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Relations: Recap

m A relation over sets 51,...,5,isaset RC 51 x--- x §,.
m Possible properties of homogeneous relations R over S:

m reflexive: (x,x) € Rforall xe S

irreflexive: (x,x) ¢ R for all x € S

symmetric: (x,y) € Riff (y,x) € R

asymmetric: if (x,y) € R then (y,x) ¢ R
antisymmetric: if (x,y) € R then (y,x) ¢ Rorx =y
transitive: if (x,y) € R and (y,z) € R then (x,z) € R



Motivation

m Think of any attribute that two objects can have in common,
e. g. their color.

m We could place the objects into distinct “buckets”,
e. g. one bucket for each color.

m We also can define a relation ~ such that x ~ y iff
x and y share the attribute, e. g.have the same color.
m Would this relation be
m reflexive?
irreflexive?
symmetric?
asymmetric?
antisymmetric?
transitive?



Equivalence Relation

Definition (Equivalence Relation)

A binary relation ~ over set S is an equivalence relation
if ~ is reflexive, symmetric and transitive.

Is this definition indeed what we want?
Does it allow us to partition the objects into buckets
(e. g. one group for all objects that share a specific color)?



Partition

Definition (Partition)

A partition of a set S is a set P C P(S) such that
m X #£( forall X € P,
B JxepX =S5, and
B XNY=0forall X,Y € Pwith X #£Y,

The elements of P are called the blocks of the partition.
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Partition

Let S = {e1,...,e5}.
Which of the following sets are partitions of S?
m P = {{e1,ea}, {es}, {e2, &5}}
m P ={{e1, e, 65}, {e3}}
m Py ={{e1, e4,65}, {e3},{e2, e5}}
m Py ={{ea}, {e} {es} {ea} {es}}
m Ps = {{ea},{e} {es}, {ea} {es}, {}}



A Property of Partitions

Let S be a set and P be a partition of S.
Then every x € S is an element of exactly one X € P.

Proof: ~» exercises
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Block of an Element

The lemma enables the following definition:

Definition

Let S be a set and P be a partition of S.
For e € S we denote by [e]p the block X € P such that e € X.

Consider partition P = {{e1,es},{e3},{e, e5}} of {e1.... e5}.

le]p =



Connection between Partitions and Equivalence Relations?

m We will now explore the connection
between partitions and equivalence relations.

m Spoiler: They are essentially the same concept.



Partitions Induce Equivalence Relations |

Definition (Relation induced by a partition)
Let S be a set and P be a partition of S.

The relation ~p induced by P is the binary relation over S with

x ~p y iff [x]p = [y]p.

x ~p y iff x and y are in the same block of P.
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Definition (Relation induced by a partition)
Let S be a set and P be a partition of S.

The relation ~p induced by P is the binary relation over S with

x ~p y iff [x]p = [y]p.

x ~p y iff x and y are in the same block of P.

Consider partition P = {{1,4,5},{2,3}} of set {1,2,...,5}.
~p={(1,1),(1,4),(1,5),(4,1),(4,4),(4,5),(5,1), (5,4), (5,5),
(2,2),(2,3),(3,2),(3,3)}

We will show that ~p is an equivalence relation.
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Let P be a partition of S.
Relation ~p induced by P is an equivalence relation over S.

Proof.

We need to show that ~p is reflexive, symmetric and transitive.
reflexive: As = is reflexive it holds for all x € S that [x]p = [x]p
and hence also that x ~p x.

symmetric: If x ~p y then [x]p = [y]p. With the symmetry of =
we get that [y]p = [x]p and conclude that y ~p x.




Partitions Induce Equivalence Relations Il

Let P be a partition of S.
Relation ~p induced by P is an equivalence relation over S.

Proof.
We need to show that ~p is reflexive, symmetric and transitive.

reflexive: As = is reflexive it holds for all x € S that [x]p = [x]p
and hence also that x ~p x.

symmetric: If x ~p y then [x]p = [y]p. With the symmetry of =
we get that [y]p = [x]p and conclude that y ~p x.

transitive: If x ~p y and y ~p z then [x]p = [y]p and

[y]lp = [z]p. As = is transitive, it then also holds that [x]p = [z]p
and hence x ~p z. []

v




Equivalence Classes

Definition (equivalence class)

Let R be an equivalence relation over set S.

For any x € S, the equivalence class of x is the set

[x]r ={y € S| xRy}.




Equivalence Classes

Definition (equivalence class)

Let R be an equivalence relation over set S.

For any x € S, the equivalence class of x is the set

[x]r ={y € S| xRy}.

Consider
={(1,1),(1,4),(1,5),(4,1),(4,4),(4,5),(5,1),(5,4),(5,5),
(2, )2(, 3),(3,2),(3,3)}

over set {1, ,5}.

[4]r =



Equivalence Relations Induce Partitions

Let R be an equivalence relation over set S.
The set P = {[x]r | x € S} is a partition of S.




Equivalence Relations Induce Partitions

Theorem
Let R be an equivalence relation over set S.
The set P = {[x]r | x € S} is a partition of S.

Proof.
We need to show that

Q X #0forall X eP,

@ XNnY=0forall X,Y € Pwith X #£Y,

| \

.




Equivalence Relations Induce Partitions

Theorem

Let R be an equivalence relation over set S.
The set P = {[x]r | x € S} is a partition of S.

| \

Proof.
We need to show that
Q@ X #0Dforall XeP,
Q Uxep X =S, and
@ XNnY=0forall X,Y € Pwith X #£Y,

1) For x € S, it holds that x € [x]g because R is reflexive.
Hence, no X € P is empty.

N,




Equivalence Relations Induce Partitions

Proof (continued).
For 2) we show Uxcp X € S and Jyep X 2 S separately.
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Proof (continued).
For 2) we show Uxcp X € S and Jyep X 2 S separately.

C: Consider an arbitrary x € UXEPX. Since x is contained in the
union, it must be an element of some X € P. Consider such an X.
By the definition of P, there is a y € S such that X = [y]r.

Since x € [y]r, it holds that yRx.

As R is a relation over S, this implies that x € S.




Equivalence Relations Induce Partitions

Proof (continued).
For 2) we show Uxcp X € S and Jyep X 2 S separately.

C: Consider an arbitrary x € UXEPX. Since x is contained in the
union, it must be an element of some X € P. Consider such an X.
By the definition of P, there is a y € S such that X = [y]r.

Since x € [y]r, it holds that yRx.

As R is a relation over S, this implies that x € S.

O: Consider an arbitrary x € S. Since x € [x]g (cf. 1) and
[x]r € P, it holds that x € [Uyxcp X.
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Proof (continued).

We show 3) by contrapositive:
Forall X, Y € P: if XNY # () then X =Y.
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Proof (continued).

We show 3) by contrapositive:

Forall X, Y € P: if XNY # () then X =Y.

Let X, Y be two sets from P with X N'Y # 0.

Then there is an e with e € X N Y and there are x,y € S with
X = [x]g and Y = [y]|g. Consider such e, x,y.
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Proof (continued).

We show 3) by contrapositive:

Forall X, Y € P: if XNY # () then X =Y.

Let X, Y be two sets from P with X N'Y # 0.

Then there is an e with e € X N Y and there are x,y € S with
X = [x]g and Y = [y]|g. Consider such e, x,y.

As e € [x]g and e € [y]r it holds that xRe and yRe. Since R is
symmetric, we get from yRe that eRy. By transitivity, xRe and
eRy imply xRy, which by symmetry also gives yRx.
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Proof (continued).

We show 3) by contrapositive:

Forall X, Y € P: if XNY # () then X =Y.

Let X, Y be two sets from P with X N'Y # 0.

Then there is an e with e € X N Y and there are x,y € S with
X = [x]g and Y = [y]|g. Consider such e, x,y.

As e € [x]g and e € [y]r it holds that xRe and yRe. Since R is
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From yRx and xRz, by transitivity we get yRz. This establishes
z € [y]gr. As z was chosen arbitarily, it holds that [x]g C [y]r-
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Proof (continued).

We show 3) by contrapositive:

Forall X, Y € P: if XNY # () then X =Y.

Let X, Y be two sets from P with X N'Y # 0.

Then there is an e with e € X N Y and there are x,y € S with
X = [x]g and Y = [y]|g. Consider such e, x,y.

As e € [x]g and e € [y]r it holds that xRe and yRe. Since R is
symmetric, we get from yRe that eRy. By transitivity, xRe and
eRy imply xRy, which by symmetry also gives yRx.

We show [x]r C [y]g: consider an arbitrary z € [x]g. Then xRz.
From yRx and xRz, by transitivity we get yRz. This establishes
z € [y]gr. As z was chosen arbitarily, it holds that [x]g C [y]r-

Analogously, we can show that [x]g 2 [y]|r, so overall X =Y.

L]
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Summary

m We typically encounter equivalence relations when we consider
objects as equivalent wrt. some attribute/property.

m A relation is an equivalence relation
if it is reflexive, symmetric and transitive.
m A partition of a set groups the elements
into non-empty subsets.
m The concepts are closely connected:
in principle just different perspectives on the same “situation”.



Discrete Mathematics in Computer Science

Partial Orders

Malte Helmert, Gabriele Roger

University of Basel



Order Relations

m An equivalence relation is reflexive, symmetric and transitive.

m Such a relation induces a partition into “equivalent” objects.



Order Relations

m An equivalence relation is reflexive, symmetric and transitive.
m Such a relation induces a partition into “equivalent” objects.

m We now consider other combinations of properties,
that allow us to compare objects in a set against other objects.



Order Relations

m An equivalence relation is reflexive, symmetric and transitive.
m Such a relation induces a partition into “equivalent” objects.
m We now consider other combinations of properties,

that allow us to compare objects in a set against other objects.

m “Number x is not larger than number y."
“Set S is a subset of set T."
“Jerry runs at least as fast as Tom."”
“Pasta tastes better than Potatoes.”
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m Example partial order relations are < over N or C for sets.
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symmetric?
asymmetric?
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Partial Orders — Definition

Definition (Partial order, partially ordered sets)

A binary relation < over set S is a partial order

if < is reflexive, antisymmetric and transitive.

A partially ordered set (or poset) is a pair (S, R)
where S is a set and R is a partial order over S.

Which of these relations are partial orders?
m strict subset relation C for sets

m not-less-than relation > over Ny
m R={(a,a),(a,b),(b,b),(b,c),(c,c)} over {a,b,c}
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Some special elements of posets:

Definition (Least and greatest element)

Let < be a partial order over set S.

An element x € S is the least element of S
if for all y € S it holds that x < y.

It is the greatest element of S if for all y € S, y =< x.
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Least and Greatest Element

Some special elements of posets:

Definition (Least and greatest element)

Let < be a partial order over set S.

An element x € S is the least element of S
if for all y € S it holds that x < y.

It is the greatest element of S if for all y € S, y =< x.

m Is there a least/greatest element? Which one?
B S={1,2,3}and X ={(x,y) | x,y € S and x < y}.
m Ny and standard relation <.

m Why can we say the least element instead of a least element?
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By contradiction: Assume x, y are least elements of S with x # y.




Uniqueness of Least Element

Theorem

Let < be a partial order over set S.
If S contains a least element, it contains exactly one least element.

Proof.

By contradiction: Assume x, y are least elements of S with x # y.
Since x is a least element, x < y is true.

Since y is a least element, y < x is true.
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Uniqueness of Least Element

Theorem

Let < be a partial order over set S.
If S contains a least element, it contains exactly one least element.

Proof.

By contradiction: Assume x, y are least elements of S with x # y.
Since x is a least element, x < y is true.
Since y is a least element, y < x is true.
As a partial order is antisymmetric, this implies that x =y. 4 [J

| A\
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Uniqueness of Least Element

Theorem

Let < be a partial order over set S.
If S contains a least element, it contains exactly one least element.

Proof.

By contradiction: Assume x, y are least elements of S with x # y.
Since x is a least element, x < y is true.
Since y is a least element, y < x is true.
As a partial order is antisymmetric, this implies that x =y. 4 [J

| A\

v

Analogously: If there is a greatest element then is unique.



Minimal and Maximal Elements

Definition (Minimal/Maximal element of a set)
Let < be a partial order over set S.

An element x € S is a minimal element of S

if there is no y € S with y < x and x # y.

An element x € S is a maximal element of S
if there is no y € S with x < y and x # y.




Minimal and Maximal Elements

Definition (Minimal/Maximal element of a set)

Let < be a partial order over set S.
An element x € S is a minimal element of S
if there is no y € S with y < x and x # y.

An element x € S is a maximal element of S
if there is no y € S with x < y and x # y.

A set can have several minimal elements and no least element.
Example?
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Total Orders

m Relations < over Ny and C for sets are partial orders.
m Can we compare every object against every object?
m For all x,y € Ny it holds that x < y or that y < x (or both).

m {1,2} ¢ {2,3} and {2,3} ¢ {1,2}



Total Orders

m Relations < over Ny and C for sets are partial orders.

m Can we compare every object against every object?
m For all x,y € Ny it holds that x < y or that y < x (or both).
m {1,2} ¢ {2,3} and {2,3} Z {1,2}

m Relation < is a total order, relation C is not.



Total Order — Definition

Definition (Total relation)

A binary relation R over set S is total (or connex)
if for all x,y € S at least one of xRy or yRx is true.




Total Order — Definition

Definition (Total relation)

A binary relation R over set S is total (or connex)
if for all x,y € S at least one of xRy or yRx is true.

Definition (Total order)

A binary relation is a total order if it is total and a partial order.




Summary

m A partial order is reflexive, antisymmetric and transitive.

m With a total order < over S there are
no elements x,y € S with x A y and y £ x.

m If x is the greatest element of a set S, it is greater than every
element: for all y € S it holds that y =< x.

m If x is a maximal element of set S then it is not smaller than
any other element y: thereisno y € S with x <y and x # y.
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Strict Orders

m A partial order is reflexive, antisymmetric and transitive.
m We now consider strict orders.

m Example strict order relations are < over N or C for sets.
m Are these relations

m reflexive?
irreflexive?
symmetric?
asymmetric?
antisymmetric?
transitive?



Strict Orders — Definition

Definition (Strict order)

A binary relation < over set S is a strict order
if < is irreflexive, asymmetric and transitive.




Strict Orders — Definition

Definition (Strict order)

A binary relation < over set S is a strict order
if < is irreflexive, asymmetric and transitive.

Which of these relations are strict orders?
m subset relation C for sets

m strict superset relation D for sets



Strict Orders — Definition

Definition (Strict order)

A binary relation < over set S is a strict order
if < is irreflexive, asymmetric and transitive.

Which of these relations are strict orders?
m subset relation C for sets

m strict superset relation D for sets

Can a relation be both, a partial order and a strict order?



Strict Total Orders

m As partial orders, a strict order does not automatically
allow us to rank arbitrary two objects against each other.
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m “Pasta tastes better than potato.”
“Rice tastes better than bread.”
“Bread tastes better than potato.” Pasid Ric>
“Rice tastes better than potato.”
This definition of “tastes better than” is a strict order.
No ranking of pasta against rice or of pasta against bread.
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m Example 1 (personal preferences):

m “Pasta tastes better than potato.”
“Rice tastes better than bread.”
“Bread tastes better than potato.” Pasid Ric>
“Rice tastes better than potato.”
This definition of “tastes better than” is a strict order.
No ranking of pasta against rice or of pasta against bread.
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Strict Total Orders

m As partial orders, a strict order does not automatically
allow us to rank arbitrary two objects against each other.

m Example 1 (personal preferences):

m “Pasta tastes better than potato.”
“Rice tastes better than bread.”
“Bread tastes better than potato.” Pasid Ric>
“Rice tastes better than potato.”
This definition of “tastes better than” is a strict order.
No ranking of pasta against rice or of pasta against bread.

m Example 2: C relation for sets

m It doesn't work to simply require that the strict order is total.
Why?



Strict Total Orders — Definition

Definition (Trichotomy)

A binary relation R over set S is trichotomous if for all x,y € S
exactly one of xRy, yRx or x = y is true.




Strict Total Orders — Definition

Definition (Trichotomy)

A binary relation R over set S is trichotomous if for all x,y € S
exactly one of xRy, yRx or x = y is true.

Definition (Strict total order)

A binary relation < over S is a strict total order
if < is trichotomous and a strict order.




Strict Total Orders — Definition

Definition (Trichotomy)

A binary relation R over set S is trichotomous if for all x,y € S
exactly one of xRy, yRx or x = y is true.

Definition (Strict total order)

A binary relation < over S is a strict total order
if < is trichotomous and a strict order.

A strict total order completely ranks the elements of set S.
Example: < relation over Ny gives the standard ordering
0,1,2,3,... of natural numbers.



Special Elements

Special elements are defined almost as for partial orders:

Definition (Least/greatest/minimal/maximal element of a set)

Let < be a strict order over set S.

An element x € S is the least element of S
if for all y € S where y = x it holds that x < y.
It is the greatest element of S if for all y € S where y # x, y < x.

Element x € S is a minimal element of S
if there is no y € S with y < x.

It is a maximal element of S
if there isno y € S with x < y.




Special Elements — Example

Consider again the previous example:

S = {Pasta, Potato, Bread, Rice}
< = {(Pasta, Potato), (Bread, Potato),
(Rice, Potato), (Rice, Bread)}

Pasta>  (Rice

Is there a least and a greatest element?
Which elements are maximal or minimal?




Summary and Outlook

A strict order is irreflexive, asymmetric and transitive.

Strict total orders and special elements are analogously
defined as for partial sets but with a special treatment of
equal elements.

For partial order < we can define a related strict order < as

x<yifx=<yandy & x.

m For strict order < we can define a related partial order < as
xyifx<yorx=y.

m There are more related concepts, e. g.

m (total) preorder: (connex), reflexive, transitive
m well-order: total order over S such that every non-empty
subset has a least element
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