

Discrete Mathematics in Computer Science – B3. Cantor's Theorem B3.1 Cantor's Theorem B3.2 Consequences of Cantor's Theorem B3.3 Sets: Summary Mute Helmert, Gabriele Röger (University of Discrete Mathematics in Computer Science 2 / 18

Countable Sets

B3. Cantor's Theorem

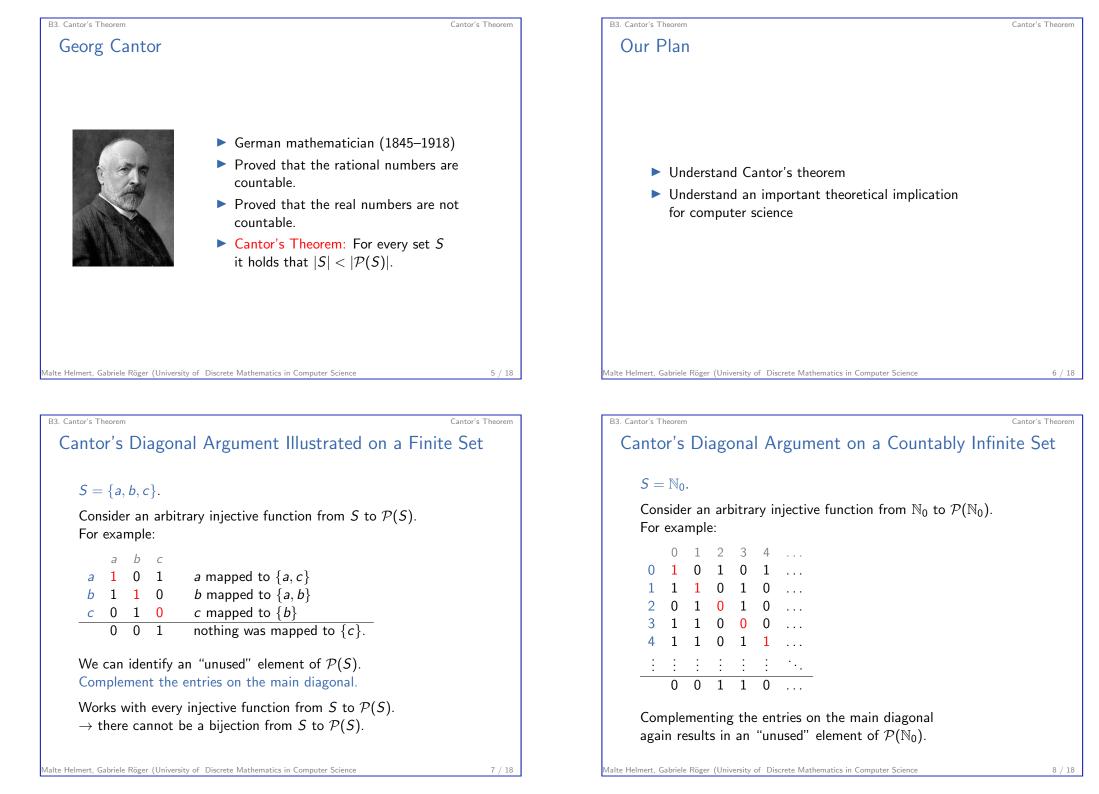
We already know:

- ▶ The cardinality of \mathbb{N}_0 is \aleph_0 .
- ▶ All sets with cardinality \aleph_0 are called countably infinite.
- A countable set is finite or countably infinite.
- Every subset of a countable set is countable.
- ► The union of countably many countable sets is countable.

These questions were still open:

- Do all infinite sets have the same cardinality?
- Does the power set of infinite set S have the same cardinality as S?

Cantor's Theorem



Cantor's Theorem

Cantor's Theorem

Theorem (Cantor's Theorem) For every set *S* it holds that $|S| < |\mathcal{P}(S)|$.

Proof.

We need to show that

() There is an injective function from S to $\mathcal{P}(S)$.

2 There is no bijection from S to $\mathcal{P}(S)$.

For 1, consider function $f : S \to \mathcal{P}(S)$ with $f(x) = \{x\}$. Each element of S is paired with a unique element of $\mathcal{P}(S)$

Valte Helmert, Gabriele Röger (University of Discrete Mathematics in Computer Science

B3. Cantor's Theorem

B3.2 Consequences of Cantor's Theorem

B3. Cantor's Theorem

Cantor's Theorem

Proof (continued).

For 2, we show for every injective function $f : S \to \mathcal{P}(S)$ that it is not a bijection from S to $\mathcal{P}(S)$. This is sufficient because every bijection is injective. Let f be an arbitrary injective function with $f : S \to \mathcal{P}(S)$. Consider $M = \{x \mid x \in S, x \notin f(x)\}$. For every $x \in S$ it holds that $f(x) \neq M$ because $x \in f(x)$ iff not $x \notin f(x)$ iff not $x \in M$ iff $x \notin M$. Hence, there is no $x \in S$ with f(x) = M. As $M \in \mathcal{P}(S)$ this implies that f is not a bijection from S to $\mathcal{P}(S)$.

Malte Helmert, Gabriele Röger (University of Discrete Mathematics in Computer Science

10 / 18

Cantor's Theorem

B3. Cantor's Theorem Consequences of Cantor's Theorem Infinite Sets can Have Different Cardinalities

There are infinitely many different cardinalities of infinite sets:

- $\blacktriangleright |\mathbb{N}_0| < |\mathcal{P}(\mathbb{N}_0))| < |\mathcal{P}(\mathcal{P}(\mathbb{N}_0)))| < \dots$
- $\blacktriangleright |\mathbb{N}_0| = \aleph_0 = \beth_0$
- $\blacktriangleright |\mathcal{P}(\mathbb{N}_0)| = \beth_1(= |\mathbb{R}|)$
- $\blacktriangleright |\mathcal{P}(\mathcal{P}(\mathbb{N}_0))| = \beth_2$
- ▶ ...

9 / 18

Consequences of Cantor's Theorem

Existence of Unsolvable Problems

There are more problems in computer science than there are programs to solve them.

There are problems that cannot be solved by a computer program!

Why can we say so?

Alte Helmert, Gabriele Röger (University of Discrete Mathematics in Computer Science

B3. Cantor's Theorem

More Problems than Programs I

- A computer program is given by a finite string.
- ► A decision problem corresponds to a set of strings.

B3. Cantor's Theorem

Consequences of Cantor's Theorem

Consequences of Cantor's Theorem

Decision Problems

"Intuitive Definition:" Decision Problem A decision problem is a Yes-No question of the form "Does the given input have a certain property?"

- "Does the given binary tree have more than three leaves?"
- "Is the given integer odd?"
- "Given a train schedule, is there a connection from Basel to Belinzona that takes at most 2.5 hours?"
- Input can be encoded as some finite string.
- Problem can also be represented as the (possibly infinite) set of all input strings where the answer is "yes".
- A computer program solves a decision problem if it terminates on every input and returns the correct answer.

Aalte Helmert, Gabriele Röger (University of Discrete Mathematics in Computer Science

14 / 18

B3. Cantor's Theorem More Problems than Programs II Consider an arbitrary finite set of symbols (an alphabet) Σ. You can think of Σ = {0, 1} as internally computers operate on binary representation. Let S be the set of all finite strings made from symbols in Σ. There are at most |S| computer programs with this alphabet. There are at least |P(S)| problems with this alphabet. every subset of S corresponds to a separate decision problem By Cantor's theorem |S| < |P(S)|, so there are more problems than programs.

Valte Helmert, Gabriele Röger (University of Discrete Mathematics in Computer Science

13 / 18

Consequences of Cantor's Theorem

