Discrete Mathematics in Computer Science
 Equivalence Relations and Partitions

Malte Helmert, Gabriele Röger

University of Basel

Relations: Recap

■ A relation over sets S_{1}, \ldots, S_{n} is a set $R \subseteq S_{1} \times \cdots \times S_{n}$.

Relations: Recap

■ A relation over sets S_{1}, \ldots, S_{n} is a set $R \subseteq S_{1} \times \cdots \times S_{n}$.
■ Possible properties of homogeneous relations R over S :

Relations: Recap

■ A relation over sets S_{1}, \ldots, S_{n} is a set $R \subseteq S_{1} \times \cdots \times S_{n}$.
■ Possible properties of homogeneous relations R over S :

- reflexive: $(x, x) \in R$ for all $x \in S$

Relations: Recap

■ A relation over sets S_{1}, \ldots, S_{n} is a set $R \subseteq S_{1} \times \cdots \times S_{n}$.
■ Possible properties of homogeneous relations R over S :

- reflexive: $(x, x) \in R$ for all $x \in S$
- irreflexive: $(x, x) \notin R$ for all $x \in S$

Relations: Recap

■ A relation over sets S_{1}, \ldots, S_{n} is a set $R \subseteq S_{1} \times \cdots \times S_{n}$.
■ Possible properties of homogeneous relations R over S :

- reflexive: $(x, x) \in R$ for all $x \in S$
- irreflexive: $(x, x) \notin R$ for all $x \in S$
- symmetric: $(x, y) \in R$ iff $(y, x) \in R$

Relations: Recap

■ A relation over sets S_{1}, \ldots, S_{n} is a set $R \subseteq S_{1} \times \cdots \times S_{n}$.
■ Possible properties of homogeneous relations R over S :

- reflexive: $(x, x) \in R$ for all $x \in S$
- irreflexive: $(x, x) \notin R$ for all $x \in S$
- symmetric: $(x, y) \in R$ iff $(y, x) \in R$
- asymmetric: if $(x, y) \in R$ then $(y, x) \notin R$

Relations: Recap

■ A relation over sets S_{1}, \ldots, S_{n} is a set $R \subseteq S_{1} \times \cdots \times S_{n}$.
■ Possible properties of homogeneous relations R over S :

- reflexive: $(x, x) \in R$ for all $x \in S$
- irreflexive: $(x, x) \notin R$ for all $x \in S$
- symmetric: $(x, y) \in R$ iff $(y, x) \in R$
- asymmetric: if $(x, y) \in R$ then $(y, x) \notin R$
- antisymmetric: if $(x, y) \in R$ then $(y, x) \notin R$ or $x=y$

Relations: Recap

■ A relation over sets S_{1}, \ldots, S_{n} is a set $R \subseteq S_{1} \times \cdots \times S_{n}$.
■ Possible properties of homogeneous relations R over S :

- reflexive: $(x, x) \in R$ for all $x \in S$
- irreflexive: $(x, x) \notin R$ for all $x \in S$
- symmetric: $(x, y) \in R$ iff $(y, x) \in R$
- asymmetric: if $(x, y) \in R$ then $(y, x) \notin R$
- antisymmetric: if $(x, y) \in R$ then $(y, x) \notin R$ or $x=y$
- transitive: if $(x, y) \in R$ and $(y, z) \in R$ then $(x, z) \in R$

Motivation

- Think of any attribute that two objects can have in common, e. g. their color.

■ We could place the objects into distinct "buckets",
e.g. one bucket for each color.

■ We also can define a relation \sim such that $x \sim y$ iff x and y share the attribute, e.g.have the same color.

- Would this relation be

■ reflexive?
■ irreflexive?
■ symmetric?
■ asymmetric?
■ antisymmetric?
■ transitive?

Equivalence Relation

Definition (Equivalence Relation)

A binary relation \sim over set S is an equivalence relation if \sim is reflexive, symmetric and transitive.

Is this definition indeed what we want?
Does it allow us to partition the objects into buckets (e.g. one group for all objects that share a specific color)?

Partition

Definition (Partition)

A partition of a set S is a set $P \subseteq \mathcal{P}(S)$ such that

- $X \neq \emptyset$ for all $X \in P$,
- $\bigcup_{X \in P} X=S$, and

■ $X \cap Y=\emptyset$ for all $X, Y \in P$ with $X \neq Y$,
The elements of P are called the blocks of the partition.

Partition

Let $S=\left\{e_{1}, \ldots, e_{5}\right\}$.
Which of the following sets are partitions of S ?
■ $P_{1}=\left\{\left\{e_{1}, e_{4}\right\},\left\{e_{3}\right\},\left\{e_{2}, e_{5}\right\}\right\}$

Partition

Let $S=\left\{e_{1}, \ldots, e_{5}\right\}$.
Which of the following sets are partitions of S ?
■ $P_{1}=\left\{\left\{e_{1}, e_{4}\right\},\left\{e_{3}\right\},\left\{e_{2}, e_{5}\right\}\right\}$

- $P_{2}=\left\{\left\{e_{1}, e_{4}, e_{5}\right\},\left\{e_{3}\right\}\right\}$

Partition

Let $S=\left\{e_{1}, \ldots, e_{5}\right\}$.
Which of the following sets are partitions of S ?
■ $P_{1}=\left\{\left\{e_{1}, e_{4}\right\},\left\{e_{3}\right\},\left\{e_{2}, e_{5}\right\}\right\}$

- $P_{2}=\left\{\left\{e_{1}, e_{4}, e_{5}\right\},\left\{e_{3}\right\}\right\}$

■ $P_{3}=\left\{\left\{e_{1}, e_{4}, e_{5}\right\},\left\{e_{3}\right\},\left\{e_{2}, e_{5}\right\}\right\}$

Partition

Let $S=\left\{e_{1}, \ldots, e_{5}\right\}$.
Which of the following sets are partitions of S ?

- $P_{1}=\left\{\left\{e_{1}, e_{4}\right\},\left\{e_{3}\right\},\left\{e_{2}, e_{5}\right\}\right\}$
- $P_{2}=\left\{\left\{e_{1}, e_{4}, e_{5}\right\},\left\{e_{3}\right\}\right\}$
- $P_{3}=\left\{\left\{e_{1}, e_{4}, e_{5}\right\},\left\{e_{3}\right\},\left\{e_{2}, e_{5}\right\}\right\}$
- $P_{4}=\left\{\left\{e_{1}\right\},\left\{e_{2}\right\},\left\{e_{3}\right\},\left\{e_{4}\right\},\left\{e_{5}\right\}\right\}$

Partition

Let $S=\left\{e_{1}, \ldots, e_{5}\right\}$.
Which of the following sets are partitions of S ?

- $P_{1}=\left\{\left\{e_{1}, e_{4}\right\},\left\{e_{3}\right\},\left\{e_{2}, e_{5}\right\}\right\}$
- $P_{2}=\left\{\left\{e_{1}, e_{4}, e_{5}\right\},\left\{e_{3}\right\}\right\}$
- $P_{3}=\left\{\left\{e_{1}, e_{4}, e_{5}\right\},\left\{e_{3}\right\},\left\{e_{2}, e_{5}\right\}\right\}$

■ $P_{4}=\left\{\left\{e_{1}\right\},\left\{e_{2}\right\},\left\{e_{3}\right\},\left\{e_{4}\right\},\left\{e_{5}\right\}\right\}$

- $P_{5}=\left\{\left\{e_{1}\right\},\left\{e_{2}\right\},\left\{e_{3}\right\},\left\{e_{4}\right\},\left\{e_{5}\right\},\{ \}\right\}$

A Property of Partitions

Lemma

Let S be a set and P be a partition of S.
Then every $x \in S$ is an element of exactly one $X \in P$.

Proof: \rightsquigarrow exercises

Block of an Element

The lemma enables the following definition:

Definition

Let S be a set and P be a partition of S.
For $e \in S$ we denote by $[e]_{P}$ the block $X \in P$ such that $e \in X$.

Block of an Element

The lemma enables the following definition:

Definition

Let S be a set and P be a partition of S.
For $e \in S$ we denote by $[e]_{P}$ the block $X \in P$ such that $e \in X$.

Consider partition $P=\left\{\left\{e_{1}, e_{4}\right\},\left\{e_{3}\right\},\left\{e_{2}, e_{5}\right\}\right\}$ of $\left\{e_{1}, \ldots, e_{5}\right\}$.
$\left[e_{1}\right]_{P}=$

Connection between Partitions and Equivalence Relations?

■ We will now explore the connection between partitions and equivalence relations.

- Spoiler: They are essentially the same concept.

Partitions Induce Equivalence Relations I

Definition (Relation induced by a partition)
Let S be a set and P be a partition of S.
The relation \sim_{P} induced by P is the binary relation over S with

$$
x \sim_{P} y \text { iff }[x]_{P}=[y]_{P}
$$

$x \sim_{p} y$ iff x and y are in the same block of P.

Partitions Induce Equivalence Relations I

Definition (Relation induced by a partition)

Let S be a set and P be a partition of S.
The relation \sim_{p} induced by P is the binary relation over S with

$$
x \sim_{P} y \text { iff }[x]_{P}=[y]_{P}
$$

$x \sim_{p} y$ iff x and y are in the same block of P.
Consider partition $P=\{\{1,4,5\},\{2,3\}\}$ of set $\{1,2, \ldots, 5\}$.

$$
\begin{aligned}
\sim_{p}=\{ & (1,1),(1,4),(1,5),(4,1),(4,4),(4,5),(5,1),(5,4),(5,5), \\
& (2,2),(2,3),(3,2),(3,3)\}
\end{aligned}
$$

We will show that \sim_{p} is an equivalence relation.

Partitions Induce Equivalence Relations II

Theorem
Let P be a partition of S.
Relation \sim_{p} induced by P is an equivalence relation over S.

Partitions Induce Equivalence Relations II

Theorem
Let P be a partition of S.
Relation \sim_{p} induced by P is an equivalence relation over S.

Proof.

We need to show that \sim_{p} is reflexive, symmetric and transitive.

Partitions Induce Equivalence Relations II

Theorem

Let P be a partition of S.
Relation \sim_{p} induced by P is an equivalence relation over S.

Proof.

We need to show that \sim_{p} is reflexive, symmetric and transitive. reflexive: As $=$ is reflexive it holds for all $x \in S$ that $[x]_{P}=[x]_{P}$ and hence also that $x \sim_{p} x$.

Partitions Induce Equivalence Relations II

Theorem

Let P be a partition of S.
Relation \sim_{p} induced by P is an equivalence relation over S.

Proof.

We need to show that \sim_{p} is reflexive, symmetric and transitive. reflexive: As $=$ is reflexive it holds for all $x \in S$ that $[x]_{P}=[x]_{P}$ and hence also that $x \sim_{p} x$.
symmetric: If $x \sim_{P} y$ then $[x]_{P}=[y]_{P}$. With the symmetry of $=$ we get that $[y]_{P}=[x]_{P}$ and conclude that $y \sim_{P} x$.

Partitions Induce Equivalence Relations II

Theorem

Let P be a partition of S.
Relation \sim_{p} induced by P is an equivalence relation over S.

Proof.

We need to show that \sim_{p} is reflexive, symmetric and transitive. reflexive: As $=$ is reflexive it holds for all $x \in S$ that $[x]_{P}=[x]_{P}$ and hence also that $x \sim_{P} x$.
symmetric: If $x \sim_{P} y$ then $[x]_{P}=[y]_{P}$. With the symmetry of $=$ we get that $[y]_{P}=[x]_{P}$ and conclude that $y \sim_{P} x$.
transitive: If $x \sim_{P} y$ and $y \sim_{P} z$ then $[x]_{P}=[y]_{P}$ and $[y]_{P}=[z]_{P}$. As $=$ is transitive, it then also holds that $[x]_{P}=[z]_{P}$ and hence $x \sim_{P} z$.

Equivalence Classes

Definition (equivalence class)
Let R be an equivalence relation over set S.
For any $x \in S$, the equivalence class of x is the set

$$
[x]_{R}=\{y \in S \mid x R y\}
$$

Equivalence Classes

Definition (equivalence class)

Let R be an equivalence relation over set S.
For any $x \in S$, the equivalence class of x is the set

$$
[x]_{R}=\{y \in S \mid x R y\} .
$$

Consider

```
R={(1,1),(1,4),(1, 5),(4, 1), (4, 4), (4, 5), (5, 1), (5, 4), (5, 5),
    (2, 2),(2,3),(3,2),(3,3)}
over set \(\{1,2, \ldots, 5\}\).
```

$[4]_{R}=$

Equivalence Relations Induce Partitions

Theorem
Let R be an equivalence relation over set S. The set $P=\left\{[x]_{R} \mid x \in S\right\}$ is a partition of S.

Equivalence Relations Induce Partitions

Theorem

Let R be an equivalence relation over set S.
The set $P=\left\{[x]_{R} \mid x \in S\right\}$ is a partition of S.

Proof.

We need to show that
(1) $X \neq \emptyset$ for all $X \in P$,
(2) $\bigcup_{X \in P} X=S$, and
(3) $X \cap Y=\emptyset$ for all $X, Y \in P$ with $X \neq Y$,

Equivalence Relations Induce Partitions

Theorem

Let R be an equivalence relation over set S.
The set $P=\left\{[x]_{R} \mid x \in S\right\}$ is a partition of S.

Proof.

We need to show that
(1) $X \neq \emptyset$ for all $X \in P$,
(2) $\bigcup_{X \in P} X=S$, and
(3) $X \cap Y=\emptyset$ for all $X, Y \in P$ with $X \neq Y$,

1) For $x \in S$, it holds that $x \in[x]_{R}$ because R is reflexive. Hence, no $X \in P$ is empty.

Equivalence Relations Induce Partitions

Proof (continued).
For 2) we show $\bigcup_{X \in P} X \subseteq S$ and $\bigcup_{X \in P} X \supseteq S$ separately.

Equivalence Relations Induce Partitions

Proof (continued).

For 2) we show $\bigcup_{X \in P} X \subseteq S$ and $\bigcup_{X \in P} X \supseteq S$ separately.
\subseteq : Consider an arbitrary $x \in \bigcup_{X \in P} X$. Since x is contained in the union, it must be an element of some $X \in P$. Consider such an X. By the definition of P, there is a $y \in S$ such that $X=[y]_{R}$. Since $x \in[y]_{R}$, it holds that $y R x$.
As R is a relation over S, this implies that $x \in S$.

Equivalence Relations Induce Partitions

Proof (continued).

For 2) we show $\bigcup_{X \in P} X \subseteq S$ and $\bigcup_{X \in P} X \supseteq S$ separately.
\subseteq : Consider an arbitrary $x \in \bigcup_{X \in P} X$. Since x is contained in the union, it must be an element of some $X \in P$. Consider such an X. By the definition of P, there is a $y \in S$ such that $X=[y]_{R}$. Since $x \in[y]_{R}$, it holds that $y R x$.
As R is a relation over S, this implies that $x \in S$.
〇: Consider an arbitrary $x \in S$. Since $x \in[x]_{R}$ (cf. 1) and $[x]_{R} \in P$, it holds that $x \in \bigcup_{X \in P} X$.

Equivalence Relations Induce Partitions

Proof (continued).

We show 3) by contrapositive:
For all $X, Y \in P$: if $X \cap Y \neq \emptyset$ then $X=Y$.

Equivalence Relations Induce Partitions

Proof (continued).

We show 3) by contrapositive:
For all $X, Y \in P$: if $X \cap Y \neq \emptyset$ then $X=Y$.
Let X, Y be two sets from P with $X \cap Y \neq \emptyset$.
Then there is an e with $e \in X \cap Y$ and there are $x, y \in S$ with $X=[x]_{R}$ and $Y=[y]_{R}$. Consider such e, x, y.

Equivalence Relations Induce Partitions

Proof (continued).

We show 3) by contrapositive:
For all $X, Y \in P$: if $X \cap Y \neq \emptyset$ then $X=Y$.
Let X, Y be two sets from P with $X \cap Y \neq \emptyset$.
Then there is an e with $e \in X \cap Y$ and there are $x, y \in S$ with $X=[x]_{R}$ and $Y=[y]_{R}$. Consider such e, x, y.
As $e \in[x]_{R}$ and $e \in[y]_{R}$ it holds that $x R e$ and $y R e$. Since R is symmetric, we get from $y R e$ that eRy. By transitivity, $x R e$ and $e R y$ imply $x R y$, which by symmetry also gives $y R x$.

Equivalence Relations Induce Partitions

Proof (continued).

We show 3) by contrapositive:
For all $X, Y \in P$: if $X \cap Y \neq \emptyset$ then $X=Y$.
Let X, Y be two sets from P with $X \cap Y \neq \emptyset$.
Then there is an e with $e \in X \cap Y$ and there are $x, y \in S$ with $X=[x]_{R}$ and $Y=[y]_{R}$. Consider such e, x, y.
As $e \in[x]_{R}$ and $e \in[y]_{R}$ it holds that $x R e$ and $y R e$. Since R is symmetric, we get from $y R e$ that eRy. By transitivity, $x R e$ and $e R y$ imply $x R y$, which by symmetry also gives $y R x$.
We show $[x]_{R} \subseteq[y]_{R}$: consider an arbitrary $z \in[x]_{R}$. Then $x R z$. From $y R x$ and $x R z$, by transitivity we get $y R z$. This establishes $z \in[y]_{R}$. As z was chosen arbitarily, it holds that $[x]_{R} \subseteq[y]_{R}$.

Equivalence Relations Induce Partitions

Proof (continued).

We show 3) by contrapositive:
For all $X, Y \in P$: if $X \cap Y \neq \emptyset$ then $X=Y$.
Let X, Y be two sets from P with $X \cap Y \neq \emptyset$.
Then there is an e with $e \in X \cap Y$ and there are $x, y \in S$ with $X=[x]_{R}$ and $Y=[y]_{R}$. Consider such e, x, y.
As $e \in[x]_{R}$ and $e \in[y]_{R}$ it holds that $x R e$ and $y R e$. Since R is symmetric, we get from $y R e$ that $e R y$. By transitivity, $x R e$ and $e R y$ imply $x R y$, which by symmetry also gives $y R x$.
We show $[x]_{R} \subseteq[y]_{R}$: consider an arbitrary $z \in[x]_{R}$. Then $x R z$. From $y R x$ and $x R z$, by transitivity we get $y R z$. This establishes $z \in[y]_{R}$. As z was chosen arbitarily, it holds that $[x]_{R} \subseteq[y]_{R}$. Analogously, we can show that $[x]_{R} \supseteq[y]_{R}$, so overall $X=Y$.

Summary

- We typically encounter equivalence relations when we consider objects as equivalent wrt. some attribute/property.
- A relation is an equivalence relation if it is reflexive, symmetric and transitive.
- A partition of a set groups the elements into non-empty subsets.
■ The concepts are closely connected: in principle just different perspectives on the same "situation".

Discrete Mathematics in Computer Science Partial Orders

Malte Helmert, Gabriele Röger

University of Basel

Order Relations

■ An equivalence relation is reflexive, symmetric and transitive.
■ Such a relation induces a partition into "equivalent" objects.

Order Relations

■ An equivalence relation is reflexive, symmetric and transitive.
■ Such a relation induces a partition into "equivalent" objects.
■ We now consider other combinations of properties, that allow us to compare objects in a set against other objects.

Order Relations

- An equivalence relation is reflexive, symmetric and transitive.

■ Such a relation induces a partition into "equivalent" objects.
■ We now consider other combinations of properties, that allow us to compare objects in a set against other objects.

- "Number x is not larger than number y."
"Set S is a subset of set T."
"Jerry runs at least as fast as Tom."
"Pasta tastes better than Potatoes."

Partial Orders

- We begin with partial orders.

Partial Orders

- We begin with partial orders.
- Example partial order relations are \leq over \mathbb{N} or \subseteq for sets.

Partial Orders

- We begin with partial orders.
- Example partial order relations are \leq over \mathbb{N} or \subseteq for sets.
- Are these relations
- reflexive?
- irreflexive?
- symmetric?
- asymmetric?
- antisymmetric?
- transitive?

Partial Orders - Definition

Definition (Partial order, partially ordered sets)
A binary relation \preceq over set S is a partial order if \preceq is reflexive, antisymmetric and transitive.

Partial Orders - Definition

Definition (Partial order, partially ordered sets)

A binary relation \preceq over set S is a partial order if \preceq is reflexive, antisymmetric and transitive.

A partially ordered set (or poset) is a pair (S, R) where S is a set and R is a partial order over S.

Partial Orders - Definition

Definition (Partial order, partially ordered sets)

A binary relation \preceq over set S is a partial order if \preceq is reflexive, antisymmetric and transitive.
A partially ordered set (or poset) is a pair (S, R) where S is a set and R is a partial order over S.

Which of these relations are partial orders?

- strict subset relation \subset for sets
- not-less-than relation \geq over \mathbb{N}_{0}
$\square R=\{(a, a),(a, b),(b, b),(b, c),(c, c)\}$ over $\{a, b, c\}$

Least and Greatest Element

Some special elements of posets:
Definition (Least and greatest element)
Let \preceq be a partial order over set S.
An element $x \in S$ is the least element of S
if for all $y \in S$ it holds that $x \preceq y$.
It is the greatest element of S if for all $y \in S, y \preceq x$.

Least and Greatest Element

Some special elements of posets:
Definition (Least and greatest element)
Let \preceq be a partial order over set S.
An element $x \in S$ is the least element of S
if for all $y \in S$ it holds that $x \preceq y$.
It is the greatest element of S if for all $y \in S, y \preceq x$.

- Is there a least/greatest element? Which one?
- $S=\{1,2,3\}$ and $\preceq=\{(x, y) \mid x, y \in S$ and $x \leq y\}$.

Least and Greatest Element

Some special elements of posets:
Definition (Least and greatest element)
Let \preceq be a partial order over set S.
An element $x \in S$ is the least element of S
if for all $y \in S$ it holds that $x \preceq y$.
It is the greatest element of S if for all $y \in S, y \preceq x$.

- Is there a least/greatest element? Which one?

■ $S=\{1,2,3\}$ and $\preceq=\{(x, y) \mid x, y \in S$ and $x \leq y\}$.

- \mathbb{N}_{0} and standard relation \leq.

Least and Greatest Element

Some special elements of posets:

Definition (Least and greatest element)

Let \preceq be a partial order over set S.
An element $x \in S$ is the least element of S
if for all $y \in S$ it holds that $x \preceq y$.
It is the greatest element of S if for all $y \in S, y \preceq x$.

- Is there a least/greatest element? Which one?

■ $S=\{1,2,3\}$ and $\preceq=\{(x, y) \mid x, y \in S$ and $x \leq y\}$.

- \mathbb{N}_{0} and standard relation \leq.

■ Why can we say the least element instead of a least element?

Uniqueness of Least Element

Theorem
 Let \preceq be a partial order over set S.
 If S contains a least element, it contains exactly one least element.

Uniqueness of Least Element

Theorem

Let \preceq be a partial order over set S.
If S contains a least element, it contains exactly one least element.

Proof.

By contradiction: Assume x, y are least elements of S with $x \neq y$.

Uniqueness of Least Element

Theorem

Let \preceq be a partial order over set S.
If S contains a least element, it contains exactly one least element.

Proof.

By contradiction: Assume x, y are least elements of S with $x \neq y$. Since x is a least element, $x \preceq y$ is true.
Since y is a least element, $y \preceq x$ is true.

Uniqueness of Least Element

Theorem

Let \preceq be a partial order over set S.
If S contains a least element, it contains exactly one least element.

Proof.

By contradiction: Assume x, y are least elements of S with $x \neq y$. Since x is a least element, $x \preceq y$ is true.
Since y is a least element, $y \preceq x$ is true.
As a partial order is antisymmetric, this implies that $x=y$. $\&$

Uniqueness of Least Element

Theorem

Let \preceq be a partial order over set S.
If S contains a least element, it contains exactly one least element.

Proof.

By contradiction: Assume x, y are least elements of S with $x \neq y$. Since x is a least element, $x \preceq y$ is true.
Since y is a least element, $y \preceq x$ is true.
As a partial order is antisymmetric, this implies that $x=y$. z

Analogously: If there is a greatest element then is unique.

Minimal and Maximal Elements

Definition (Minimal/Maximal element of a set)
Let \preceq be a partial order over set S.
An element $x \in S$ is a minimal element of S
if there is no $y \in S$ with $y \preceq x$ and $x \neq y$.
An element $x \in S$ is a maximal element of S
if there is no $y \in S$ with $x \preceq y$ and $x \neq y$.

Minimal and Maximal Elements

Definition (Minimal/Maximal element of a set)

Let \preceq be a partial order over set S.
An element $x \in S$ is a minimal element of S
if there is no $y \in S$ with $y \preceq x$ and $x \neq y$.
An element $x \in S$ is a maximal element of S
if there is no $y \in S$ with $x \preceq y$ and $x \neq y$.
A set can have several minimal elements and no least element. Example?

Total Orders

■ Relations \leq over \mathbb{N}_{0} and \subseteq for sets are partial orders.

Total Orders

■ Relations \leq over \mathbb{N}_{0} and \subseteq for sets are partial orders.
■ Can we compare every object against every object?

Total Orders

■ Relations \leq over \mathbb{N}_{0} and \subseteq for sets are partial orders.
■ Can we compare every object against every object?
■ For all $x, y \in \mathbb{N}_{0}$ it holds that $x \leq y$ or that $y \leq x$ (or both).

Total Orders

■ Relations \leq over \mathbb{N}_{0} and \subseteq for sets are partial orders.
■ Can we compare every object against every object?

- For all $x, y \in \mathbb{N}_{0}$ it holds that $x \leq y$ or that $y \leq x$ (or both).
- $\{1,2\} \nsubseteq\{2,3\}$ and $\{2,3\} \nsubseteq\{1,2\}$

Total Orders

■ Relations \leq over \mathbb{N}_{0} and \subseteq for sets are partial orders.
■ Can we compare every object against every object?

- For all $x, y \in \mathbb{N}_{0}$ it holds that $x \leq y$ or that $y \leq x$ (or both).
- $\{1,2\} \nsubseteq\{2,3\}$ and $\{2,3\} \nsubseteq\{1,2\}$
- Relation \leq is a total order, relation \subseteq is not.

Total Order - Definition

Definition (Total relation)

A binary relation R over set S is total (or connex) if for all $x, y \in S$ at least one of $x R y$ or $y R x$ is true.

Total Order - Definition

Definition (Total relation)

A binary relation R over set S is total (or connex)
if for all $x, y \in S$ at least one of $x R y$ or $y R x$ is true.

Definition (Total order)

A binary relation is a total order if it is total and a partial order.

Summary

■ A partial order is reflexive, antisymmetric and transitive.

- With a total order \preceq over S there are no elements $x, y \in S$ with $x \npreceq y$ and $y \npreceq x$.
- If x is the greatest element of a set S, it is greater than every element: for all $y \in S$ it holds that $y \preceq x$.
- If x is a maximal element of set S then it is not smaller than any other element y : there is no $y \in S$ with $x \preceq y$ and $x \neq y$.

Discrete Mathematics in Computer Science Strict Orders

Malte Helmert, Gabriele Röger

University of Basel

Strict Orders

■ A partial order is reflexive, antisymmetric and transitive.

- We now consider strict orders.

Strict Orders

- A partial order is reflexive, antisymmetric and transitive.
- We now consider strict orders.

■ Example strict order relations are $<$ over \mathbb{N} or \subset for sets.

Strict Orders

■ A partial order is reflexive, antisymmetric and transitive.

- We now consider strict orders.

■ Example strict order relations are $<$ over \mathbb{N} or \subset for sets.

- Are these relations
- reflexive?
- irreflexive?
- symmetric?
- asymmetric?
- antisymmetric?
- transitive?

Strict Orders - Definition

Definition (Strict order)

A binary relation \prec over set S is a strict order if \prec is irreflexive, asymmetric and transitive.

Strict Orders - Definition

Definition (Strict order)

A binary relation \prec over set S is a strict order if \prec is irreflexive, asymmetric and transitive.

Which of these relations are strict orders?
■ subset relation \subseteq for sets

- strict superset relation \supset for sets

Strict Orders - Definition

Definition (Strict order)
 A binary relation \prec over set S is a strict order if \prec is irreflexive, asymmetric and transitive.

Which of these relations are strict orders?
■ subset relation \subseteq for sets

- strict superset relation \supset for sets

Can a relation be both, a partial order and a strict order?

Strict Total Orders

■ As partial orders, a strict order does not automatically allow us to rank arbitrary two objects against each other.

Strict Total Orders

- As partial orders, a strict order does not automatically allow us to rank arbitrary two objects against each other.
■ Example 1 (personal preferences):
- "Pasta tastes better than potato."
- "Rice tastes better than bread."
- "Bread tastes better than potato."
- "Rice tastes better than potato."

- This definition of "tastes better than" is a strict order.
- No ranking of pasta against rice or of pasta against bread.

Strict Total Orders

- As partial orders, a strict order does not automatically allow us to rank arbitrary two objects against each other.
- Example 1 (personal preferences):
- "Pasta tastes better than potato."
- "Rice tastes better than bread."
- "Bread tastes better than potato."
- "Rice tastes better than potato."

- This definition of "tastes better than" is a strict order.
- No ranking of pasta against rice or of pasta against bread.

■ Example 2: \subset relation for sets

Strict Total Orders

- As partial orders, a strict order does not automatically allow us to rank arbitrary two objects against each other.
- Example 1 (personal preferences):
- "Pasta tastes better than potato."
- "Rice tastes better than bread."
- "Bread tastes better than potato."
- "Rice tastes better than potato."

- This definition of "tastes better than" is a strict order.
- No ranking of pasta against rice or of pasta against bread.
- Example 2: \subset relation for sets
- It doesn't work to simply require that the strict order is total. Why?

Strict Total Orders - Definition

Definition (Trichotomy)

A binary relation R over set S is trichotomous if for all $x, y \in S$ exactly one of $x R y, y R x$ or $x=y$ is true.

Strict Total Orders - Definition

Definition (Trichotomy)

A binary relation R over set S is trichotomous if for all $x, y \in S$ exactly one of $x R y, y R x$ or $x=y$ is true.

Definition (Strict total order)

A binary relation \prec over S is a strict total order if \prec is trichotomous and a strict order.

Strict Total Orders - Definition

Definition (Trichotomy)

A binary relation R over set S is trichotomous if for all $x, y \in S$ exactly one of $x R y, y R x$ or $x=y$ is true.

Definition (Strict total order)

A binary relation \prec over S is a strict total order if \prec is trichotomous and a strict order.

A strict total order completely ranks the elements of set S.
Example: < relation over \mathbb{N}_{0} gives the standard ordering $0,1,2,3, \ldots$ of natural numbers.

Special Elements

Special elements are defined almost as for partial orders:
Definition (Least/greatest/minimal/maximal element of a set)
Let \prec be a strict order over set S.
An element $x \in S$ is the least element of S
if for all $y \in S$ where $y \neq x$ it holds that $x \prec y$.
It is the greatest element of S if for all $y \in S$ where $y \neq x, y \prec x$.
Element $x \in S$ is a minimal element of S
if there is no $y \in S$ with $y \prec x$.
It is a maximal element of S
if there is no $y \in S$ with $x \prec y$.

Special Elements - Example

Consider again the previous example:
$S=\{$ Pasta, Potato, Bread, Rice $\}$
$\prec=\{($ Pasta, Potato), (Bread, Potato), (Rice, Potato), (Rice, Bread) $\}$

Is there a least and a greatest element?
Which elements are maximal or minimal?

Summary and Outlook

■ A strict order is irreflexive, asymmetric and transitive.
■ Strict total orders and special elements are analogously defined as for partial sets but with a special treatment of equal elements.
■ For partial order \preceq we can define a related strict order \prec as $x \prec y$ if $x \preceq y$ and $y \npreceq x$.
■ For strict order \prec we can define a related partial order \preceq as $x \preceq y$ if $x \prec y$ or $x=y$.
■ There are more related concepts, e. g.
■ (total) preorder: (connex), reflexive, transitive

- well-order: total order over S such that every non-empty subset has a least element

