Discrete Mathematics in Computer Science B5. Relations

Malte Helmert, Gabriele Röger

University of Basel

Discrete Mathematics in Computer Science

- B5. Relations

B5.1 Relations

B5.2 Properties of Binary Relations

B5.1 Relations

Relations: Informally

- Informally, a relation is some property that is true or false for an (ordered) collection of objects.
- We already know some relations, e.g.
- \subseteq relation for sets
- \leq relation for natural numbers
- These are examples of binary relations, considering pairs of objects.
- There are also relations of higher arity, e.g.
- "x $x+y=z$ " for integers x, y, z.
- "The name, address and office number belong to the same person."
- Relations are for example important for relational databases, semantic networks or knowledge representation and reasoning.

Relations

Definition (Relation)
Let S_{1}, \ldots, S_{n} be sets.
A relation over S_{1}, \ldots, S_{n} is a set $R \subseteq S_{1} \times \cdots \times S_{n}$.
The arity of R is n.

- A relation of arity n is a set of n-tuples.
- The set contains the tuples for which the informal property is true.

Relations: Examples

- $\subseteq=\left\{\left(S, S^{\prime}\right) \mid S\right.$ and S^{\prime} are sets and for every $x \in S$ it holds that $\left.x \in S^{\prime}\right\}$
- $\leq=\left\{(x, y) \mid x, y \in \mathbb{N}_{0}\right.$ and $x<y$ or $\left.x=y\right\}$
- $R=\{(x, y, z) \mid x, y, z \in \mathbb{Z}$ and $x+y=z\}$
- $R^{\prime}=\{($ Gabi, Spiegelgasse $1,04.005)$,
(Salomé, Spiegelgasse 1, 04.002),
(Florian, Spiegelgasse 1, 04.005),
(Augusto, Spiegelgasse 5, 04.001)\}

B5.2 Properties of Binary Relations

Binary Relation

A binary relation is a relation of arity 2 :
Definition (binary relation)
A binary relation is a relation over two sets A and B.

- Instead of $(x, y) \in R$, we also write $x R y$, e.g. $x \leq y$ instead of $(x, y) \in \leq$
- If the sets are equal, we say " R is a binary relation over A " instead of " R is a binary relation over A and A ".
- Such a relation over a set is also called a homogeneous relation or an endorelation.

Reflexivity

A reflexive relation relates every object to itself.
Definition (reflexive)
A binary relation R over set A is reflexive if for all $a \in A$ it holds that $(a, a) \in R$.

Which of these relations are reflexive?

- $R=\{(a, a),(a, b),(a, c),(b, a),(b, c),(c, c)\}$ over $\{a, b, c\}$
- $R=\{(a, a),(a, b),(a, c),(b, b),(b, c),(c, c)\}$ over $\{a, b, c\}$
- equality relation $=$ on natural numbers
- less-than relation \leq on natural numbers
- strictly-less-than relation < on natural numbers

Irreflexivity

A irreflexive relation never relates an object to itself.
Definition (irreflexive)
A binary relation R over set A is irreflexive if for all $a \in A$ it holds that $(a, a) \notin R$.

Which of these relations are irreflexive?

- $R=\{(a, a),(a, b),(a, c),(b, a),(b, c),(c, c)\}$ over $\{a, b, c\}$
- $R=\{(a, a),(a, b),(a, c),(b, b),(b, c),(c, c)\}$ over $\{a, b, c\}$
- equality relation $=$ on natural numbers
- less-than relation \leq on natural numbers
- strictly-less-than relation $<$ on natural numbers

Symmetry

Definition (symmetric)
A binary relation R over set A is symmetric if for all $a, b \in A$ it holds that $(a, b) \in R$ iff $(b, a) \in R$.

Which of these relations are symmetric?

- $R=\{(a, a),(a, b),(a, c),(b, a),(c, a),(c, c)\}$ over $\{a, b, c\}$
- $R=\{(a, a),(a, b),(a, c),(b, b),(b, c),(c, c)\}$ over $\{a, b, c\}$
- equality relation $=$ on natural numbers
- less-than relation \leq on natural numbers
- strictly-less-than relation < on natural numbers

Asymmetry and Antisymmetry

Definition (asymmetric and antisymmetric)
Let R be a binary relation over set A.
Relation R is asymmetric if
for all $a, b \in A$ it holds that if $(a, b) \in R$ then $(b, a) \notin R$.
Relation R is antisymmetric if for all $a, b \in A$ with $a \neq b$ it holds that if $(a, b) \in R$ then $(b, a) \notin R$.

Which of these relations are asymmetric/antisymmetric?

- $R=\{(a, a),(a, b),(a, c),(b, a),(c, a),(c, c)\} \operatorname{over}\{a, b, c\}$
- $R=\{(a, a),(a, b),(a, c),(b, b),(b, c),(c, c)\}$ over $\{a, b, c\}$
- equality relation $=$ on natural numbers
- less-than relation \leq on natural numbers
- strictly-less-than relation < on natural numbers

How do these properties relate to irreflexivity?

Transitivity

Definition

A binary relation R over set A is transitive
if it holds for all $a, b, c \in A$ that
if $(a, b) \in R$ and $(b, c) \in R$ then $(a, c) \in R$.

Which of these relations are transitive?

- $R=\{(a, a),(a, b),(a, c),(b, a),(c, a),(c, c)\} \operatorname{over}\{a, b, c\}$
- $R=\{(a, a),(a, b),(a, c),(b, b),(b, c),(c, c)\}$ over $\{a, b, c\}$
- equality relation $=$ on natural numbers
- less-than relation \leq on natural numbers
- strictly-less-than relation $<$ on natural numbers

Special Classes of Relations

- Some important classes of relations are defined in terms of these properties.
- Equivalence relation: reflexive, symmetric, transitive
- Partial order: reflexive, antisymmetric, transitive
- Strict order: irreflexive, asymmetric, transitive
- ...
- We will consider these and other classes in detail.

