

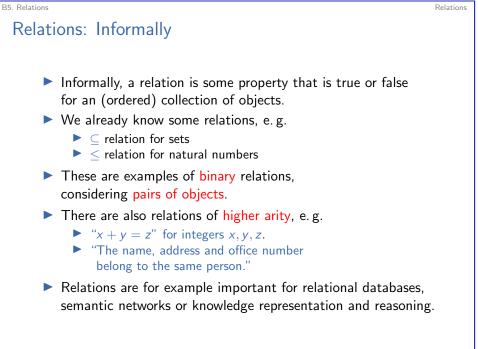
# B5.1 Relations

Discrete Mathematics in Computer Science — B5. Relations

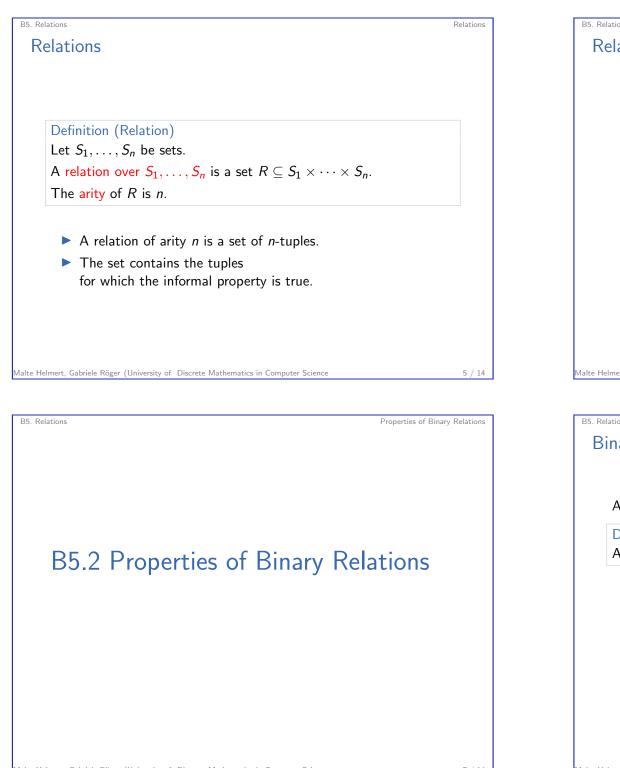
### **B5.1** Relations

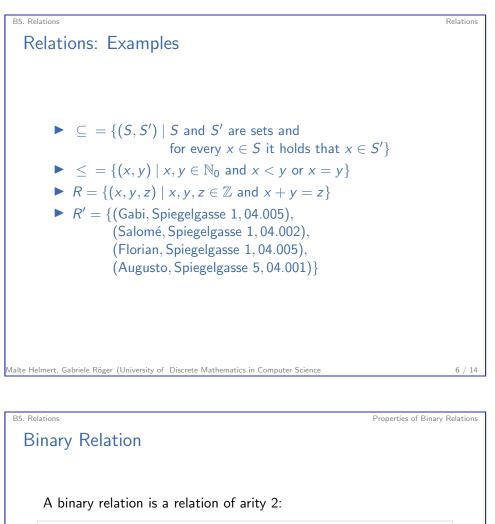
**B5.2** Properties of Binary Relations

Malte Helmert, Gabriele Röger (University of Discrete Mathematics in Computer Science



2 / 14





Definition (binary relation)

A binary relation is a relation over two sets A and B.

- ▶ Instead of  $(x, y) \in R$ , we also write xRy, e.g.  $x \leq y$  instead of  $(x, y) \in d$
- If the sets are equal, we say "R is a binary relation over A" instead of "R is a binary relation over A and A".
- Such a relation over a set is also called a homogeneous relation or an endorelation.

### B5. Relations

Properties of Binary Relations

# Reflexivity

A reflexive relation relates every object to itself.

Definition (reflexive) A binary relation R over set A is reflexive if for all  $a \in A$  it holds that  $(a, a) \in R$ .

Which of these relations are reflexive?

- $R = \{(a, a), (a, b), (a, c), (b, a), (b, c), (c, c)\}$  over  $\{a, b, c\}$
- $R = \{(a, a), (a, b), (a, c), (b, b), (b, c), (c, c)\}$  over  $\{a, b, c\}$
- equality relation = on natural numbers
- $\blacktriangleright$  less-than relation  $\leq$  on natural numbers
- strictly-less-than relation < on natural numbers</p>

Alte Helmert, Gabriele Röger (University of Discrete Mathematics in Computer Science

Properties of Binary Relations

9 / 14

# B5. Relations Symmetry

Definition (symmetric)

A binary relation R over set A is symmetric if for all  $a, b \in A$  it holds that  $(a, b) \in R$  iff  $(b, a) \in R$ .

Which of these relations are symmetric?

- $R = \{(a, a), (a, b), (a, c), (b, a), (c, a), (c, c)\}$  over  $\{a, b, c\}$
- ▶  $R = \{(a, a), (a, b), (a, c), (b, b), (b, c), (c, c)\}$  over  $\{a, b, c\}$
- equality relation = on natural numbers
- $\blacktriangleright$  less-than relation  $\leq$  on natural numbers
- strictly-less-than relation < on natural numbers</p>

11 / 14

# Irreflexivity

A irreflexive relation never relates an object to itself.

Definition (irreflexive) A binary relation R over set A is irreflexive if for all  $a \in A$  it holds that  $(a, a) \notin R$ .

Which of these relations are irreflexive?

- $R = \{(a, a), (a, b), (a, c), (b, a), (b, c), (c, c)\}$  over  $\{a, b, c\}$
- ▶  $R = \{(a, a), (a, b), (a, c), (b, b), (b, c), (c, c)\}$  over  $\{a, b, c\}$
- equality relation = on natural numbers
- ▶ less-than relation  $\leq$  on natural numbers
- strictly-less-than relation < on natural numbers</p>

Alte Helmert, Gabriele Röger (University of Discrete Mathematics in Computer Science

10 / 14

Properties of Binary Relations

### B5. Relations

# Asymmetry and Antisymmetry

Definition (asymmetric and antisymmetric) Let R be a binary relation over set A. Relation R is asymmetric if for all  $a, b \in A$  it holds that if  $(a, b) \in R$  then  $(b, a) \notin R$ . Relation R is antisymmetric if for all  $a, b \in A$  with  $a \neq b$  it holds that if  $(a, b) \in R$  then  $(b, a) \notin R$ .

Which of these relations are asymmetric/antisymmetric?

- $R = \{(a, a), (a, b), (a, c), (b, a), (c, a), (c, c)\}$  over  $\{a, b, c\}$
- ▶  $R = \{(a, a), (a, b), (a, c), (b, b), (b, c), (c, c)\}$  over  $\{a, b, c\}$
- equality relation = on natural numbers
- $\blacktriangleright$  less-than relation  $\leq$  on natural numbers
- strictly-less-than relation < on natural numbers</p>

How do these properties relate to irreflexivity?

B5. Relations

Properties of Binary Relations

### Transitivity

### Definition

A binary relation R over set A is transitive if it holds for all  $a, b, c \in A$  that if  $(a, b) \in R$  and  $(b, c) \in R$  then  $(a, c) \in R$ .

Which of these relations are transitive?

- $R = \{(a, a), (a, b), (a, c), (b, a), (c, a), (c, c)\}$  over  $\{a, b, c\}$
- $R = \{(a, a), (a, b), (a, c), (b, b), (b, c), (c, c)\}$  over  $\{a, b, c\}$
- equality relation = on natural numbers
- ▶ less-than relation  $\leq$  on natural numbers
- strictly-less-than relation < on natural numbers</p>

13 / 14



