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Proof Techniques

most common proof techniques:

direct proof

indirect proof (proof by contradiction)

contrapositive

mathematical induction

structural induction



Mathematical Induction

Concrete Mathematics by Graham, Knuth and Patashnik (p. 3)

Mathematical induction proves that

we can climb as high as we like on a ladder,

by proving that we can climb onto the bottom rung (the basis)

and that

from each rung we can climb up to the next one (the step).



Propositions

Consider a statement on all natural numbers n with n ≥ m.

E.g. “Every natural number n ≥ 2 can be written as a product
of prime numbers.”

P(2): “2 can be written as a product of prime numbers.”
P(3): “3 can be written as a product of prime numbers.”
P(4): “4 can be written as a product of prime numbers.”
. . .
P(n): “n can be written as a product of prime numbers.”
For every natural number n ≥ 2 proposition P(n) is true.

A proposition P(n) is a mathematical statement that is defined in
terms of natural number n.



Mathematical Induction

Mathematical Induction

Proof (of the truth) of proposition P(n)
for all natural numbers n with n ≥ m:

basis: proof of P(m)

induction hypothesis (IH):
suppose that P(k) is true for all k with m ≤ k ≤ n

inductive step: proof of P(n + 1)
using the induction hypothesis



Mathematical Induction: Example I

Theorem

For all n ∈ N0 with n ≥ 1:
∑n

k=1(2k − 1) = n2

Proof.

Mathematical induction over n:

basis n = 1:
∑1

k=1(2k − 1) = 2− 1 = 1 = 12

IH:
∑m

k=1(2k − 1) = m2 for all 1 ≤ m ≤ n

inductive step n→ n + 1:∑n+1

k=1
(2k − 1) =

(∑n

k=1
(2k − 1)

)
+ 2(n + 1)− 1

IH
= n2 + 2(n + 1)− 1

= n2 + 2n + 1 = (n + 1)2
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Mathematical Induction: Example II

Theorem

Every natural number n ≥ 2 can be written as a product of prime
numbers, i. e. n = p1 · p2 · . . . · pm with prime numbers p1, . . . , pm.



Mathematical Induction: Example II

Theorem

Every natural number n ≥ 2 can be written as a product of prime
numbers, i. e. n = p1 · p2 · . . . · pm with prime numbers p1, . . . , pm.

Proof.

Mathematical Induction over n:

basis n = 2: trivially satisfied, since 2 is prime

IH: Every natural number k with 2 ≤ k ≤ n
IH: can be written as a product of prime numbers.

. . .



Mathematical Induction: Example II

Theorem

Every natural number n ≥ 2 can be written as a product of prime
numbers, i. e. n = p1 · p2 · . . . · pm with prime numbers p1, . . . , pm.

Proof.
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Mathematical Induction: Example II

Theorem

Every natural number n ≥ 2 can be written as a product of prime
numbers, i. e. n = p1 · p2 · . . . · pm with prime numbers p1, . . . , pm.

Proof (continued).

inductive step n→ n + 1:

Case 1: n + 1 is a prime number  trivial

Case 2: n + 1 is not a prime number.
There are natural numbers 2 ≤ q, r ≤ n with n + 1 = q · r .
Using IH shows that there are prime numbers
q1, . . . , qs with q = q1 · . . . · qs and
r1, . . . , rt with r = r1 · . . . · rt .
Together this means n + 1 = q1 · . . . · qs · r1 · . . . · rt .
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Theorem
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Weak vs. Strong Induction

Weak induction: Induction hypothesis only supposes
that P(k) is true for k = n

Strong induction: Induction hypothesis supposes
that P(k) is true for all k ∈ N0 with m ≤ k ≤ n

also: complete induction

Our previous definition corresponds to strong induction.

Which of the examples had also worked with weak induction?
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Is Strong Induction More Powerful than Weak Induction?

Are there statements that we can prove with strong induction
but not with weak induction?

We can always use a stronger proposition:

“Every n ∈ N0 with n ≥ 2 can be written as a product of
prime numbers.”

P(n): “n can be written as a product of prime numbers.”

P ′(n): “all k ∈ N0 with 2 ≤ k ≤ n can be written
P ′(n) “ as a product of prime numbers.”
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Reformulating Statements

It is sometimes convenient to rephrase a statement.

For example:

“7n + 3n is divisible by 10 for all odd n ∈ N0.”

“For all n ∈ N0: if n is odd then 7n + 3n is divisible by 10.”

P(n) = “if n is odd then 7n + 3n is divisible by 10.”
Need two base cases.
Case distinction (n even or odd) in inductive step

“For all n ∈ N0: 7(2n+1) + 3(2n+1) is divisible by 10.”

P ′(n) = “7(2n+1) + 3(2n+1) is divisible by 10.”

Be careful about how to reformulate a statement!
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Inductively Defined Sets: Examples

Example (Natural Numbers)

The set N0 of natural numbers is inductively defined as follows:

0 is a natural number.

If n is a natural number, then n + 1 is a natural number.

Example (Binary Tree)

The set B of binary trees is inductively defined as follows:

� is a binary tree (a leaf)

If L and R are binary trees, then 〈L,©,R〉 is a binary tree
(with inner node ©).

Implicit statement: all elements of the set can be constructed
Implicit statement: by finite application of these rules
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Inductively Defined Sets: Examples

Example (Natural Numbers)

The set N0 of natural numbers is inductively defined as follows:

0 is a natural number.

If n is a natural number, then n + 1 is a natural number.

Example (Binary Tree)

The set B of binary trees is inductively defined as follows:

� is a binary tree (a leaf)

If L and R are binary trees, then 〈L,©,R〉 is a binary tree
(with inner node ©).

Implicit statement: all elements of the set can be constructed
Implicit statement: by finite application of these rules



Inductive Definition of a Set

Inductive Definition

A set M can be defined inductively by specifying

basic elements that are contained in M

construction rules of the form
“Given some elements of M, another element of M
can be constructed like this.”



Structural Induction

Structural Induction

Proof of statement for all elements of an inductively defined set

basis: proof of the statement for the basic elements

induction hypothesis (IH):
suppose that the statement is true for some elements M

inductive step: proof of the statement for elements
constructed by applying a construction rule to M
(one inductive step for each construction rule)



Structural Induction: Example (1)

Definition (Leaves of a Binary Tree)

The number of leaves of a binary tree B, written leaves(B),
is defined as follows:

leaves(�) = 1

leaves(〈L,©,R〉) = leaves(L) + leaves(R)

Definition (Inner Nodes of a Binary Tree)

The number of inner nodes of a binary tree B, written inner(B),
is defined as follows:

inner(�) = 0

inner(〈L,©,R〉) = inner(L) + inner(R) + 1



Structural Induction: Example (2)

Theorem

For all binary trees B: inner(B) = leaves(B)− 1.

Proof.

induction basis:
inner(�) = 0 = 1− 1 = leaves(�)− 1

 statement is true for base case . . .



Structural Induction: Example (2)

Theorem

For all binary trees B: inner(B) = leaves(B)− 1.

Proof.

induction basis:
inner(�) = 0 = 1− 1 = leaves(�)− 1

 statement is true for base case . . .



Structural Induction: Example (3)

Proof (continued).

induction hypothesis:
to prove that the statement is true for a composite tree 〈L,©,R〉,
we may use that it is true for the subtrees L and R.

inductive step for B = 〈L,©,R〉:

inner(B) = inner(L) + inner(R) + 1

IH
= (leaves(L)− 1) + (leaves(R)− 1) + 1

= leaves(L) + leaves(R)− 1 = leaves(B)− 1
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Proof (continued).

induction hypothesis:
to prove that the statement is true for a composite tree 〈L,©,R〉,
we may use that it is true for the subtrees L and R.

inductive step for B = 〈L,©,R〉:
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Structural Induction: Exercise

Definition (Height of a Binary Tree)

The height of a binary tree B, written height(B),
is defined as follows:

height(�) = 0

height(〈L,©,R〉) = max{height(L), height(R)}+ 1

Prove by structural induction:

Theorem

For all binary trees B: leaves(B) ≤ 2height(B).
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