Discrete Mathematics in Computer Science Tuples and the Cartesian Product

Malte Helmert, Gabriele Röger

University of Basel

Sets vs. Tuples

• A set is an unordered collection of distinct objects.

Sets vs. Tuples

- A set is an unordered collection of distinct objects.
- A tuple is an ordered sequence of objects.

Tuples

- *k*-tuple: ordered sequence of *k* objects ($k \in \mathbb{N}_0$)
- written (o_1, \ldots, o_k) or $\langle o_1, \ldots, o_k
 angle$
- unlike sets, order matters ($\langle 1,2 \rangle \neq \langle 2,1 \rangle$)
- objects may occur multiple times in a tuple

Tuples

- *k*-tuple: ordered sequence of *k* objects ($k \in \mathbb{N}_0$)
- written (o_1,\ldots,o_k) or $\langle o_1,\ldots,o_k
 angle$
- unlike sets, order matters ($\langle 1,2 \rangle \neq \langle 2,1 \rangle$)
- objects may occur multiple times in a tuple
- objects contained in tuples are called components
- terminology:
 - k = 2: (ordered) pair
 - k = 3: triple
 - more rarely: quadruple, quintuple, sextuple, septuple, ...
- if k is clear from context (or does not matter), often just called tuple

Equality of Tuples

Definition (Equality of Tuples)

Two *n*-tuples $t = \langle o_1, \ldots, o_n \rangle$ and $t' = \langle o'_1, \ldots, o'_n \rangle$ are equal (t = t') if for $i \in \{1, \ldots, n\}$ it holds that $o_i = o'_i$.

Cartesian Product

Definition (Cartesian Product and Cartesian Power)

Let S_1, \ldots, S_n be sets. The Cartesian product $S_1 \times \cdots \times S_n$ is the following set of *n*-tuples:

 $S_1 \times \cdots \times S_n = \{ \langle x_1, \ldots, x_n \rangle \mid x_1 \in S_1, x_2 \in S_2, \ldots, x_n \in S_n \}.$

René Descartes: French mathematician and philosopher (1596–1650)

Cartesian Product

Definition (Cartesian Product and Cartesian Power)

Let S_1, \ldots, S_n be sets. The Cartesian product $S_1 \times \cdots \times S_n$ is the following set of *n*-tuples:

 $S_1 \times \cdots \times S_n = \{ \langle x_1, \ldots, x_n \rangle \mid x_1 \in S_1, x_2 \in S_2, \ldots, x_n \in S_n \}.$

René Descartes: French mathematician and philosopher (1596–1650) Example: $A = \{a, b\}, B = \{1, 2, 3\}$ $A \times B =$

Cartesian Product

Definition (Cartesian Product and Cartesian Power)

Let S_1, \ldots, S_n be sets. The Cartesian product $S_1 \times \cdots \times S_n$ is the following set of *n*-tuples:

$$S_1 \times \cdots \times S_n = \{ \langle x_1, \ldots, x_n \rangle \mid x_1 \in S_1, x_2 \in S_2, \ldots, x_n \in S_n \}.$$

The *k*-ary Cartesian power of a set *S* (with $k \in \mathbb{N}_1$) is the set $S^k = \{ \langle o_1, \dots, o_k \rangle \mid o_i \in S \text{ for all } i \in \{1, \dots, k\} \} = \underbrace{S \times \dots \times S}_{k \text{ times}}.$

René Descartes: French mathematician and philosopher (1596–1650) Example: $A = \{a, b\}, B = \{1, 2, 3\}$ $A^2 =$ (Non-)properties of the Cartesian Product

The Cartesian product is

- **not commutative**, in most cases $A \times B \neq B \times A$.
- **not associative**, in most cases $(A \times B) \times C \neq A \times (B \times C)$

(Non-)properties of the Cartesian Product

The Cartesian product is

- **not commutative**, in most cases $A \times B \neq B \times A$.
- **not associative**, in most cases $(A \times B) \times C \neq A \times (B \times C)$

Why? Exceptions?