Discrete Mathematics in Computer Science B1. Sets

Malte Helmert, Gabriele Röger

University of Basel

Malte Helmert, Gabriele Röger (University of Discrete Mathematics in Computer Science

1 / 27

Important Building Blocks of Discrete Mathematics

Discrete Mathematics in Computer Science

— B1. Sets

B1.1 Sets

B1.2 Russell's Paradox

B1.3 Relations on Sets

Malte Helmert, Gabriele Röger (University of Discrete Mathematics in Computer Science

B1.4 Set Operations

B1.5 Finite Sets

relations

functions

B1.1 Sets

B1. Sets

Malte Helmert, Gabriele Röger (University of Discrete Mathematics in Computer Science

3 / 27

Malte Helmert, Gabriele Röger (University of Discrete Mathematics in Computer Science

B1. Sets

Sets

Definition

A set is an unordered collection of distinct objects.

- unorderd: no notion of a "first" or "second" object, e. g. {Alice, Bob, Charly} = {Charly, Bob, Alice}
- ▶ distinct: each object contained at most once,
 e. g. {Alice, Bob, Charly} = {Alice, Charly, Bob, Alice}

Malte Helmert, Gabriele Röger (University of Discrete Mathematics in Computer Science

5 / 27

B1. Sets Sets

Special Sets

- Natural numbers $\mathbb{N}_0 = \{0, 1, 2, \dots\}$
- ▶ Integers $\mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\}$
- ▶ Positive integers $\mathbb{Z}_+ = \mathbb{N}_1 = \{1, 2, \dots\}$
- ▶ Rational numbers $\mathbb{Q} = \{n/d \mid n \in \mathbb{Z}, d \in \mathbb{N}_1\}$
- ► Real numbers $\mathbb{R} = (-\infty, \infty)$ Why do we use interval notation? Why didn't we introduce it before?

1. Sets

Notation

- Specification of sets
 - ightharpoonup explicit, listing all elements, e. g. $A = \{1, 2, 3\}$
 - implicit with set-builder notation, specifying a property characterizing all elements, e. g. $A = \{x \mid x \in \mathbb{N}_0 \text{ and } 1 \le x \le 3\}$,
 - $B = \{ n^2 \mid n \in \mathbb{N}_0 \}$ implicit, as a sequence with dots,
 - e. g. $\mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, \dots\}$ implicit with an inductive definition
- \triangleright $e \in M$: e is in set M (an element of the set)
- $ightharpoonup e \notin M$: e is not in set M
- ightharpoonup empty set $\emptyset = \{\}$

Question: Is it true that $1 \in \{\{1,2\},3\}$?

Malte Helmert, Gabriele Röger (University of Discrete Mathematics in Computer Science

6 / 27

B1. Sets Russell's Paradox

B1.2 Russell's Paradox

Excursus: Barber Paradox

Barber Paradox

In a town there is only one barber, who is male.

The barber shaves all men in the town, and only those, who do not shave themselves.

Who shaves the barber?

We can exploit the self-reference to derive a contradiction.

Malte Helmert, Gabriele Röger (University of Discrete Mathematics in Computer Science

9 / 27

10 / 27

Equality

B1. Sets

Definition (Axiom of Extensionality)

Two sets A and B are equal (written A = B) if every element of A is an element of B and vice versa.

Two sets are equal if they contain the same elements.

We write $A \neq B$ to indicate that A and B are not equal.

B1. Sets Relations on Sets

B1.3 Relations on Sets

Question

Is the collection of all sets that do not contain themselves as a member a set?

Bertrand Russell

Russell's Paradox

Is $S = \{M \mid M \text{ is a set and } M \notin M\}$ a set?

Assume that S is a set.

If $S \notin S$ then $S \in S \leadsto$ Contradiction

Malte Helmert, Gabriele Röger (University of Discrete Mathematics in Computer Science

If $S \in S$ then $S \notin S \leadsto$ Contradiction

Hence, there is no such set S.

Malte Helmert, Gabriele Röger (University of Discrete Mathematics in Computer Science

11 / 27

Malte Helmert, Gabriele Röger (University of Discrete Mathematics in Computer Science

B1. Sets

Subsets and Supersets

- ▶ $A \subseteq B$: A is a subset of B, i. e., every element of A is an element of B
- ▶ $A \subset B$: A is a strict subset of B, i. e., $A \subseteq B$ and $A \neq B$.
- ▶ $A \supseteq B$: A is a superset of B if $B \subseteq A$.
- ▶ $A \supset B$: A is a strict superset of B if $B \subset A$.

We write $A \nsubseteq B$ to indicate that A is **not** a subset of B.

Analogously: $\not\subset$, $\not\supseteq$, $\not\supset$

Malte Helmert, Gabriele Röger (University of Discrete Mathematics in Computer Science

13 / 27

Set Operations

B1.4 Set Operations

Power Set

Definition (Power Set)

The power set $\mathcal{P}(S)$ of a set S is the set of all subsets of S. That is,

$$\mathcal{P}(S) = \{M \mid M \subseteq S\}.$$

Example: $\mathcal{P}(\{a,b\}) =$

Malte Helmert, Gabriele Röger (University of Discrete Mathematics in Computer Science

14 / 2

16 / 27

B1. Sets

Set Operations

Set operations allow us to express sets in terms of other sets

▶ intersection $A \cap B = \{x \mid x \in A \text{ and } x \in B\}$

If $A \cap B = \emptyset$ then A and B are disjoint.

▶ union $A \cup B = \{x \mid x \in A \text{ or } x \in B\}$

▶ set difference $A \setminus B = \{x \mid x \in A \text{ and } x \notin B\}$

▶ complement $\overline{A} = B \setminus A$, where $A \subseteq B$ and B is the set of all considered objects (in a given context)

Malte Helmert, Gabriele Röger (University of Discrete Mathematics in Computer Science

Properties of Set Operations: Commutativity

Theorem (Commutativity of \cup and \cap)

For all sets A and B it holds that

- \triangleright $A \cup B = B \cup A$ and
- $ightharpoonup A \cap B = B \cap A$.

Question: Is the set difference also commutative,

i. e. is $A \setminus B = B \setminus A$ for all sets A and B?

Malte Helmert, Gabriele Röger (University of Discrete Mathematics in Computer Science

17 / 27

Properties of Set Operations: Associativity

Theorem (Associativity of \cup and \cap)

For all sets A, B and C it holds that

- $ightharpoonup (A \cup B) \cup C = A \cup (B \cup C)$ and
- $(A \cap B) \cap C = A \cap (B \cap C).$

Malte Helmert, Gabriele Röger (University of Discrete Mathematics in Computer Science

18 / 27

B1. Sets Set Operation

Properties of Set Operations: Distributivity

Theorem (Union distributes over intersection and vice versa)

For all sets A, B and C it holds that

- $ightharpoonup A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ and
- $A \cap (B \cup C) = (A \cap B) \cup (A \cap C).$

B1. Sets Set Operation

Properties of Set Operations: De Morgan's Law

Augustus De Morgan British mathematician (1806-1871)

Theorem (De Morgan's Law)

For all sets A and B it holds that

- $ightharpoonup \overline{A \cup B} = \overline{A} \cap \overline{B}$ and
- $ightharpoonup \overline{A \cap B} = \overline{A} \cup \overline{B}.$

19 / 27

Malte Helmert, Gabriele Röger (University of Discrete Mathematics in Computer Science

B1. Sets Finite Sets

B1.5 Finite Sets

Malte Helmert, Gabriele Röger (University of Discrete Mathematics in Computer Science

21 / 27

inite Sets

Cardinality of the Union of Sets

Theorem

For finite sets A and B it holds that $|A \cup B| = |A| + |B| - |A \cap B|$.

Corollary

If finite sets A and B are disjoint then $|A \cup B| = |A| + |B|$.

31. Sets

Cardinality of Sets

The cardinality |S| measures the size of set S.

A set is finite if it has a finite number of elements.

Definition (Cardinality)

The cardinality of a finite set is the number of elements it contains.

- \triangleright $|\emptyset| =$
- ▶ $|\{x \mid x \in \mathbb{N}_0 \text{ and } 2 \le x < 5\}| =$
- ► |{3,0,{1,3}}| =

Malte Helmert, Gabriele Röger (University of Discrete Mathematics in Computer Science

22 / 27

Cardinality of the Power Set

Theorem

Let S be a finite set. Then $|\mathcal{P}(S)| = 2^{|S|}$.

Proof sketch.

We can construct a subset S' by iterating over all elements e of S and deciding whether e becomes a member of S' or not.

We make |S| independent decisions, each between two options. Hence, there are $2^{|S|}$ possible outcomes.

Every subset of S can be constructed this way and different choices lead to different sets. Thus, $|\mathcal{P}(S)| = 2^{|S|}$.

Malte Helmert, Gabriele Röger (University of Discrete Mathematics in Computer Science

24 / 27

B1. Sets Finite Set

Alternative Proof by Induction

Proof.

By induction over |S|.

Basis (|S| = 0): Then $S = \emptyset$ and $|P(S)| = |\{\emptyset\}| = 1 = 2^0$.

IH: For all sets S with |S| = n, it holds that $|\mathcal{P}(S)| = 2^{|S|}$.

Inductive Step $(n \rightarrow n+1)$:

Let S' be an arbitrary set with |S'| = n + 1 and let e be an arbitrary member of S'.

Let further $S = S' \setminus \{e\}$ and $X = \{S'' \cup \{e\} \mid S'' \in \mathcal{P}(S)\}$.

Then $\mathcal{P}(S') = \mathcal{P}(S) \cup X$. As $\mathcal{P}(S)$ and X are disjoint and $|X| = |\mathcal{P}(S)|$, it holds that $|\mathcal{P}(S')| = 2|\mathcal{P}(S)|$.

Since |S| = n, we can use the IH and get

$$|\mathcal{P}(S')| = 2 \cdot 2^{|S|} = 2 \cdot 2^n = 2^{n+1} = 2^{|S'|}.$$

Malte Helmert, Gabriele Röger (University of Discrete Mathematics in Computer Science

25 / 27

51. 5665

Computer Representation as Bit String

Same representation as in enumeration of all subsets:

- ▶ Required: Fixed universe *U* of possible elements
- \triangleright Represent sets as bitstrings of length |U|
- Associate every bit with one object from the universe
- ► Each bit is 1 iff the corresponding object is in the set

Example:

- $V = \{o_0, \ldots, o_9\}$
- ► Associate the *i*-th bit (0-indexed, from left to right) with o_i
- ${}$ { o_2 , o_4 , o_5 , o_9 } is represented as: 0010110001

How can the set operations be implemented?

Malte Helmert, Gabriele Röger (University of Discrete Mathematics in Computer Science

27 / 27

Sets Finite Se

Enumerating all Subsets

Determine a one-to-one mapping between numbers $0, \dots, 2^{|S|} - 1$ and all subsets of finite set S:

$$S = \{a, b, c\}$$

- Consider the binary representation of numbers $0, \ldots, 2^{|S|} 1$.
- Associate every bit with a different element of *S*.
- Every number is mapped to the set that contains exactly the elements associated with the 1-bits.

decimal	binary	set
	cba	
0	000	{}
1	001	$\{a\}$
2	010	$\{b\}$

Malte Helmert, Gabriele Röger (University of Discrete Mathematics in Computer Science