Discrete Mathematics in Computer Science Relations

Malte Helmert, Gabriele Röger

University of Basel

Relations: Informally

- Informally, a relation is some property that is true or false for an (ordered) collection of objects.
- We already know some relations, e.g.
 - ⊆ relation for sets
 - ≤ relation for natural numbers

Relations: Informally

- Informally, a relation is some property that is true or false for an (ordered) collection of objects.
- We already know some relations, e.g.
 - ⊆ relation for sets
 - ≤ relation for natural numbers
- These are examples of binary relations, considering pairs of objects.
- There are also relations of higher arity, e.g.
 - "x + y = z" for integers x, y, z.
 - "The name, address and office number belong to the same person."

Relations: Informally

- Informally, a relation is some property that is true or false for an (ordered) collection of objects.
- We already know some relations, e.g.
 - ⊆ relation for sets
 - ≤ relation for natural numbers
- These are examples of binary relations, considering pairs of objects.
- There are also relations of higher arity, e.g.
 - "x + y = z" for integers x, y, z.
 - "The name, address and office number belong to the same person."
- Relations are for example important for relational databases, semantic networks or knowledge representation and reasoning.

Relations

Definition (Relation)

Let S_1, \ldots, S_n be sets.

A relation over S_1, \ldots, S_n is a set $R \subseteq S_1 \times \cdots \times S_n$.

The arity of R is n.

- \blacksquare A relation of arity n is a set of n-tuples.
- The set contains the tuples for which the informal property is true.

 $\subseteq = \{(S, S') \mid S \text{ and } S' \text{ are sets and }$ for every $x \in S$ it holds that $x \in S'\}$

- $\subseteq = \{(S, S') \mid S \text{ and } S' \text{ are sets and }$ for every $x \in S$ it holds that $x \in S'\}$
- $\blacksquare \le = \{(x,y) \mid x,y \in \mathbb{N}_0 \text{ and } x < y \text{ or } x = y\}$

- $\subseteq = \{(S, S') \mid S \text{ and } S' \text{ are sets and }$ for every $x \in S$ it holds that $x \in S'\}$
- $\leq = \{(x,y) \mid x,y \in \mathbb{N}_0 \text{ and } x < y \text{ or } x = y\}$
- $\blacksquare R = \{(x, y, z) \mid x, y, z \in \mathbb{Z} \text{ and } x + y = z\}$

- $\subseteq = \{(S, S') \mid S \text{ and } S' \text{ are sets and }$ for every $x \in S$ it holds that $x \in S'\}$
- $\blacksquare \le = \{(x,y) \mid x,y \in \mathbb{N}_0 \text{ and } x < y \text{ or } x = y\}$
- $\blacksquare R = \{(x, y, z) \mid x, y, z \in \mathbb{Z} \text{ and } x + y = z\}$
- $R' = \{ (Gabi, Spiegelgasse 1, 04.005),$ (Salomé, Spiegelgasse 1, 04.002), (Florian, Spiegelgasse 1, 04.005),
 - (Augusto, Spiegelgasse 5, 04.001)}

Discrete Mathematics in Computer Science Properties of Binary Relations

Malte Helmert, Gabriele Röger

University of Basel

Binary Relation

A binary relation is a relation of arity 2:

Definition (binary relation)

A binary relation is a relation over two sets A and B.

Binary Relation

A binary relation is a relation of arity 2:

Definition (binary relation)

A binary relation is a relation over two sets A and B.

- Instead of $(x, y) \in R$, we also write xRy, e.g. $x \le y$ instead of $(x, y) \in S$
- If the sets are equal, we say "R is a binary relation over A" instead of "R is a binary relation over A and A".
- Such a relation over a set is also called a homogeneous relation or an endorelation.

A reflexive relation relates every object to itself.

Definition (reflexive)

A binary relation R over set A is reflexive if for all $a \in A$ it holds that $(a, a) \in R$.

A reflexive relation relates every object to itself.

Definition (reflexive)

A binary relation R over set A is reflexive if for all $a \in A$ it holds that $(a, a) \in R$.

$$R = \{(a, a), (a, b), (a, c), (b, a), (b, c), (c, c)\} \text{ over } \{a, b, c\}$$

A reflexive relation relates every object to itself.

Definition (reflexive)

A binary relation R over set A is reflexive if for all $a \in A$ it holds that $(a, a) \in R$.

- $R = \{(a, a), (a, b), (a, c), (b, a), (b, c), (c, c)\} \text{ over } \{a, b, c\}$
- $R = \{(a, a), (a, b), (a, c), (b, b), (b, c), (c, c)\} \text{ over } \{a, b, c\}$

A reflexive relation relates every object to itself.

Definition (reflexive)

A binary relation R over set A is reflexive if for all $a \in A$ it holds that $(a, a) \in R$.

- $R = \{(a, a), (a, b), (a, c), (b, a), (b, c), (c, c)\} \text{ over } \{a, b, c\}$
- $R = \{(a, a), (a, b), (a, c), (b, b), (b, c), (c, c)\} \text{ over } \{a, b, c\}$
- equality relation = on natural numbers

A reflexive relation relates every object to itself.

Definition (reflexive)

A binary relation R over set A is reflexive if for all $a \in A$ it holds that $(a, a) \in R$.

- $R = \{(a, a), (a, b), (a, c), (b, a), (b, c), (c, c)\}$ over $\{a, b, c\}$
- $R = \{(a, a), (a, b), (a, c), (b, b), (b, c), (c, c)\}$ over $\{a, b, c\}$
- equality relation = on natural numbers
- less-than relation ≤ on natural numbers

A reflexive relation relates every object to itself.

Definition (reflexive)

A binary relation R over set A is reflexive if for all $a \in A$ it holds that $(a, a) \in R$.

- $R = \{(a, a), (a, b), (a, c), (b, a), (b, c), (c, c)\} \text{ over } \{a, b, c\}$
- $R = \{(a, a), (a, b), (a, c), (b, b), (b, c), (c, c)\} \text{ over } \{a, b, c\}$
- equality relation = on natural numbers
- less-than relation ≤ on natural numbers
- strictly-less-than relation < on natural numbers</p>

A irreflexive relation never relates an object to itself.

Definition (irreflexive)

A binary relation R over set A is irreflexive if for all $a \in A$ it holds that $(a, a) \notin R$.

A irreflexive relation never relates an object to itself.

Definition (irreflexive)

A binary relation R over set A is irreflexive if for all $a \in A$ it holds that $(a, a) \notin R$.

$$R = \{(a, a), (a, b), (a, c), (b, a), (b, c), (c, c)\} \text{ over } \{a, b, c\}$$

A irreflexive relation never relates an object to itself.

Definition (irreflexive)

A binary relation R over set A is irreflexive if for all $a \in A$ it holds that $(a, a) \notin R$.

- $R = \{(a, a), (a, b), (a, c), (b, a), (b, c), (c, c)\} \text{ over } \{a, b, c\}$
- $R = \{(a, a), (a, b), (a, c), (b, b), (b, c), (c, c)\} \text{ over } \{a, b, c\}$

A irreflexive relation never relates an object to itself.

Definition (irreflexive)

A binary relation R over set A is irreflexive if for all $a \in A$ it holds that $(a, a) \notin R$.

- $R = \{(a, a), (a, b), (a, c), (b, a), (b, c), (c, c)\}$ over $\{a, b, c\}$
- $R = \{(a, a), (a, b), (a, c), (b, b), (b, c), (c, c)\} \text{ over } \{a, b, c\}$
- equality relation = on natural numbers

A irreflexive relation never relates an object to itself.

Definition (irreflexive)

A binary relation R over set A is irreflexive if for all $a \in A$ it holds that $(a, a) \notin R$.

- $R = \{(a, a), (a, b), (a, c), (b, a), (b, c), (c, c)\}$ over $\{a, b, c\}$
- $R = \{(a, a), (a, b), (a, c), (b, b), (b, c), (c, c)\}$ over $\{a, b, c\}$
- equality relation = on natural numbers
- less-than relation ≤ on natural numbers

A irreflexive relation never relates an object to itself.

Definition (irreflexive)

A binary relation R over set A is irreflexive if for all $a \in A$ it holds that $(a, a) \notin R$.

- $R = \{(a, a), (a, b), (a, c), (b, a), (b, c), (c, c)\}$ over $\{a, b, c\}$
- $R = \{(a, a), (a, b), (a, c), (b, b), (b, c), (c, c)\} \text{ over } \{a, b, c\}$
- equality relation = on natural numbers
- less-than relation ≤ on natural numbers
- strictly-less-than relation < on natural numbers</p>

Definition (symmetric)

A binary relation R over set A is symmetric if for all $a, b \in A$ it holds that $(a, b) \in R$ iff $(b, a) \in R$.

Definition (symmetric)

A binary relation R over set A is symmetric if for all $a, b \in A$ it holds that $(a, b) \in R$ iff $(b, a) \in R$.

$$R = \{(a, a), (a, b), (a, c), (b, a), (c, a), (c, c)\}$$
 over $\{a, b, c\}$

Definition (symmetric)

A binary relation R over set A is symmetric if for all $a, b \in A$ it holds that $(a, b) \in R$ iff $(b, a) \in R$.

- $R = \{(a, a), (a, b), (a, c), (b, a), (c, a), (c, c)\} \text{ over } \{a, b, c\}$
- $R = \{(a, a), (a, b), (a, c), (b, b), (b, c), (c, c)\} \text{ over } \{a, b, c\}$

Definition (symmetric)

A binary relation R over set A is symmetric if for all $a, b \in A$ it holds that $(a, b) \in R$ iff $(b, a) \in R$.

- $R = \{(a, a), (a, b), (a, c), (b, a), (c, a), (c, c)\} \text{ over } \{a, b, c\}$
- $R = \{(a, a), (a, b), (a, c), (b, b), (b, c), (c, c)\} \text{ over } \{a, b, c\}$
- equality relation = on natural numbers

Definition (symmetric)

A binary relation R over set A is symmetric if for all $a, b \in A$ it holds that $(a, b) \in R$ iff $(b, a) \in R$.

- $R = \{(a, a), (a, b), (a, c), (b, a), (c, a), (c, c)\} \text{ over } \{a, b, c\}$
- $R = \{(a, a), (a, b), (a, c), (b, b), (b, c), (c, c)\}$ over $\{a, b, c\}$
- equality relation = on natural numbers
- less-than relation < on natural numbers

Definition (symmetric)

A binary relation R over set A is symmetric if for all $a, b \in A$ it holds that $(a, b) \in R$ iff $(b, a) \in R$.

- $R = \{(a, a), (a, b), (a, c), (b, a), (c, a), (c, c)\} \text{ over } \{a, b, c\}$
- $R = \{(a, a), (a, b), (a, c), (b, b), (b, c), (c, c)\}$ over $\{a, b, c\}$
- equality relation = on natural numbers
- less-than relation < on natural numbers
- strictly-less-than relation < on natural numbers</p>

Definition (asymmetric and antisymmetric)

Let R be a binary relation over set A.

Relation R is asymmetric if

for all $a, b \in A$ it holds that if $(a, b) \in R$ then $(b, a) \notin R$.

Relation R is antisymmetric if for all $a, b \in A$ with $a \neq b$ it holds that if $(a, b) \in R$ then $(b, a) \notin R$.

Definition (asymmetric and antisymmetric)

Let R be a binary relation over set A.

Relation R is asymmetric if

for all $a, b \in A$ it holds that if $(a, b) \in R$ then $(b, a) \notin R$.

Relation R is antisymmetric if for all $a, b \in A$ with $a \neq b$ it holds that if $(a, b) \in R$ then $(b, a) \notin R$.

$$R = \{(a, a), (a, b), (a, c), (b, a), (c, a), (c, c)\}$$
 over $\{a, b, c\}$

Definition (asymmetric and antisymmetric)

Let R be a binary relation over set A.

Relation R is asymmetric if

for all $a, b \in A$ it holds that if $(a, b) \in R$ then $(b, a) \notin R$.

Relation R is antisymmetric if for all $a, b \in A$ with $a \neq b$ it holds that if $(a, b) \in R$ then $(b, a) \notin R$.

- $R = \{(a, a), (a, b), (a, c), (b, a), (c, a), (c, c)\}$ over $\{a, b, c\}$
- $R = \{(a, a), (a, b), (a, c), (b, b), (b, c), (c, c)\} \text{ over } \{a, b, c\}$

Definition (asymmetric and antisymmetric)

Let R be a binary relation over set A.

Relation R is asymmetric if

for all $a, b \in A$ it holds that if $(a, b) \in R$ then $(b, a) \notin R$.

Relation R is antisymmetric if for all $a, b \in A$ with $a \neq b$ it holds that if $(a, b) \in R$ then $(b, a) \notin R$.

- $R = \{(a, a), (a, b), (a, c), (b, a), (c, a), (c, c)\}$ over $\{a, b, c\}$
- $R = \{(a, a), (a, b), (a, c), (b, b), (b, c), (c, c)\} \text{ over } \{a, b, c\}$
- equality relation = on natural numbers

Definition (asymmetric and antisymmetric)

Let R be a binary relation over set A.

Relation R is asymmetric if

for all $a, b \in A$ it holds that if $(a, b) \in R$ then $(b, a) \notin R$.

Relation R is antisymmetric if for all $a, b \in A$ with $a \neq b$ it holds that if $(a, b) \in R$ then $(b, a) \notin R$.

- $R = \{(a, a), (a, b), (a, c), (b, a), (c, a), (c, c)\}$ over $\{a, b, c\}$
- $R = \{(a, a), (a, b), (a, c), (b, b), (b, c), (c, c)\} \text{ over } \{a, b, c\}$
- equality relation = on natural numbers
- less-than relation ≤ on natural numbers

Definition (asymmetric and antisymmetric)

Let R be a binary relation over set A.

Relation R is asymmetric if

for all $a, b \in A$ it holds that if $(a, b) \in R$ then $(b, a) \notin R$.

Relation R is antisymmetric if for all $a, b \in A$ with $a \neq b$ it holds that if $(a, b) \in R$ then $(b, a) \notin R$.

- $R = \{(a, a), (a, b), (a, c), (b, a), (c, a), (c, c)\} \text{ over } \{a, b, c\}$
- $R = \{(a, a), (a, b), (a, c), (b, b), (b, c), (c, c)\} \text{ over } \{a, b, c\}$
- equality relation = on natural numbers
- less-than relation < on natural numbers
- strictly-less-than relation < on natural numbers</p>

Definition (asymmetric and antisymmetric)

Let R be a binary relation over set A.

Relation R is asymmetric if

for all $a, b \in A$ it holds that if $(a, b) \in R$ then $(b, a) \notin R$.

Relation R is antisymmetric if for all $a, b \in A$ with $a \neq b$ it holds that if $(a, b) \in R$ then $(b, a) \notin R$.

Which of these relations are asymmetric/antisymmetric?

- $R = \{(a, a), (a, b), (a, c), (b, a), (c, a), (c, c)\}$ over $\{a, b, c\}$
- $R = \{(a, a), (a, b), (a, c), (b, b), (b, c), (c, c)\}$ over $\{a, b, c\}$
- equality relation = on natural numbers
- less-than relation < on natural numbers
- strictly-less-than relation < on natural numbers</p>

How do these properties relate to irreflexivity?

Definition

A binary relation R over set A is transitive if it holds for all $a, b, c \in A$ that if $(a, b) \in R$ and $(b, c) \in R$ then $(a, c) \in R$.

Definition

A binary relation R over set A is transitive if it holds for all $a, b, c \in A$ that if $(a, b) \in R$ and $(b, c) \in R$ then $(a, c) \in R$.

Which of these relations are transitive?

 $R = \{(a, a), (a, b), (a, c), (b, a), (c, a), (c, c)\} \text{ over } \{a, b, c\}$

Definition

A binary relation R over set A is transitive if it holds for all $a, b, c \in A$ that if $(a, b) \in R$ and $(b, c) \in R$ then $(a, c) \in R$.

- $R = \{(a, a), (a, b), (a, c), (b, a), (c, a), (c, c)\} \text{ over } \{a, b, c\}$
- $R = \{(a, a), (a, b), (a, c), (b, b), (b, c), (c, c)\} \text{ over } \{a, b, c\}$

Definition

A binary relation R over set A is transitive if it holds for all $a, b, c \in A$ that if $(a, b) \in R$ and $(b, c) \in R$ then $(a, c) \in R$.

- $R = \{(a, a), (a, b), (a, c), (b, a), (c, a), (c, c)\} \text{ over } \{a, b, c\}$
- $R = \{(a, a), (a, b), (a, c), (b, b), (b, c), (c, c)\}$ over $\{a, b, c\}$
- equality relation = on natural numbers

Definition

A binary relation R over set A is transitive if it holds for all $a, b, c \in A$ that if $(a, b) \in R$ and $(b, c) \in R$ then $(a, c) \in R$.

- $R = \{(a, a), (a, b), (a, c), (b, a), (c, a), (c, c)\}$ over $\{a, b, c\}$
- $R = \{(a, a), (a, b), (a, c), (b, b), (b, c), (c, c)\}$ over $\{a, b, c\}$
- equality relation = on natural numbers
- less-than relation ≤ on natural numbers

Definition

A binary relation R over set A is transitive if it holds for all $a, b, c \in A$ that if $(a, b) \in R$ and $(b, c) \in R$ then $(a, c) \in R$.

- $R = \{(a, a), (a, b), (a, c), (b, a), (c, a), (c, c)\} \text{ over } \{a, b, c\}$
- $R = \{(a, a), (a, b), (a, c), (b, b), (b, c), (c, c)\}$ over $\{a, b, c\}$
- equality relation = on natural numbers
- less-than relation ≤ on natural numbers
- strictly-less-than relation < on natural numbers

Special Classes of Relations

- Some important classes of relations are defined in terms of these properties.
 - Equivalence relation: reflexive, symmetric, transitive
 - Partial order: reflexive, antisymmetric, transitive
 - Strict order: irreflexive, asymmetric, transitive
 -
- We will consider these and other classes in detail.