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Relations: Recap

A relation over sets S1, . . . ,Sn is a set R ⊆ S1 × · · · × Sn.

Possible properties of homogeneous relations R over S :

reflexive: (x , x) ∈ R for all x ∈ S
irreflexive: (x , x) /∈ R for all x ∈ S
symmetric: (x , y) ∈ R iff (y , x) ∈ R
asymmetric: if (x , y) ∈ R then (y , x) /∈ R
antisymmetric: if (x , y) ∈ R then (y , x) /∈ R or x = y
transitive: if (x , y) ∈ R and (y , z) ∈ R then (x , z) ∈ R
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Motivation

Think of any attribute that two objects can have in common,
e. g. their color.

We could place the objects into distinct “buckets”,
e. g. one bucket for each color.

We also can define a relation ∼ such that x ∼ y iff
x and y share the attribute, e. g.have the same color.

Would this relation be

reflexive?
irreflexive?
symmetric?
asymmetric?
antisymmetric?
transitive?



Equivalence Relation

Definition (Equivalence Relation)

A binary relation ∼ over set S is an equivalence relation
if ∼ is reflexive, symmetric and transitive.

Is this definition indeed what we want?
Does it allow us to partition the objects into buckets
(e. g. one group for all objects that share a specific color)?



Partition

Definition (Partition)

A partition of a set S is a set P ⊆ P(S) such that

X 6= ∅ for all X ∈ P,⋃
X∈P X = S , and

X ∩ Y = ∅ for all X ,Y ∈ P with X 6= Y ,

The elements of P are called the blocks of the partition.



Partition

Let S = {e1, . . . , e5}.

Which of the following sets are partitions of S?

P1 = {{e1, e4}, {e3}, {e2, e5}}
P2 = {{e1, e4, e5}, {e3}}
P3 = {{e1, e4, e5}, {e3}, {e2, e5}}
P4 = {{e1}, {e2}, {e3}, {e4}, {e5}}
P5 = {{e1}, {e2}, {e3}, {e4}, {e5}, {}}
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A Property of Partitions

Lemma

Let S be a set and P be a partition of S .
Then every x ∈ S is an element of exactly one X ∈ P.

Proof:  exercises



Block of an Element

The lemma enables the following definition:

Definition

Let S be a set and P be a partition of S .

For e ∈ S we denote by [e]P the block X ∈ P such that e ∈ X .

Consider partition P = {{e1, e4}, {e3}, {e2, e5}} of {e1, . . . , e5}.

[e1]P =
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Connection between Partitions and Equivalence Relations?

We will now explore the connection
between partitions and equivalence relations.

Spoiler: They are essentially the same concept.



Partitions Induce Equivalence Relations I

Definition (Relation induced by a partition)

Let S be a set and P be a partition of S .

The relation ∼P induced by P is the binary relation over S with

x ∼P y iff [x ]P = [y ]P .

x ∼P y iff x and y are in the same block of P.

Consider partition P = {{1, 4, 5}, {2, 3}} of set {1, 2, . . . , 5}.
∼P= {(1, 1), (1, 4), (1, 5), (4, 1), (4, 4), (4, 5), (5, 1), (5, 4), (5, 5),

(2, 2), (2, 3), (3, 2), (3, 3)}

We will show that ∼P is an equivalence relation.
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Partitions Induce Equivalence Relations II

Theorem

Let P be a partition of S .
Relation ∼P induced by P is an equivalence relation over S .

Proof.

We need to show that ∼P is reflexive, symmetric and transitive.

reflexive: As = is reflexive it holds for all x ∈ S that [x ]P = [x ]P
and hence also that x ∼P x .

symmetric: If x ∼P y then [x ]P = [y ]P . With the symmetry of =
we get that [y ]P = [x ]P and conclude that y ∼P x .

transitive: If x ∼P y and y ∼P z then [x ]P = [y ]P and
[y ]P = [z ]P . As = is transitive, it then also holds that [x ]P = [z ]P
and hence x ∼P z .



Partitions Induce Equivalence Relations II

Theorem

Let P be a partition of S .
Relation ∼P induced by P is an equivalence relation over S .

Proof.

We need to show that ∼P is reflexive, symmetric and transitive.

reflexive: As = is reflexive it holds for all x ∈ S that [x ]P = [x ]P
and hence also that x ∼P x .

symmetric: If x ∼P y then [x ]P = [y ]P . With the symmetry of =
we get that [y ]P = [x ]P and conclude that y ∼P x .

transitive: If x ∼P y and y ∼P z then [x ]P = [y ]P and
[y ]P = [z ]P . As = is transitive, it then also holds that [x ]P = [z ]P
and hence x ∼P z .



Partitions Induce Equivalence Relations II

Theorem

Let P be a partition of S .
Relation ∼P induced by P is an equivalence relation over S .

Proof.

We need to show that ∼P is reflexive, symmetric and transitive.

reflexive: As = is reflexive it holds for all x ∈ S that [x ]P = [x ]P
and hence also that x ∼P x .

symmetric: If x ∼P y then [x ]P = [y ]P . With the symmetry of =
we get that [y ]P = [x ]P and conclude that y ∼P x .

transitive: If x ∼P y and y ∼P z then [x ]P = [y ]P and
[y ]P = [z ]P . As = is transitive, it then also holds that [x ]P = [z ]P
and hence x ∼P z .



Partitions Induce Equivalence Relations II

Theorem

Let P be a partition of S .
Relation ∼P induced by P is an equivalence relation over S .

Proof.

We need to show that ∼P is reflexive, symmetric and transitive.

reflexive: As = is reflexive it holds for all x ∈ S that [x ]P = [x ]P
and hence also that x ∼P x .

symmetric: If x ∼P y then [x ]P = [y ]P . With the symmetry of =
we get that [y ]P = [x ]P and conclude that y ∼P x .

transitive: If x ∼P y and y ∼P z then [x ]P = [y ]P and
[y ]P = [z ]P . As = is transitive, it then also holds that [x ]P = [z ]P
and hence x ∼P z .



Partitions Induce Equivalence Relations II

Theorem

Let P be a partition of S .
Relation ∼P induced by P is an equivalence relation over S .

Proof.

We need to show that ∼P is reflexive, symmetric and transitive.

reflexive: As = is reflexive it holds for all x ∈ S that [x ]P = [x ]P
and hence also that x ∼P x .

symmetric: If x ∼P y then [x ]P = [y ]P . With the symmetry of =
we get that [y ]P = [x ]P and conclude that y ∼P x .

transitive: If x ∼P y and y ∼P z then [x ]P = [y ]P and
[y ]P = [z ]P . As = is transitive, it then also holds that [x ]P = [z ]P
and hence x ∼P z .



Equivalence Classes

Definition (equivalence class)

Let R be an equivalence relation over set S .

For any x ∈ S , the equivalence class of x is the set

[x ]R = {y ∈ S | xRy}.

Consider
R = {(1, 1), (1, 4), (1, 5), (4, 1), (4, 4), (4, 5), (5, 1), (5, 4), (5, 5),

(2, 2), (2, 3), (3, 2), (3, 3)}
over set {1, 2, . . . , 5}.

[4]R =



Equivalence Classes

Definition (equivalence class)

Let R be an equivalence relation over set S .

For any x ∈ S , the equivalence class of x is the set

[x ]R = {y ∈ S | xRy}.

Consider
R = {(1, 1), (1, 4), (1, 5), (4, 1), (4, 4), (4, 5), (5, 1), (5, 4), (5, 5),

(2, 2), (2, 3), (3, 2), (3, 3)}
over set {1, 2, . . . , 5}.

[4]R =



Equivalence Relations Induce Partitions

Theorem

Let R be an equivalence relation over set S .
The set P = {[x ]R | x ∈ S} is a partition of S .

Proof.

We need to show that

1 X 6= ∅ for all X ∈ P,

2
⋃

X∈P X = S , and

3 X ∩ Y = ∅ for all X ,Y ∈ P with X 6= Y ,

1) For x ∈ S , it holds that x ∈ [x ]R because R is reflexive.
Hence, no X ∈ P is empty. . . .
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Equivalence Relations Induce Partitions

Proof (continued).

For 2) we show
⋃

X∈P X ⊆ S and
⋃

X∈P X ⊇ S separately.

⊆: Consider an arbitrary x ∈
⋃

X∈P X . Since x is contained in the
union, it must be an element of some X ∈ P. Consider such an X .
By the definition of P, there is a y ∈ S such that X = [y ]R .
Since x ∈ [y ]R , it holds that yRx .
As R is a relation over S , this implies that x ∈ S .

⊇: Consider an arbitrary x ∈ S . Since x ∈ [x ]R (cf. 1) and
[x ]R ∈ P, it holds that x ∈

⋃
X∈P X . . . .
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Equivalence Relations Induce Partitions

Proof (continued).

We show 3) by contrapositive:
For all X ,Y ∈ P: if X ∩ Y 6= ∅ then X = Y .

Let X ,Y be two sets from P with X ∩ Y 6= ∅.
Then there is an e with e ∈ X ∩ Y and there are x , y ∈ S with
X = [x ]R and Y = [y ]R . Consider such e, x , y .

As e ∈ [x ]R and e ∈ [y ]R it holds that xRe and yRe. Since R is
symmetric, we get from yRe that eRy . By transitivity, xRe and
eRy imply xRy , which by symmetry also gives yRx .

We show [x ]R ⊆ [y ]R : consider an arbitrary z ∈ [x ]R . Then xRz .
From yRx and xRz , by transitivity we get yRz . This establishes
z ∈ [y ]R . As z was chosen arbitarily, it holds that [x ]R ⊆ [y ]R .

Analogously, we can show that [x ]R ⊇ [y ]R , so overall X = Y .
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Summary

We typically encounter equivalence relations when we consider
objects as equivalent wrt. some attribute/property.

A relation is an equivalence relation
if it is reflexive, symmetric and transitive.

A partition of a set groups the elements
into non-empty subsets.

The concepts are closely connected:
in principle just different perspectives on the same “situation”.
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Order Relations

An equivalence relation is reflexive, symmetric and transitive.

Such a relation induces a partition into “equivalent” objects.

We now consider other combinations of properties,
that allow us to compare objects in a set against other objects.

“Number x is not larger than number y .”
“Set S is a subset of set T .”
“Jerry runs at least as fast as Tom.”
“Pasta tastes better than Potatoes.”
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Partial Orders

We begin with partial orders.

Example partial order relations are ≤ over N or ⊆ for sets.

Are these relations

reflexive?
irreflexive?
symmetric?
asymmetric?
antisymmetric?
transitive?
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Partial Orders – Definition

Definition (Partial order, partially ordered sets)

A binary relation � over set S is a partial order
if � is reflexive, antisymmetric and transitive.

A partially ordered set (or poset) is a pair (S ,R)
where S is a set and R is a partial order over S .

Which of these relations are partial orders?

strict subset relation ⊂ for sets

not-less-than relation ≥ over N0

R = {(a, a), (a, b), (b, b), (b, c), (c , c)} over {a, b, c}
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Least and Greatest Element

Some special elements of posets:

Definition (Least and greatest element)

Let � be a partial order over set S .

An element x ∈ S is the least element of S
if for all y ∈ S it holds that x � y .

It is the greatest element of S if for all y ∈ S , y � x .

Is there a least/greatest element? Which one?

S = {1, 2, 3} and � = {(x , y) | x , y ∈ S and x ≤ y}.
N0 and standard relation ≤.

Why can we say the least element instead of a least element?
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Uniqueness of Least Element

Theorem

Let � be a partial order over set S .
If S contains a least element, it contains exactly one least element.

Proof.

By contradiction: Assume x , y are least elements of S with x 6= y .

Since x is a least element, x � y is true.
Since y is a least element, y � x is true.
As a partial order is antisymmetric, this implies that x = y .  

Analogously: If there is a greatest element then is unique.
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Minimal and Maximal Elements

Definition (Minimal/Maximal element of a set)

Let � be a partial order over set S .
An element x ∈ S is a minimal element of S
if there is no y ∈ S with y � x and x 6= y .

An element x ∈ S is a maximal element of S
if there is no y ∈ S with x � y and x 6= y .

A set can have several minimal elements and no least element.
Example?
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Total Orders

Relations ≤ over N0 and ⊆ for sets are partial orders.

Can we compare every object against every object?

For all x , y ∈ N0 it holds that x ≤ y or that y ≤ x (or both).
{1, 2} * {2, 3} and {2, 3} * {1, 2}

Relation ≤ is a total order, relation ⊆ is not.
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Total Order – Definition

Definition (Total relation)

A binary relation R over set S is total (or connex)
if for all x , y ∈ S at least one of xRy or yRx is true.

Definition (Total order)

A binary relation is a total order if it is total and a partial order.



Total Order – Definition

Definition (Total relation)

A binary relation R over set S is total (or connex)
if for all x , y ∈ S at least one of xRy or yRx is true.

Definition (Total order)

A binary relation is a total order if it is total and a partial order.



Summary

A partial order is reflexive, antisymmetric and transitive.

With a total order � over S there are
no elements x , y ∈ S with x 6� y and y 6� x .

If x is the greatest element of a set S , it is greater than every
element: for all y ∈ S it holds that y � x .

If x is a maximal element of set S then it is not smaller than
any other element y : there is no y ∈ S with x � y and x 6= y .
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Strict Orders

A partial order is reflexive, antisymmetric and transitive.

We now consider strict orders.

Example strict order relations are < over N or ⊂ for sets.

Are these relations

reflexive?
irreflexive?
symmetric?
asymmetric?
antisymmetric?
transitive?
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Strict Orders – Definition

Definition (Strict order)

A binary relation ≺ over set S is a strict order
if ≺ is irreflexive, asymmetric and transitive.

Which of these relations are strict orders?

subset relation ⊆ for sets

strict superset relation ⊃ for sets

Can a relation be both, a partial order and a strict order?
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Strict Total Orders

As partial orders, a strict order does not automatically
allow us to rank arbitrary two objects against each other.

Example 1 (personal preferences):
“Pasta tastes better than potato.”
“Rice tastes better than bread.”
“Bread tastes better than potato.”
“Rice tastes better than potato.”

Pasta

Potato Bread

Rice

This definition of “tastes better than” is a strict order.
No ranking of pasta against rice or of pasta against bread.

Example 2: ⊂ relation for sets

It doesn’t work to simply require that the strict order is total.
Why?
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Strict Total Orders – Definition

Definition (Trichotomy)

A binary relation R over set S is trichotomous if for all x , y ∈ S
exactly one of xRy , yRx or x = y is true.

Definition (Strict total order)

A binary relation ≺ over S is a strict total order
if ≺ is trichotomous and a strict order.

A strict total order completely ranks the elements of set S .
Example: < relation over N0 gives the standard ordering

0, 1, 2, 3, . . . of natural numbers.



Strict Total Orders – Definition

Definition (Trichotomy)

A binary relation R over set S is trichotomous if for all x , y ∈ S
exactly one of xRy , yRx or x = y is true.

Definition (Strict total order)

A binary relation ≺ over S is a strict total order
if ≺ is trichotomous and a strict order.

A strict total order completely ranks the elements of set S .
Example: < relation over N0 gives the standard ordering

0, 1, 2, 3, . . . of natural numbers.



Strict Total Orders – Definition

Definition (Trichotomy)

A binary relation R over set S is trichotomous if for all x , y ∈ S
exactly one of xRy , yRx or x = y is true.

Definition (Strict total order)

A binary relation ≺ over S is a strict total order
if ≺ is trichotomous and a strict order.

A strict total order completely ranks the elements of set S .
Example: < relation over N0 gives the standard ordering

0, 1, 2, 3, . . . of natural numbers.



Special Elements

Special elements are defined almost as for partial orders:

Definition (Least/greatest/minimal/maximal element of a set)

Let ≺ be a strict order over set S .

An element x ∈ S is the least element of S
if for all y ∈ S where y 6= x it holds that x ≺ y .

It is the greatest element of S if for all y ∈ S where y 6= x , y ≺ x .

Element x ∈ S is a minimal element of S
if there is no y ∈ S with y ≺ x .

It is a maximal element of S
if there is no y ∈ S with x ≺ y .



Special Elements – Example

Consider again the previous example:

S = {Pasta,Potato,Bread,Rice}
≺ = {(Pasta,Potato), (Bread,Potato),

(Rice,Potato), (Rice,Bread)}

Pasta

Potato Bread

Rice

Is there a least and a greatest element?
Which elements are maximal or minimal?



Summary and Outlook

A strict order is irreflexive, asymmetric and transitive.

Strict total orders and special elements are analogously
defined as for partial sets but with a special treatment of
equal elements.

For partial order � we can define a related strict order ≺ as
x ≺ y if x � y and y 6� x .

For strict order ≺ we can define a related partial order � as
x � y if x ≺ y or x = y .

There are more related concepts, e. g.

(total) preorder: (connex), reflexive, transitive
well-order: total order over S such that every non-empty
subset has a least element
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