Discrete Mathematics in Computer Science Equivalence Relations and Partitions

Malte Helmert, Gabriele Röger

University of Basel

• A relation over sets S_1, \ldots, S_n is a set $R \subseteq S_1 \times \cdots \times S_n$.

- A relation over sets S_1, \ldots, S_n is a set $R \subseteq S_1 \times \cdots \times S_n$.
- Possible properties of homogeneous relations *R* over *S*:

- A relation over sets S_1, \ldots, S_n is a set $R \subseteq S_1 \times \cdots \times S_n$.
- Possible properties of homogeneous relations R over S:
 reflexive: (x, x) ∈ R for all x ∈ S

• A relation over sets S_1, \ldots, S_n is a set $R \subseteq S_1 \times \cdots \times S_n$.

- reflexive: $(x, x) \in R$ for all $x \in S$
- irreflexive: $(x, x) \notin R$ for all $x \in S$

• A relation over sets S_1, \ldots, S_n is a set $R \subseteq S_1 \times \cdots \times S_n$.

- reflexive: $(x, x) \in R$ for all $x \in S$
- irreflexive: $(x, x) \notin R$ for all $x \in S$
- **symmetric:** $(x, y) \in R$ iff $(y, x) \in R$

• A relation over sets S_1, \ldots, S_n is a set $R \subseteq S_1 \times \cdots \times S_n$.

- reflexive: $(x, x) \in R$ for all $x \in S$
- irreflexive: $(x, x) \notin R$ for all $x \in S$
- symmetric: $(x, y) \in R$ iff $(y, x) \in R$
- **asymmetric:** if $(x, y) \in R$ then $(y, x) \notin R$

• A relation over sets S_1, \ldots, S_n is a set $R \subseteq S_1 \times \cdots \times S_n$.

- reflexive: $(x, x) \in R$ for all $x \in S$
- irreflexive: $(x, x) \notin R$ for all $x \in S$
- symmetric: $(x, y) \in R$ iff $(y, x) \in R$
- **asymmetric:** if $(x, y) \in R$ then $(y, x) \notin R$
- **antisymmetric:** if $(x, y) \in R$ then $(y, x) \notin R$ or x = y

• A relation over sets S_1, \ldots, S_n is a set $R \subseteq S_1 \times \cdots \times S_n$.

- reflexive: $(x, x) \in R$ for all $x \in S$
- irreflexive: $(x, x) \notin R$ for all $x \in S$
- symmetric: $(x, y) \in R$ iff $(y, x) \in R$
- **asymmetric:** if $(x, y) \in R$ then $(y, x) \notin R$
- **antisymmetric:** if $(x, y) \in R$ then $(y, x) \notin R$ or x = y
- transitive: if $(x, y) \in R$ and $(y, z) \in R$ then $(x, z) \in R$

Motivation

- Think of any attribute that two objects can have in common, e.g. their color.
- We could place the objects into distinct "buckets",
 e. g. one bucket for each color.
- We also can define a relation ~ such that x ~ y iff
 x and y share the attribute, e.g.have the same color.
- Would this relation be
 - reflexive?
 - irreflexive?
 - symmetric?
 - asymmetric?
 - antisymmetric?
 - transitive?

Equivalence Relation

Definition (Equivalence Relation)

A binary relation \sim over set S is an equivalence relation if \sim is reflexive, symmetric and transitive.

Is this definition indeed what we want? Does it allow us to partition the objects into buckets (e.g. one group for all objects that share a specific color)?

Definition (Partition)

A partition of a set S is a set $P \subseteq \mathcal{P}(S)$ such that

•
$$X \neq \emptyset$$
 for all $X \in P$,

•
$$\bigcup_{X \in P} X = S$$
, and

•
$$X \cap Y = \emptyset$$
 for all $X, Y \in P$ with $X \neq Y$,

The elements of P are called the blocks of the partition.

Let $S = \{e_1, ..., e_5\}.$

Which of the following sets are partitions of S?

 $\bullet P_1 = \{\{e_1, e_4\}, \{e_3\}, \{e_2, e_5\}\}$

Let $S = \{e_1, ..., e_5\}.$

- $\bullet P_1 = \{\{e_1, e_4\}, \{e_3\}, \{e_2, e_5\}\}$
- $P_2 = \{\{e_1, e_4, e_5\}, \{e_3\}\}$

Let $S = \{e_1, ..., e_5\}.$

- $\bullet P_1 = \{\{e_1, e_4\}, \{e_3\}, \{e_2, e_5\}\}$
- $P_2 = \{\{e_1, e_4, e_5\}, \{e_3\}\}$
- $\bullet P_3 = \{\{e_1, e_4, e_5\}, \{e_3\}, \{e_2, e_5\}\}$

Let $S = \{e_1, ..., e_5\}.$

- $\bullet P_1 = \{\{e_1, e_4\}, \{e_3\}, \{e_2, e_5\}\}$
- $P_2 = \{\{e_1, e_4, e_5\}, \{e_3\}\}$
- $\bullet P_3 = \{\{e_1, e_4, e_5\}, \{e_3\}, \{e_2, e_5\}\}$
- $\bullet P_4 = \{\{e_1\}, \{e_2\}, \{e_3\}, \{e_4\}, \{e_5\}\}$

Let $S = \{e_1, ..., e_5\}.$

- $\bullet P_1 = \{\{e_1, e_4\}, \{e_3\}, \{e_2, e_5\}\}$
- $P_2 = \{\{e_1, e_4, e_5\}, \{e_3\}\}$
- $\bullet P_3 = \{\{e_1, e_4, e_5\}, \{e_3\}, \{e_2, e_5\}\}$
- $\bullet P_4 = \{\{e_1\}, \{e_2\}, \{e_3\}, \{e_4\}, \{e_5\}\}$
- $\bullet P_5 = \{\{e_1\}, \{e_2\}, \{e_3\}, \{e_4\}, \{e_5\}, \{\}\}$

A Property of Partitions

Lemma

Let S be a set and P be a partition of S. Then every $x \in S$ is an element of exactly one $X \in P$.

Proof: \rightsquigarrow exercises

Block of an Element

The lemma enables the following definition:

DefinitionLet S be a set and P be a partition of S.For $e \in S$ we denote by $[e]_P$ the block $X \in P$ such that $e \in X$.

Block of an Element

The lemma enables the following definition:

Definition Let S be a set and P be a partition of S. For $e \in S$ we denote by $[e]_P$ the block $X \in P$ such that $e \in X$.

Consider partition $P = \{\{e_1, e_4\}, \{e_3\}, \{e_2, e_5\}\}$ of $\{e_1, \dots, e_5\}$. $[e_1]_P =$

Connection between Partitions and Equivalence Relations?

- We will now explore the connection between partitions and equivalence relations.
- Spoiler: They are essentially the same concept.

Definition (Relation induced by a partition)

Let S be a set and P be a partition of S.

The relation \sim_P induced by P is the binary relation over S with

 $x \sim_P y$ iff $[x]_P = [y]_P$.

 $x \sim_P y$ iff x and y are in the same block of P.

Definition (Relation induced by a partition)

Let S be a set and P be a partition of S.

The relation \sim_P induced by P is the binary relation over S with

 $x \sim_P y$ iff $[x]_P = [y]_P$.

 $x \sim_P y$ iff x and y are in the same block of P.

Consider partition $P = \{\{1, 4, 5\}, \{2, 3\}\}$ of set $\{1, 2, \dots, 5\}$. $\sim_P = \{(1, 1), (1, 4), (1, 5), (4, 1), (4, 4), (4, 5), (5, 1), (5, 4), (5, 5), (2, 2), (2, 3), (3, 2), (3, 3)\}$

We will show that \sim_P is an equivalence relation.

Theorem

Let P be a partition of S.

Relation \sim_P induced by P is an equivalence relation over S.

Theorem

Let P be a partition of S.

Relation \sim_P induced by P is an equivalence relation over S.

Proof.

We need to show that \sim_P is reflexive, symmetric and transitive.

Theorem

Let P be a partition of S.

Relation \sim_P induced by P is an equivalence relation over S.

Proof.

We need to show that \sim_P is reflexive, symmetric and transitive.

reflexive: As = is reflexive it holds for all $x \in S$ that $[x]_P = [x]_P$ and hence also that $x \sim_P x$.

Theorem

Let P be a partition of S.

Relation \sim_P induced by P is an equivalence relation over S.

Proof.

We need to show that \sim_P is reflexive, symmetric and transitive.

reflexive: As = is reflexive it holds for all $x \in S$ that $[x]_P = [x]_P$ and hence also that $x \sim_P x$.

symmetric: If $x \sim_P y$ then $[x]_P = [y]_P$. With the symmetry of = we get that $[y]_P = [x]_P$ and conclude that $y \sim_P x$.

Theorem

Let P be a partition of S.

Relation \sim_P induced by P is an equivalence relation over S.

Proof.

We need to show that \sim_P is reflexive, symmetric and transitive.

reflexive: As = is reflexive it holds for all $x \in S$ that $[x]_P = [x]_P$ and hence also that $x \sim_P x$.

symmetric: If $x \sim_P y$ then $[x]_P = [y]_P$. With the symmetry of = we get that $[y]_P = [x]_P$ and conclude that $y \sim_P x$.

transitive: If $x \sim_P y$ and $y \sim_P z$ then $[x]_P = [y]_P$ and $[y]_P = [z]_P$. As = is transitive, it then also holds that $[x]_P = [z]_P$ and hence $x \sim_P z$.

Equivalence Classes

Definition (equivalence class)

Let R be an equivalence relation over set S.

For any $x \in S$, the equivalence class of x is the set

 $[x]_R = \{y \in S \mid xRy\}.$

Equivalence Classes

Definition (equivalence class)

Let R be an equivalence relation over set S.

For any $x \in S$, the equivalence class of x is the set

 $[x]_R = \{y \in S \mid xRy\}.$

Consider

$$\begin{split} R &= \{(1,1),(1,4),(1,5),(4,1),(4,4),(4,5),(5,1),(5,4),(5,5),\\ &(2,2),(2,3),(3,2),(3,3)\}\\ \text{over set } \{1,2,\ldots,5\}. \end{split}$$

 $[4]_{R} =$

Theorem

Let *R* be an equivalence relation over set *S*. The set $P = \{[x]_R \mid x \in S\}$ is a partition of *S*.

 For x ∈ S, it holds that x ∈ [x]_R because R is reflexive. Hence, no X ∈ P is empty.

Theorem

Let *R* be an equivalence relation over set *S*. The set $P = \{[x]_R \mid x \in S\}$ is a partition of *S*.

Proof.

We need to show that

$$X \neq \emptyset \text{ for all } X \in P,$$

$$U_{X \in P} X = S, and$$

Theorem

Let R be an equivalence relation over set S. The set $P = \{[x]_R \mid x \in S\}$ is a partition of S.

Proof.

We need to show that

 $X \neq \emptyset \text{ for all } X \in P,$

$$) \bigcup_{X \in P} X = S, \text{ and }$$

1) For $x \in S$, it holds that $x \in [x]_R$ because R is reflexive. Hence, no $X \in P$ is empty.

Proof (continued).

For 2) we show $\bigcup_{X \in P} X \subseteq S$ and $\bigcup_{X \in P} X \supseteq S$ separately.

Proof (continued).

For 2) we show $\bigcup_{X \in P} X \subseteq S$ and $\bigcup_{X \in P} X \supseteq S$ separately.

 \subseteq : Consider an arbitrary $x \in \bigcup_{X \in P} X$. Since x is contained in the union, it must be an element of some $X \in P$. Consider such an X. By the definition of P, there is a $y \in S$ such that $X = [y]_R$. Since $x \in [y]_R$, it holds that yRx. As R is a relation over S, this implies that $x \in S$.

Proof (continued).

For 2) we show $\bigcup_{X \in P} X \subseteq S$ and $\bigcup_{X \in P} X \supseteq S$ separately.

 \subseteq : Consider an arbitrary $x \in \bigcup_{X \in P} X$. Since x is contained in the union, it must be an element of some $X \in P$. Consider such an X. By the definition of P, there is a $y \in S$ such that $X = [y]_R$. Since $x \in [y]_R$, it holds that yRx. As R is a relation over S, this implies that $x \in S$.

. . .

⊇: Consider an arbitrary $x \in S$. Since $x \in [x]_R$ (cf. 1) and $[x]_R \in P$, it holds that $x \in \bigcup_{X \in P} X$.
Proof (continued).

We show 3) by contrapositive: For all $X, Y \in P$: if $X \cap Y \neq \emptyset$ then X = Y.

Proof (continued).

We show 3) by contrapositive: For all $X, Y \in P$: if $X \cap Y \neq \emptyset$ then X = Y. Let X, Y be two sets from P with $X \cap Y \neq \emptyset$. Then there is an e with $e \in X \cap Y$ and there are $x, y \in S$ with $X = [x]_R$ and $Y = [y]_R$. Consider such e, x, y.

Proof (continued).

We show 3) by contrapositive:

For all $X, Y \in P$: if $X \cap Y \neq \emptyset$ then X = Y.

Let X, Y be two sets from P with $X \cap Y \neq \emptyset$.

Then there is an *e* with $e \in X \cap Y$ and there are $x, y \in S$ with $X = [x]_R$ and $Y = [y]_R$. Consider such e, x, y.

As $e \in [x]_R$ and $e \in [y]_R$ it holds that xRe and yRe. Since R is symmetric, we get from yRe that eRy. By transitivity, xRe and eRy imply xRy, which by symmetry also gives yRx.

Proof (continued).

We show 3) by contrapositive:

For all $X, Y \in P$: if $X \cap Y \neq \emptyset$ then X = Y.

Let X, Y be two sets from P with $X \cap Y \neq \emptyset$. Then there is an e with $e \in X \cap Y$ and there are $x, y \in S$ with $X = [x]_R$ and $Y = [y]_R$. Consider such e, x, y.

As $e \in [x]_R$ and $e \in [y]_R$ it holds that xRe and yRe. Since R is symmetric, we get from yRe that eRy. By transitivity, xRe and eRy imply xRy, which by symmetry also gives yRx.

We show $[x]_R \subseteq [y]_R$: consider an arbitrary $z \in [x]_R$. Then xRz. From yRx and xRz, by transitivity we get yRz. This establishes $z \in [y]_R$. As z was chosen arbitarily, it holds that $[x]_R \subseteq [y]_R$.

Proof (continued).

We show 3) by contrapositive:

For all $X, Y \in P$: if $X \cap Y \neq \emptyset$ then X = Y.

Let X, Y be two sets from P with $X \cap Y \neq \emptyset$. Then there is an e with $e \in X \cap Y$ and there are $x, y \in S$ with $X = [x]_R$ and $Y = [y]_R$. Consider such e, x, y.

As $e \in [x]_R$ and $e \in [y]_R$ it holds that xRe and yRe. Since R is symmetric, we get from yRe that eRy. By transitivity, xRe and eRy imply xRy, which by symmetry also gives yRx.

We show $[x]_R \subseteq [y]_R$: consider an arbitrary $z \in [x]_R$. Then xRz. From yRx and xRz, by transitivity we get yRz. This establishes $z \in [y]_R$. As z was chosen arbitarily, it holds that $[x]_R \subseteq [y]_R$. Analogously, we can show that $[x]_R \supseteq [y]_R$, so overall X = Y.

Summary

- We typically encounter equivalence relations when we consider objects as equivalent wrt. some attribute/property.
- A relation is an equivalence relation if it is reflexive, symmetric and transitive.
- A partition of a set groups the elements into non-empty subsets.
- The concepts are closely connected: in principle just different perspectives on the same "situation".

Discrete Mathematics in Computer Science Partial Orders

Malte Helmert, Gabriele Röger

University of Basel

Order Relations

- An equivalence relation is reflexive, symmetric and transitive.
- Such a relation induces a partition into "equivalent" objects.

Order Relations

- An equivalence relation is reflexive, symmetric and transitive.
- Such a relation induces a partition into "equivalent" objects.
- We now consider other combinations of properties, that allow us to compare objects in a set against other objects.

Order Relations

- An equivalence relation is reflexive, symmetric and transitive.
- Such a relation induces a partition into "equivalent" objects.
- We now consider other combinations of properties, that allow us to compare objects in a set against other objects.
- "Number x is not larger than number y."
 "Set S is a subset of set T."
 "Jerry runs at least as fast as Tom."
 "Pasta tastes better than Potatoes."

Partial Orders

• We begin with partial orders.

Partial Orders

- We begin with partial orders.
- Example partial order relations are \leq over \mathbb{N} or \subseteq for sets.

Partial Orders

- We begin with partial orders.
- Example partial order relations are \leq over \mathbb{N} or \subseteq for sets.
- Are these relations
 - reflexive?
 - irreflexive?
 - symmetric?
 - asymmetric?
 - antisymmetric?
 - transitive?

Partial Orders – Definition

Definition (Partial order, partially ordered sets)

A binary relation \leq over set S is a partial order if \leq is reflexive, antisymmetric and transitive.

Partial Orders – Definition

Definition (Partial order, partially ordered sets)

A binary relation \leq over set S is a partial order if \leq is reflexive, antisymmetric and transitive. A partially ordered set (or poset) is a pair (S, R)where S is a set and R is a partial order over S.

Partial Orders – Definition

Definition (Partial order, partially ordered sets)

A binary relation \leq over set S is a partial order if \leq is reflexive, antisymmetric and transitive. A partially ordered set (or poset) is a pair (S, R)where S is a set and R is a partial order over S.

Which of these relations are partial orders?

- strict subset relation \subset for sets
- not-less-than relation \geq over \mathbb{N}_0
- $R = \{(a, a), (a, b), (b, b), (b, c), (c, c)\}$ over $\{a, b, c\}$

Some special elements of posets:

Definition (Least and greatest element)

Let \leq be a partial order over set *S*.

An element $x \in S$ is the least element of S

if for all $y \in S$ it holds that $x \leq y$.

It is the greatest element of S if for all $y \in S$, $y \preceq x$.

Some special elements of posets:

Definition (Least and greatest element) Let \leq be a partial order over set S. An element $x \in S$ is the least element of S if for all $y \in S$ it holds that $x \leq y$. It is the greatest element of S if for all $y \in S$, $y \leq x$.

■ Is there a least/greatest element? Which one? ■ $S = \{1, 2, 3\}$ and $\leq = \{(x, y) \mid x, y \in S \text{ and } x \leq y\}.$

Some special elements of posets:

Definition (Least and greatest element) Let \leq be a partial order over set *S*. An element $x \in S$ is the least element of *S* if for all $y \in S$ it holds that $x \leq y$. It is the greatest element of *S* if for all $y \in S$, $y \leq x$.

■ Is there a least/greatest element? Which one? ■ $S = \{1, 2, 3\}$ and $\leq = \{(x, y) \mid x, y \in S \text{ and } x \leq y\}.$ ■ \mathbb{N}_0 and standard relation \leq .

Some special elements of posets:

Definition (Least and greatest element) Let \leq be a partial order over set S. An element $x \in S$ is the least element of S if for all $y \in S$ it holds that $x \leq y$. It is the greatest element of S if for all $y \in S$, $y \leq x$.

Is there a least/greatest element? Which one?

- $S = \{1, 2, 3\}$ and $\leq = \{(x, y) \mid x, y \in S \text{ and } x \leq y\}.$
- \mathbb{N}_0 and standard relation \leq .

Why can we say the least element instead of a least element?

Theorem

Let \leq be a partial order over set S.

If S contains a least element, it contains exactly one least element.

Theorem

Let \leq be a partial order over set S.

If S contains a least element, it contains exactly one least element.

Proof.

By contradiction: Assume x, y are least elements of S with $x \neq y$.

Theorem

Let \leq be a partial order over set S. If S contains a least element, it contains exactly one least element.

Proof.

By contradiction: Assume x, y are least elements of S with $x \neq y$. Since x is a least element, $x \leq y$ is true. Since y is a least element, $y \leq x$ is true.

Theorem

Let \leq be a partial order over set S.

If S contains a least element, it contains exactly one least element.

Proof.

By contradiction: Assume x, y are least elements of S with $x \neq y$. Since x is a least element, $x \leq y$ is true. Since y is a least element, $y \leq x$ is true. As a partial order is antisymmetric, this implies that x = y. \notin

Theorem

Let \leq be a partial order over set S.

If S contains a least element, it contains exactly one least element.

Proof.

By contradiction: Assume x, y are least elements of S with $x \neq y$. Since x is a least element, $x \leq y$ is true. Since y is a least element, $y \leq x$ is true. As a partial order is antisymmetric, this implies that x = y. \notin

Analogously: If there is a greatest element then is unique.

Minimal and Maximal Elements

Definition (Minimal/Maximal element of a set)

Let \leq be a partial order over set *S*. An element $x \in S$ is a minimal element of *S* if there is no $y \in S$ with $y \leq x$ and $x \neq y$. An element $x \in S$ is a maximal element of *S* if there is no $y \in S$ with $x \leq y$ and $x \neq y$.

Minimal and Maximal Elements

Definition (Minimal/Maximal element of a set)

Let \leq be a partial order over set *S*. An element $x \in S$ is a minimal element of *S* if there is no $y \in S$ with $y \leq x$ and $x \neq y$. An element $x \in S$ is a maximal element of *S* if there is no $y \in S$ with $x \leq y$ and $x \neq y$.

A set can have several minimal elements and no least element. Example?

 \blacksquare Relations \leq over \mathbb{N}_0 and \subseteq for sets are partial orders.

- \blacksquare Relations \leq over \mathbb{N}_0 and \subseteq for sets are partial orders.
- Can we compare every object against every object?

- \blacksquare Relations \leq over \mathbb{N}_0 and \subseteq for sets are partial orders.
- Can we compare every object against every object?
 - For all $x, y \in \mathbb{N}_0$ it holds that $x \leq y$ or that $y \leq x$ (or both).

- Relations < over \mathbb{N}_0 and \subseteq for sets are partial orders.
- Can we compare every object against every object?
 - For all $x, y \in \mathbb{N}_0$ it holds that $x \leq y$ or that $y \leq x$ (or both). • $\{1,2\} \not\subset \{2,3\}$ and $\{2,3\} \not\subset \{1,2\}$

- $\blacksquare \ \mbox{Relations} \le \mbox{over} \ \mathbb{N}_0 \ \mbox{and} \ \subseteq \mbox{for sets are partial orders}.$
- Can we compare every object against every object?
 - For all $x, y \in \mathbb{N}_0$ it holds that $x \leq y$ or that $y \leq x$ (or both). $\{1,2\} \nsubseteq \{2,3\}$ and $\{2,3\} \nsubseteq \{1,2\}$

Relation \leq is a total order, relation \subseteq is not.

Total Order – Definition

Definition (Total relation)

A binary relation R over set S is total (or connex) if for all $x, y \in S$ at least one of xRy or yRx is true.

Total Order – Definition

Definition (Total relation)

A binary relation R over set S is total (or connex) if for all $x, y \in S$ at least one of xRy or yRx is true.

Definition (Total order)

A binary relation is a total order if it is total and a partial order.

Summary

- A partial order is reflexive, antisymmetric and transitive.
- With a total order ≤ over S there are no elements x, y ∈ S with x ∠ y and y ∠ x.
- If x is the greatest element of a set S, it is greater than every element: for all $y \in S$ it holds that $y \preceq x$.
- If x is a maximal element of set S then it is not smaller than any other element y: there is no y ∈ S with x ≤ y and x ≠ y.

Discrete Mathematics in Computer Science Strict Orders

Malte Helmert, Gabriele Röger

University of Basel
Strict Orders

- A partial order is reflexive, antisymmetric and transitive.
- We now consider strict orders.

Strict Orders

- A partial order is reflexive, antisymmetric and transitive.
- We now consider strict orders.
- Example strict order relations are < over \mathbb{N} or \subset for sets.

Strict Orders

- A partial order is reflexive, antisymmetric and transitive.
- We now consider strict orders.
- Example strict order relations are < over \mathbb{N} or \subset for sets.
- Are these relations
 - reflexive?
 - irreflexive?
 - symmetric?
 - asymmetric?
 - antisymmetric?
 - transitive?

Strict Orders - Definition

Definition (Strict order)

A binary relation \prec over set S is a strict order if \prec is irreflexive, asymmetric and transitive.

Strict Orders - Definition

Definition (Strict order)

A binary relation \prec over set S is a strict order if \prec is irreflexive, asymmetric and transitive.

Which of these relations are strict orders?

- subset relation \subseteq for sets
- strict superset relation \supset for sets

Strict Orders - Definition

Definition (Strict order)

A binary relation \prec over set S is a strict order if \prec is irreflexive, asymmetric and transitive.

Which of these relations are strict orders?

- subset relation \subseteq for sets
- strict superset relation \supset for sets

Can a relation be both, a partial order and a strict order?

 As partial orders, a strict order does not automatically allow us to rank arbitrary two objects against each other.

- As partial orders, a strict order does not automatically allow us to rank arbitrary two objects against each other.
- Example 1 (personal preferences):
 - "Pasta tastes better than potato."
 - "Rice tastes better than bread."
 - "Bread tastes better than potato."
 - "Rice tastes better than potato."

No ranking of pasta against rice or of pasta against bread.

- As partial orders, a strict order does not automatically allow us to rank arbitrary two objects against each other.
- Example 1 (personal preferences):
 - "Pasta tastes better than potato."
 - "Rice tastes better than bread."
 - "Bread tastes better than potato."
 - "Rice tastes better than potato."

- This definition of "tastes better than" is a strict order.
- No ranking of pasta against rice or of pasta against bread.

■ Example 2: ⊂ relation for sets

- As partial orders, a strict order does not automatically allow us to rank arbitrary two objects against each other.
- Example 1 (personal preferences):
 - "Pasta tastes better than potato."
 - "Rice tastes better than bread."
 - "Bread tastes better than potato."
 - "Rice tastes better than potato."

- This definition of "tastes better than" is a strict order.
- No ranking of pasta against rice or of pasta against bread.
- Example 2: ⊂ relation for sets
- It doesn't work to simply require that the strict order is total. Why?

Strict Total Orders – Definition

Definition (Trichotomy)

A binary relation R over set S is trichotomous if for all $x, y \in S$ exactly one of xRy, yRx or x = y is true.

Strict Total Orders – Definition

Definition (Trichotomy)

A binary relation R over set S is trichotomous if for all $x, y \in S$ exactly one of xRy, yRx or x = y is true.

Definition (Strict total order)

A binary relation \prec over S is a strict total order if \prec is trichotomous and a strict order.

Strict Total Orders – Definition

Definition (Trichotomy)

A binary relation R over set S is trichotomous if for all $x, y \in S$ exactly one of xRy, yRx or x = y is true.

Definition (Strict total order)

A binary relation \prec over S is a strict total order if \prec is trichotomous and a strict order.

A strict total order completely ranks the elements of set S. Example: < relation over \mathbb{N}_0 gives the standard ordering $0, 1, 2, 3, \ldots$ of natural numbers.

Special Elements

Special elements are defined almost as for partial orders:

Definition (Least/greatest/minimal/maximal element of a set) Let \prec be a strict order over set S. An element $x \in S$ is the least element of S if for all $y \in S$ where $y \neq x$ it holds that $x \prec y$. It is the greatest element of S if for all $y \in S$ where $y \neq x, y \prec x$. Element $x \in S$ is a minimal element of S if there is no $y \in S$ with $y \prec x$. It is a maximal element of Sif there is no $y \in S$ with $x \prec y$.

Special Elements – Example

Consider again the previous example:

 $S = \{Pasta, Potato, Bread, Rice\}$ $\prec = \{(Pasta, Potato), (Bread, Potato), (Rice, Potato), (Rice, Bread)\}$

Is there a least and a greatest element? Which elements are maximal or minimal?

Summary and Outlook

- A strict order is irreflexive, asymmetric and transitive.
- Strict total orders and special elements are analogously defined as for partial sets but with a special treatment of equal elements.
- For partial order ≤ we can define a related strict order < as x < y if x ≤ y and y ≤ x.</p>
- For strict order \prec we can define a related partial order \preceq as $x \preceq y$ if $x \prec y$ or x = y.
- There are more related concepts, e.g.
 - (total) preorder: (connex), reflexive, transitive
 - well-order: total order over S such that every non-empty subset has a least element