f : \mathbb{Z} \to \mathbb{N}_0$ with f(x) = |x|▶ $g : \mathbb{N}_0 \to \mathbb{N}_0$ with $g(x) = x^2$ $\blacktriangleright h: \mathbb{N}_0 \to \mathbb{N}_0 \text{ with } h(x) = \begin{cases} x-1 & \text{if } x \text{ is odd} \\ x+1 & \text{if } x \text{ is even} \end{cases}$

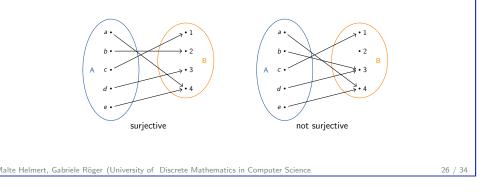
B8. Functions

Surjective Functions

A surjective function maps at least one elements to every element of its co-domain.

Definition (Surjective Function)

A function $f : A \rightarrow B$ is surjective (also onto or a surjection) if its image is equal to its codomain, i.e. for all $y \in B$ there is an $x \in A$ with f(x) = y.



Composition of Surjective Functions

Theorem

B8. Functions

If $f : A \rightarrow B$ and $g : B \rightarrow C$ are surjective functions then also $g \circ f$ is surjective.

Proof.

Consider an arbitrary element $z \in C$. Since g is surjective, there is a $y \in B$ with g(y) = z. As f is surjective, for such a y there is an $x \in A$ with f(x) = yand thus g(f(x)) = z. Overall, for every $z \in C$ there is an $x \in A$ with $(g \circ f)(x) = g(f(x)) = z$, so $g \circ f$ is surjective.

Alte Helmert, Gabriele Röger (University of Discrete Mathematics in Computer Science

Properties of Functions

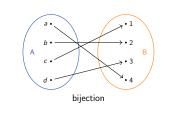
Properties of Functions

Bijective Functions

A bijective function pairs every element of its domain with exactly one element of its codomain and every element of the codomain is paired with exactly one element of the domain.

Definition (Bijective Function)

A function is bijective (also a one-to-one correspondence or a bijection) if it is injective and surjective.



Alte Helmert, Gabriele Röger (University of Discrete Mathematics in Computer Science

Corollary The composition of two bijective functions is bijective.

29 / 34

Between substance of the formation of the function $f^{-1}: B \to A$ with $f^{-1}(y) = x$ iff f(x) = y.

B8. Functions

Bijective Functions – Examples

Which of these functions are bijective?

/alte Helmert, Gabriele Röger (University of Discrete Mathematics in Computer Science

30 / 34

Properties of Functions

Properties of Functions

Theorem

Let $f : A \rightarrow B$ be a bijection.

- For all $x \in A$ it holds that $f^{-1}(f(x)) = x$.
- **2** For all $y \in B$ it holds that $f(f^{-1}(y)) = y$.
- **3** $(f^{-1})^{-1} = f$

Proof sketch.

• For $x \in A$ let y = f(x). Then $f^{-1}(f(x)) = f^{-1}(y) = x$

- So For $y \in B$ there is exactly one x with y = f(x). With this x it holds that $f^{-1}(y) = x$ and overall $f(f^{-1}(y)) = f(x) = y$.
- Def. of inverse: $(f^{-1})^{-1}(x) = y$ iff $f^{-1}(y) = x$ iff f(x) = y.

Properties of Functions

Inverse Function

Theorem Let $f : A \to B$ and $g : B \to C$ be bijections. Then $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

Proof.

We need to show that for all $x \in C$ it holds that $(g \circ f)^{-1}(x) = (f^{-1} \circ g^{-1})(x).$ Consider an arbitrary $x \in C$ and let $y = (g \circ f)^{-1}(x).$ By the definition of the inverse $(g \circ f)(y) = x.$ Let z = f(y). With $(g \circ f)(y) = g(f(y))$, we know that x = g(z). From z = f(y) we get $f^{-1}(z) = y$ and from x = g(z) we get $g^{-1}(x) = z.$ This gives $(f^{-1} \circ g^{-1})(x) = f^{-1}(g^{-1}(x)) = f^{-1}(z) = y.$

Malte Helmert, Gabriele Röger (University of Discrete Mathematics in Computer Science

33 / 34

