Discrete Mathematics in Computer Science
B4. Tuples \& Cartesian Product

Malte Helmert, Gabriele Röger

University of Basel
B4.1 Tuples and the Cartesian
Product

B4.1 Tuples and the Cartesian Product

Discrete Mathematics in Computer Science

- B4. Tuples \& Cartesian Product

B4.1 Tuples and the Cartesian Product

- A set is an unordered collection of distinct objects.
- A tuple is an ordered sequence of objects.
- k-tuple: ordered sequence of k objects $\left(k \in \mathbb{N}_{0}\right)$
- written $\left(o_{1}, \ldots, o_{k}\right)$ or $\left\langle o_{1}, \ldots, o_{k}\right\rangle$
- unlike sets, order matters $(\langle 1,2\rangle \neq\langle 2,1\rangle)$
- objects may occur multiple times in a tuple
- objects contained in tuples are called components

Definition (Equality of Tuples)
Two n-tuples $t=\left\langle o_{1}, \ldots, o_{n}\right\rangle$ and $t^{\prime}=\left\langle o_{1}^{\prime}, \ldots, o_{n}^{\prime}\right\rangle$ are equal $\left(t=t^{\prime}\right)$ if for $i \in\{1, \ldots, n\}$ it holds that $o_{i}=o_{i}^{\prime}$.

- $k=2$: (ordered) pair
- $k=3$: triple
- more rarely: quadruple, quintuple, sextuple, septuple, ...
- if k is clear from context (or does not matter), often just called tuple

Walte Helmert, Gabriele Röger (University of Discrete Mathematics in Computer Science

Cartesian Product

Definition (Cartesian Product and Cartesian Power)
Let S_{1}, \ldots, S_{n} be sets. The Cartesian product $S_{1} \times \cdots \times S_{n}$ is the following set of n-tuples:

$$
S_{1} \times \cdots \times S_{n}=\left\{\left\langle x_{1}, \ldots, x_{n}\right\rangle \mid x_{1} \in S_{1}, x_{2} \in S_{2}, \ldots, x_{n} \in S_{n}\right\} .
$$

The k-ary Cartesian power of a set S (with $k \in \mathbb{N}_{1}$) is the set
(Non-)properties of the Cartesian Product

The Cartesian product is

- not commutative, in most cases $A \times B \neq B \times A$.
- not associative, in most cases $(A \times B) \times C \neq A \times(B \times C)$

$$
S^{k}=\left\{\left\langle o_{1}, \ldots, o_{k}\right\rangle \mid o_{i} \in S \text { for all } i \in\{1, \ldots, k\}\right\}=\underbrace{S \times \cdots \times S}_{k \text { times }}
$$

René Descartes: French mathematician and philosopher (1596-1650)
Example: $A=\{a, b\}, B=\{1,2,3\}$

$$
\begin{aligned}
A \times B & =\{(a, 1),(a, 2),(a, 3),(b, 1),(b, 2),(b, 3)\} \\
A^{2} & =\{(a, a),(a, b),(b, a),(b, b)\}
\end{aligned}
$$

