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University of Basel
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Relations: Recap

I A relation over sets S1, . . . ,Sn is a set R ⊆ S1 × · · · × Sn.
I Possible properties of homogeneous relations R over S :

I reflexive: (x , x) ∈ R for all x ∈ S
I irreflexive: (x , x) /∈ R for all x ∈ S
I symmetric: (x , y) ∈ R iff (y , x) ∈ R
I asymmetric: if (x , y) ∈ R then (y , x) /∈ R
I antisymmetric: if (x , y) ∈ R then (y , x) /∈ R or x = y
I transitive: if (x , y) ∈ R and (y , z) ∈ R then (x , z) ∈ R
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Motivation

I Think of any attribute that two objects can have in common,
e. g. their color.

I We could place the objects into distinct “buckets”,
e. g. one bucket for each color.

I We also can define a relation ∼ such that x ∼ y iff
x and y share the attribute, e. g.have the same color.

I Would this relation be
I reflexive?
I irreflexive?
I symmetric?
I asymmetric?
I antisymmetric?
I transitive?
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Equivalence Relation

Definition (Equivalence Relation)

A binary relation ∼ over set S is an equivalence relation
if ∼ is reflexive, symmetric and transitive.

Is this definition indeed what we want?
Does it allow us to partition the objects into buckets
(e. g. one group for all objects that share a specific color)?
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Partition

Definition (Partition)

A partition of a set S is a set P ⊆ P(S) such that

I X 6= ∅ for all X ∈ P,

I
⋃

X∈P X = S , and

I X ∩ Y = ∅ for all X ,Y ∈ P with X 6= Y ,

The elements of P are called the blocks of the partition.
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Partition

Let S = {e1, . . . , e5}.

Which of the following sets are partitions of S?

I P1 = {{e1, e4}, {e3}, {e2, e5}}
I P2 = {{e1, e4, e5}, {e3}}
I P3 = {{e1, e4, e5}, {e3}, {e2, e5}}
I P4 = {{e1}, {e2}, {e3}, {e4}, {e5}}
I P5 = {{e1}, {e2}, {e3}, {e4}, {e5}, {}}
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A Property of Partitions

Lemma
Let S be a set and P be a partition of S .
Then every x ∈ S is an element of exactly one X ∈ P.

Proof:  exercises
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Block of an Element

The lemma enables the following definition:

Definition
Let S be a set and P be a partition of S .

For e ∈ S we denote by [e]P the block X ∈ P such that e ∈ X .

Consider partition P = {{e1, e4}, {e3}, {e2, e5}} of {e1, . . . , e5}.

[e1]P =
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Connection between Partitions and Equivalence Relations?

I We will now explore the connection
between partitions and equivalence relations.

I Spoiler: They are essentially the same concept.
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Partitions Induce Equivalence Relations I

Definition (Relation induced by a partition)

Let S be a set and P be a partition of S .

The relation ∼P induced by P is the binary relation over S with

x ∼P y iff [x ]P = [y ]P .

x ∼P y iff x and y are in the same block of P.

Consider partition P = {{1, 4, 5}, {2, 3}} of set {1, 2, . . . , 5}.
∼P= {(1, 1), (1, 4), (1, 5), (4, 1), (4, 4), (4, 5), (5, 1), (5, 4), (5, 5),

(2, 2), (2, 3), (3, 2), (3, 3)}

We will show that ∼P is an equivalence relation.
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Partitions Induce Equivalence Relations II

Theorem
Let P be a partition of S .
Relation ∼P induced by P is an equivalence relation over S .

Proof.
We need to show that ∼P is reflexive, symmetric and transitive.

reflexive: As = is reflexive it holds for all x ∈ S that [x ]P = [x ]P
and hence also that x ∼P x .

symmetric: If x ∼P y then [x ]P = [y ]P . With the symmetry of =
we get that [y ]P = [x ]P and conclude that y ∼P x .

transitive: If x ∼P y and y ∼P z then [x ]P = [y ]P and
[y ]P = [z ]P . As = is transitive, it then also holds that [x ]P = [z ]P
and hence x ∼P z .
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Equivalence Classes

Definition (equivalence class)

Let R be an equivalence relation over set S .

For any x ∈ S , the equivalence class of x is the set

[x ]R = {y ∈ S | xRy}.

Consider
R = {(1, 1), (1, 4), (1, 5), (4, 1), (4, 4), (4, 5), (5, 1), (5, 4), (5, 5),

(2, 2), (2, 3), (3, 2), (3, 3)}
over set {1, 2, . . . , 5}.

[4]R =
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Equivalence Relations Induce Partitions

Theorem
Let R be an equivalence relation over set S .
The set P = {[x ]R | x ∈ S} is a partition of S .

Proof.
We need to show that

1 X 6= ∅ for all X ∈ P,

2
⋃

X∈P X = S , and

3 X ∩ Y = ∅ for all X ,Y ∈ P with X 6= Y ,

1) For x ∈ S , it holds that x ∈ [x ]R because R is reflexive.
Hence, no X ∈ P is empty. . . .
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Equivalence Relations Induce Partitions

Proof (continued).

For 2) we show
⋃

X∈P X ⊆ S and
⋃

X∈P X ⊇ S separately.

⊆: Consider an arbitrary x ∈
⋃

X∈P X . Since x is contained in the
union, it must be an element of some X ∈ P. Consider such an X .
By the definition of P, there is a y ∈ S such that X = [y ]R .
Since x ∈ [y ]R , it holds that yRx .
As R is a relation over S , this implies that x ∈ S .

⊇: Consider an arbitrary x ∈ S . Since x ∈ [x ]R (cf. 1) and
[x ]R ∈ P, it holds that x ∈

⋃
X∈P X . . . .
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Equivalence Relations Induce Partitions

Proof (continued).

We show 3) by contrapositive:
For all X ,Y ∈ P: if X ∩ Y 6= ∅ then X = Y .

Let X ,Y be two sets from P with X ∩ Y 6= ∅.
Then there is an e with e ∈ X ∩ Y and there are x , y ∈ S with
X = [x ]R and Y = [y ]R . Consider such e, x , y .

As e ∈ [x ]R and e ∈ [y ]R it holds that xRe and yRe. Since R is
symmetric, we get from yRe that eRy . By transitivity, xRe and
eRy imply xRy , which by symmetry also gives yRx .

We show [x ]R ⊆ [y ]R : consider an arbitrary z ∈ [x ]R . Then xRz .
From yRx and xRz , by transitivity we get yRz . This establishes
z ∈ [y ]R . As z was chosen arbitarily, it holds that [x ]R ⊆ [y ]R .

Analogously, we can show that [x ]R ⊇ [y ]R , so overall X = Y .
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Summary

I We typically encounter equivalence relations when we consider
objects as equivalent wrt. some attribute/property.

I A relation is an equivalence relation
if it is reflexive, symmetric and transitive.

I A partition of a set groups the elements
into non-empty subsets.

I The concepts are closely connected:
in principle just different perspectives on the same “situation”.
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Order Relations

I An equivalence relation is reflexive, symmetric and transitive.

I Such a relation induces a partition into “equivalent” objects.

I We now consider other combinations of properties,
that allow us to compare objects in a set against other objects.

I “Number x is not larger than number y .”
“Set S is a subset of set T .”
“Jerry runs at least as fast as Tom.”
“Pasta tastes better than Potatoes.”
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Partial Orders

I We begin with partial orders.

I Example partial order relations are ≤ over N or ⊆ for sets.
I Are these relations

I reflexive?
I irreflexive?
I symmetric?
I asymmetric?
I antisymmetric?
I transitive?
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Partial Orders – Definition

Definition (Partial order, partially ordered sets)

A binary relation � over set S is a partial order
if � is reflexive, antisymmetric and transitive.

A partially ordered set (or poset) is a pair (S ,R)
where S is a set and R is a partial order over S .

Which of these relations are partial orders?

I strict subset relation ⊂ for sets

I not-less-than relation ≥ over N0

I R = {(a, a), (a, b), (b, b), (b, c), (c , c)} over {a, b, c}
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Least and Greatest Element

Some special elements of posets:

Definition (Least and greatest element)

Let � be a partial order over set S .

An element x ∈ S is the least element of S
if for all y ∈ S it holds that x � y .

It is the greatest element of S if for all y ∈ S , y � x .

I Is there a least/greatest element? Which one?
I S = {1, 2, 3} and � = {(x , y) | x , y ∈ S and x ≤ y}.
I N0 and standard relation ≤.

I Why can we say the least element instead of a least element?
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Uniqueness of Least Element

Theorem
Let � be a partial order over set S .
If S contains a least element, it contains exactly one least element.

Proof.
By contradiction: Assume x , y are least elements of S with x 6= y .
Since x is a least element, x � y is true.
Since y is a least element, y � x is true.
As a partial order is antisymmetric, this implies that x = y .  

Analogously: If there is a greatest element then is unique.
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Minimal and Maximal Elements

Definition (Minimal/Maximal element of a set)

Let � be a partial order over set S .
An element x ∈ S is a minimal element of S
if there is no y ∈ S with y � x and x 6= y .

An element x ∈ S is a maximal element of S
if there is no y ∈ S with x � y and x 6= y .

A set can have several minimal elements and no least element.
Example?
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Total Orders

I Relations ≤ over N0 and ⊆ for sets are partial orders.
I Can we compare every object against every object?

I For all x , y ∈ N0 it holds that x ≤ y or that y ≤ x (or both).
I {1, 2} * {2, 3} and {2, 3} * {1, 2}

I Relation ≤ is a total order, relation ⊆ is not.
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Total Order – Definition

Definition (Total relation)

A binary relation R over set S is total (or connex)
if for all x , y ∈ S at least one of xRy or yRx is true.

Definition (Total order)

A binary relation is a total order if it is total and a partial order.
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Summary

I A partial order is reflexive, antisymmetric and transitive.

I With a total order � over S there are
no elements x , y ∈ S with x 6� y and y 6� x .

I If x is the greatest element of a set S , it is greater than every
element: for all y ∈ S it holds that y � x .

I If x is a maximal element of set S then it is not smaller than
any other element y : there is no y ∈ S with x � y and x 6= y .
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Strict Orders

I A partial order is reflexive, antisymmetric and transitive.

I We now consider strict orders.

I Example strict order relations are < over N or ⊂ for sets.
I Are these relations

I reflexive?
I irreflexive?
I symmetric?
I asymmetric?
I antisymmetric?
I transitive?
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Strict Orders – Definition

Definition (Strict order)

A binary relation ≺ over set S is a strict order
if ≺ is irreflexive, asymmetric and transitive.

Which of these relations are strict orders?

I subset relation ⊆ for sets

I strict superset relation ⊃ for sets

Can a relation be both, a partial order and a strict order?
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Strict Total Orders

I As partial orders, a strict order does not automatically
allow us to rank arbitrary two objects against each other.

I Example 1 (personal preferences):
I “Pasta tastes better than potato.”
I “Rice tastes better than bread.”
I “Bread tastes better than potato.”
I “Rice tastes better than potato.”

Pasta

Potato Bread

Rice

I This definition of “tastes better than” is a strict order.
I No ranking of pasta against rice or of pasta against bread.

I Example 2: ⊂ relation for sets

I It doesn’t work to simply require that the strict order is total.
Why?
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Strict Total Orders – Definition

Definition (Trichotomy)

A binary relation R over set S is trichotomous if for all x , y ∈ S
exactly one of xRy , yRx or x = y is true.

Definition (Strict total order)

A binary relation ≺ over S is a strict total order
if ≺ is trichotomous and a strict order.

A strict total order completely ranks the elements of set S .
Example: < relation over N0 gives the standard ordering

0, 1, 2, 3, . . . of natural numbers.
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Special Elements

Special elements are defined almost as for partial orders:

Definition (Least/greatest/minimal/maximal element of a set)

Let ≺ be a strict order over set S .

An element x ∈ S is the least element of S
if for all y ∈ S where y 6= x it holds that x ≺ y .

It is the greatest element of S if for all y ∈ S where y 6= x , y ≺ x .

Element x ∈ S is a minimal element of S
if there is no y ∈ S with y ≺ x .

It is a maximal element of S
if there is no y ∈ S with x ≺ y .
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Special Elements – Example

Consider again the previous example:

S = {Pasta,Potato,Bread,Rice}
≺ = {(Pasta,Potato), (Bread,Potato),

(Rice,Potato), (Rice,Bread)}

Pasta

Potato Bread

Rice

Is there a least and a greatest element?
Which elements are maximal or minimal?
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Summary and Outlook

I A strict order is irreflexive, asymmetric and transitive.

I Strict total orders and special elements are analogously
defined as for partial sets but with a special treatment of
equal elements.

I For partial order � we can define a related strict order ≺ as
x ≺ y if x � y and y 6� x .

I For strict order ≺ we can define a related partial order � as
x � y if x ≺ y or x = y .

I There are more related concepts, e. g.
I (total) preorder: (connex), reflexive, transitive
I well-order: total order over S such that every non-empty

subset has a least element
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