Discrete Mathematics in Computer Science B2. Countable Sets

Malte Helmert, Gabriele Röger

University of Basel

Malte Helmert, Gabriele Röger (University of Discrete Mathematics in Computer Science

B2. Countable Sets

1 / 29

B2. Countable Sets

— B2. Countable Sets

Cardinality of Infinite Sets

Finite Sets Revisited

We already know:

▶ The cardinality |S| measures the size of set S.

Discrete Mathematics in Computer Science

B2.1 Cardinality of Infinite Sets

B2.3 \aleph_0 and Countable Sets

Malte Helmert, Gabriele Röger (University of Discrete Mathematics in Computer Science

B2.2 Hilbert's Hotel

- ► A set is **finite** if it has a finite number of elements.
- ► The cardinality of a finite set is the number of elements it contains.
- For a finite set S, it holds that $|\mathcal{P}(S)| = 2^{|S|}$.

A set is infinite if it has an infinite number of elements.

- ▶ Do all infinite sets have the same cardinality?
- ► Does the power set of infinite set *S* have the same cardinality as *S*?

Cardinality of Infinite Sets

B2.1 Cardinality of Infinite Sets

3 / 29

Malte Helmert, Gabriele Röger (University of Discrete Mathematics in Computer Science

4 / 29

Malte Helmert, Gabriele Röger (University of Discrete Mathematics in Computer Science

Comparing the Cardinality of Sets

- \blacktriangleright {1, 2, 3} and {dog, cat, mouse} have cardinality 3.
- ► We can pair their elements:

 $1\leftrightarrow\mathsf{dog}$

 $2 \leftrightarrow \mathsf{cat}$

 $3 \leftrightarrow \mathsf{mouse}$

- ▶ We call such a mapping a bijection from one set to the other.
 - ► Each element of one set is paired with exactly one element of the other set.
 - ► Each element of the other set is paired with exactly one element of the first set.

Malte Helmert, Gabriele Röger (University of Discrete Mathematics in Computer Science

5 / 29

B2. Countable Sets

Cardinality of Infinite Sets

Comparing the Cardinality of Sets

- ightharpoonup Consider $A = \{1, 2\}$ and $B = \{\text{dog, cat, mouse}\}$.
- ▶ We can map distinct elements of *A* to distinct elements of *B*:

 $1\mapsto \mathsf{dog}$

 $2 \mapsto \mathsf{cat}$

- ▶ We call this an injective function from A to B:
 - every element of A is mapped to an element of B;
 - builderent elements of A are mapped to different elements of B.

Equinumerous Sets

B2. Countable Sets

We use the existence of a pairing also as criterion for infinite sets:

Definition (Equinumerous Sets)

Two sets A and B have the same cardinality (|A| = |B|)if there exists a bijection from A to B.

Such sets are called equinumerous.

When is a set "smaller" than another set?

Malte Helmert, Gabriele Röger (University of Discrete Mathematics in Computer Science

B2. Countable Sets

Cardinality of Infinite Sets

Comparing Cardinality

Definition (cardinality not larger)

Set A has cardinality less than or equal to the cardinality of set B $(|A| \le |B|)$, if there is an injective function from A to B.

Definition (strictly smaller cardinality)

Set A has cardinality strictly less than the cardinality of set B (|A| < |B|), if $|A| \le |B|$ and $|A| \ne |B|$.

Consider set A and object $e \notin A$. Is $|A| < |A \cup \{e\}|$?

Hilbert's Hotel

Our intuition for finite sets does not always work for infinite sets.

- ▶ If in a hotel all rooms are occupied then it cannot accomodate additional guests.
- ► But Hilbert's Grand Hotel has infinitely many rooms.
- ► All these rooms are occupied.

Malte Helmert, Gabriele Röger (University of Discrete Mathematics in Computer Science

B2.2 Hilbert's Hotel

9 / 29

Malte Helmert, Gabriele Röger (University of Discrete Mathematics in Computer Science

10 / 29

B2. Countable Sets Hilbert's Hotel

One More Guest Arrives

- ▶ Every guest moves from her current room n to room n+1.
- ► Room 1 is then free.
- ► The new guest gets room 1.

B2. Countable Sets

Four More Guests Arrive

- ightharpoonup Every guest moves from her current room n to room n+4.
- ▶ Rooms 1 to 4 are no longer occupied and can be used for the new guests.
- \rightarrow Works for any finite number of additional guests.

Malte Helmert, Gabriele Röger (University of Discrete Mathematics in Computer Science

11 / 29

Malte Helmert, Gabriele Röger (University of Discrete Mathematics in Computer Science

B2. Countable Sets Hilbert's Ho

An Infinite Number of Guests Arrives

- \triangleright Every guest moves from her current room n to room 2n.
- ► The infinitely many rooms with odd numbers are now available.
- ► The new guests fit into these rooms.

Malte Helmert, Gabriele Röger (University of Discrete Mathematics in Computer Science

13 / 29

B2. Countable Sets %n and Countable Sets

B2.3 \aleph_0 and Countable Sets

B2. Countable Sets Hilbert's Hot

Can we Go further?

What if ...

- infinitely many coaches, each with an infinite number of guests
- ▶ infinitely many ferries, each with an infinite number of coaches, each with infinitely many guests
- **•** ...

...arrive?

There are strategies for all these situations as long as with "infinite" we mean "countably infinite" and there is a finite number of layers.

Malte Helmert, Gabriele Röger (University of Discrete Mathematics in Computer Science

14 / 29

B2. Countable Sets

ℵი and Countable Sets

Comparing Cardinality

- ► Two sets A and B have the same cardinality if their elements can be paired (i.e. there is a bijection from A to B).
- ► Set *A* has a strictly smaller cardinality than set *B* if
 - we can map distinct elements of A to distinct elements of B (i.e. there is an injective function from A to B), and
 - $|A| \neq |B|$.
- ► This clearly makes sense for finite sets.
- What about infinite sets?
 Do they even have different cardinalities?

Malte Helmert, Gabriele Röger (University of Discrete Mathematics in Computer Science

15 / 29

Malte Helmert, Gabriele Röger (University of Discrete Mathematics in Computer Science

B2. Countable Sets

ℵn and Countable Sets

The Cardinality of the Natural Numbers

Definition (\aleph_0)

The cardinality of \mathbb{N}_0 is denoted by \aleph_0 , i.e. $\aleph_0 = |\mathbb{N}_0|$

Read: "aleph-zero", "aleph-nought" or "aleph-null"

Malte Helmert, Gabriele Röger (University of Discrete Mathematics in Computer Science

17 / 2

B2. Countable Sets \aleph_0 and Countable Sets

Set of Even Numbers

- ▶ $even = \{n \mid n \in \mathbb{N}_0 \text{ and } n \text{ is even}\}$
- ▶ Obviously: $even \subset \mathbb{N}_0$
- ► Intuitively, there are twice as many natural numbers as even numbers no?
- ▶ Is $|even| < |\mathbb{N}_0|$?

B2. Countable Sets № and Countable Se

Countable and Countably Infinite Sets

Definition (countably infinite and countable)

A set A is countably infinite if $|A| = |\mathbb{N}_0|$.

A set A is countable if $|A| \leq |\mathbb{N}_0|$.

A set is countable if it is finite or countably infinite.

- ▶ We can count the elements of a countable set one at a time.
- ▶ The objects are "discrete" (in contrast to "continuous").
- ▶ Discrete mathematics deals with all kinds of countable sets.

Malte Helmert, Gabriele Röger (University of Discrete Mathematics in Computer Science

18 / 29

B2. Countable Sets

ℵn and Countable Sets

Set of Even Numbers

Theorem (set of even numbers is countably infinite)

The set of all even natural numbers is countably infinite, i. e. $|\{n \mid n \in \mathbb{N}_0 \text{ and } n \text{ is even}\}| = |\mathbb{N}_0|$.

Proof Sketch.

We can pair every natural number n with the even number 2n. \square

Malte Helmert, Gabriele Röger (University of Discrete Mathematics in Computer Science

19 / 29

Malte Helmert, Gabriele Röger (University of Discrete Mathematics in Computer Science

Set of Perfect Squares

Theorem (set of perfect squares is countably infininite)

The set of all perfect squares is countably infinite. i. e. $|\{n^2 \mid n \in \mathbb{N}_0\}| = |\mathbb{N}_0|$.

Proof Sketch.

We can pair every natural number n with square number n^2 .

Malte Helmert, Gabriele Röger (University of Discrete Mathematics in Computer Science

23 / 29

B2. Countable Sets

ℵn and Countable Sets

Subsets of Countable Sets are Countable

In general:

Theorem (subsets of countable sets are countable)

Let A be a countable set. Every set B with $B \subseteq A$ is countable.

Proof.

Since A is countable there is an injective function f from A to \mathbb{N}_0 . The restriction of f to B is an injective function from B to \mathbb{N}_0 . \square

Malte Helmert, Gabriele Röger (University of Discrete Mathematics in Computer Science

22 / 29

No and Countable Sets

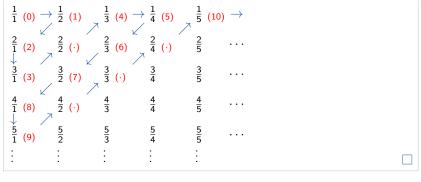
Set of the Positive Rationals

Theorem (set of positive rationals is countably infininite)

Set $\mathbb{Q}_+ = \{ n \mid n \in \mathbb{Q} \text{ and } n > 0 \} = \{ p/q \mid p, q \in \mathbb{N}_1 \}$ is countably infinite.

Proof idea.

B2. Countable Sets



B2. Countable Sets

ℵn and Countable Sets

Union of Two Countable Sets is Countable

Theorem (union of two countable sets countable)

Let A and B be countable sets. Then $A \cup B$ is countable.

Proof sketch.

As A and B are countable there is an injective function f_A from A to \mathbb{N}_0 , analogously f_B from B to \mathbb{N}_0 .

We define function $f_{A \cup B}$ from $A \cup B$ to \mathbb{N}_0 as

$$f_{A \cup B}(e) = egin{cases} 2f_A(e) & ext{if } e \in A \ 2f_B(e) + 1 & ext{otherwise} \end{cases}$$

This $f_{A \cup B}$ is an injective function from $A \cup B$ to \mathbb{N}_0 .

Malte Helmert, Gabriele Röger (University of Discrete Mathematics in Computer Science

B2. Countable Sets \aleph_0 and Countable Sets

Integers and Rationals

Theorem (sets of integers and rationals are countably infinite)

The sets \mathbb{Z} and \mathbb{Q} are countably infinite.

Without proof (→ exercises)

Malte Helmert, Gabriele Röger (University of Discrete Mathematics in Computer Science

25 / 29

Union of More than Two Sets

Definition (arbitrary unions)

Let M be a set of sets. The union $\bigcup_{S \in M} S$ is the set with

 $x \in \bigcup_{S \in M} S$ iff exists $S \in M$ with $x \in S$.

Malte Helmert, Gabriele Röger (University of Discrete Mathematics in Computer Science

26 / 29

B2. Countable Sets

ℵ∩ and Countable Sets

Countable Union of Countable Sets

Theorem

Let M be a countable set of countable sets.

Then $\bigcup_{S \in M}$ is countable.

We proof this formally after we have studied functions.

B2. Countable Sets

B2. Countable Sets

≀്റ and Countable Sets

Set of all Binary Trees is Countable

Theorem (set of all binary trees is countable)

The set $B = \{b \mid b \text{ is a binary tree}\}\$ is countable.

Proof.

For $n \in \mathbb{N}_0$ the set B_n of all binary trees with n leaves is finite.

With $M = \{B_i \mid i \in \mathbb{N}_0\}$ the set of all binary trees is

 $B = \bigcup_{B' \in M} B'$.

Since M is a countable set of countable sets, B is countable.

Malte Helmert, Gabriele Röger (University of Discrete Mathematics in Computer Science

27 / 29

Malte Helmert, Gabriele Röger (University of Discrete Mathematics in Computer Science

B2. Countable Sets № and Countable Sets

And Now?

We have seen several sets with cardinality \aleph_0 .

What about our original questions?

- ▶ Do all infinite sets have the same cardinality?
- ▶ Does the power set of infinite set *S* have the same cardinality as *S*?

Malte Helmert, Gabriele Röger (University of Discrete Mathematics in Computer Science

