Discrete Mathematics in Computer Science Mathematical Induction

Malte Helmert, Gabriele Röger

University of Basel

Proof Techniques

most common proof techniques:

- direct proof
- indirect proof (proof by contradiction)
- contrapositive
- mathematical induction
- structural induction

Mathematical Induction

Concrete Mathematics by Graham, Knuth and Patashnik (p. 3)
Mathematical induction proves that we can climb as high as we like on a ladder, by proving that we can climb onto the bottom rung (the basis) and that from each rung we can climb up to the next one (the step).

Propositions

Consider a statement on all natural numbers n with $n \geq m$.
■ E.g. "Every natural number $n \geq 2$ can be written as a product of prime numbers."

- $P(2)$: " 2 can be written as a product of prime numbers."
- $P(3)$: " 3 can be written as a product of prime numbers."
- $P(4)$: " 4 can be written as a product of prime numbers."
-...
- $P(n)$: " n can be written as a product of prime numbers."
- For every natural number $n \geq 2$ proposition $P(n)$ is true.

A proposition $P(n)$ is a mathematical statement that is defined in terms of natural number n.

Mathematical Induction

Mathematical Induction

Proof (of the truth) of proposition $P(n)$
for all natural numbers n with $n \geq m$:

- basis: proof of $P(m)$
- induction hypothesis (IH):
suppose that $P(k)$ is true for all k with $m \leq k \leq n$
- inductive step: proof of $P(n+1)$ using the induction hypothesis

Mathematical Induction: Example I

Theorem
For all $n \in \mathbb{N}_{0}$ with $n \geq 1: \sum_{k=1}^{n}(2 k-1)=n^{2}$

Mathematical Induction: Example I

Theorem

For all $n \in \mathbb{N}_{0}$ with $n \geq 1: \sum_{k=1}^{n}(2 k-1)=n^{2}$

Proof.

Mathematical induction over n :

$$
\text { basis } n=1: \sum_{k=1}^{1}(2 k-1)=2-1=1=1^{2}
$$

Mathematical Induction: Example I

Theorem

For all $n \in \mathbb{N}_{0}$ with $n \geq 1: \sum_{k=1}^{n}(2 k-1)=n^{2}$

Proof.

Mathematical induction over n :
basis $n=1: \sum_{k=1}^{1}(2 k-1)=2-1=1=1^{2}$
IH: $\sum_{k=1}^{m}(2 k-1)=m^{2}$ for all $1 \leq m \leq n$

Mathematical Induction: Example I

Theorem

For all $n \in \mathbb{N}_{0}$ with $n \geq 1: \sum_{k=1}^{n}(2 k-1)=n^{2}$

Proof.

Mathematical induction over n :
basis $n=1: \sum_{k=1}^{1}(2 k-1)=2-1=1=1^{2}$
IH: $\sum_{k=1}^{m}(2 k-1)=m^{2}$ for all $1 \leq m \leq n$
inductive step $n \rightarrow n+1$:

$$
\begin{aligned}
\sum_{k=1}^{n+1}(2 k-1) & =\left(\sum_{k=1}^{n}(2 k-1)\right)+2(n+1)-1 \\
& \stackrel{\text { IH }}{=} n^{2}+2(n+1)-1 \\
& =n^{2}+2 n+1=(n+1)^{2}
\end{aligned}
$$

Mathematical Induction: Example II

Theorem

Every natural number $n \geq 2$ can be written as a product of prime numbers, i. e. $n=p_{1} \cdot p_{2} \cdot \ldots \cdot p_{m}$ with prime numbers p_{1}, \ldots, p_{m}.

Mathematical Induction: Example II

Theorem

Every natural number $n \geq 2$ can be written as a product of prime numbers, i. e. $n=p_{1} \cdot p_{2} \cdot \ldots \cdot p_{m}$ with prime numbers p_{1}, \ldots, p_{m}.

Proof.
Mathematical Induction over n:
basis $n=2$: trivially satisfied, since 2 is prime

Mathematical Induction: Example II

Theorem

Every natural number $n \geq 2$ can be written as a product of prime numbers, i. e. $n=p_{1} \cdot p_{2} \cdot \ldots \cdot p_{m}$ with prime numbers p_{1}, \ldots, p_{m}.

Proof.

Mathematical Induction over n:
basis $n=2$: trivially satisfied, since 2 is prime
IH : Every natural number k with $2 \leq k \leq n$
can be written as a product of prime numbers.

Mathematical Induction: Example II

Theorem

Every natural number $n \geq 2$ can be written as a product of prime numbers, i. e. $n=p_{1} \cdot p_{2} \cdot \ldots \cdot p_{m}$ with prime numbers p_{1}, \ldots, p_{m}.

Proof (continued).

inductive step $n \rightarrow n+1$:
■ Case $1: n+1$ is a prime number \rightsquigarrow trivial

Mathematical Induction: Example II

Theorem

Every natural number $n \geq 2$ can be written as a product of prime numbers, i.e. $n=p_{1} \cdot p_{2} \cdot \ldots \cdot p_{m}$ with prime numbers p_{1}, \ldots, p_{m}.

Proof (continued).

inductive step $n \rightarrow n+1$:

- Case $1: n+1$ is a prime number \rightsquigarrow trivial
- Case 2: $n+1$ is not a prime number.

There are natural numbers $2 \leq q, r \leq n$ with $n+1=q \cdot r$.
Using IH shows that there are prime numbers
q_{1}, \ldots, q_{s} with $q=q_{1} \cdot \ldots \cdot q_{s}$ and
r_{1}, \ldots, r_{t} with $r=r_{1} \cdot \ldots \cdot r_{t}$.
Together this means $n+1=q_{1} \cdot \ldots \cdot q_{s} \cdot r_{1} \cdot \ldots \cdot r_{t}$.

Weak vs. Strong Induction

- Weak induction: Induction hypothesis only supposes that $P(k)$ is true for $k=n$
- Strong induction: Induction hypothesis supposes that $P(k)$ is true for all $k \in \mathbb{N}_{0}$ with $m \leq k \leq n$
- also: complete induction

Weak vs. Strong Induction

- Weak induction: Induction hypothesis only supposes that $P(k)$ is true for $k=n$
- Strong induction: Induction hypothesis supposes that $P(k)$ is true for all $k \in \mathbb{N}_{0}$ with $m \leq k \leq n$
- also: complete induction

Our previous definition corresponds to strong induction.

Weak vs. Strong Induction

■ Weak induction: Induction hypothesis only supposes that $P(k)$ is true for $k=n$

- Strong induction: Induction hypothesis supposes that $P(k)$ is true for all $k \in \mathbb{N}_{0}$ with $m \leq k \leq n$
- also: complete induction

Our previous definition corresponds to strong induction.
Which of the examples had also worked with weak induction?

Is Strong Induction More Powerful than Weak Induction?

Are there statements that we can prove with strong induction but not with weak induction?

Is Strong Induction More Powerful than Weak Induction?

Are there statements that we can prove with strong induction but not with weak induction?

We can always use a stronger proposition:
■ "Every $n \in \mathbb{N}_{0}$ with $n \geq 2$ can be written as a product of prime numbers."

- $P(n)$: " n can be written as a product of prime numbers."
- $P^{\prime}(n)$: "all $k \in \mathbb{N}_{0}$ with $2 \leq k \leq n$ can be written as a product of prime numbers."

Reformulating Statements

It is sometimes convenient to rephrase a statement.
For example:

- " $7^{n}+3^{n}$ is divisible by 10 for all odd $n \in \mathbb{N}_{0}$."

Reformulating Statements

It is sometimes convenient to rephrase a statement.
For example:

- " $7^{n}+3^{n}$ is divisible by 10 for all odd $n \in \mathbb{N}_{0}$."

■ "For all $n \in \mathbb{N}_{0}$: if n is odd then $7^{n}+3^{n}$ is divisible by 10 ."

Reformulating Statements

It is sometimes convenient to rephrase a statement.
For example:

- " $7^{n}+3^{n}$ is divisible by 10 for all odd $n \in \mathbb{N}_{0}$."

■ "For all $n \in \mathbb{N}_{0}$: if n is odd then $7^{n}+3^{n}$ is divisible by 10 ."

- $P(n)=$ "if n is odd then $7^{n}+3^{n}$ is divisible by 10 ."

Reformulating Statements

It is sometimes convenient to rephrase a statement.
For example:

- " $7^{n}+3^{n}$ is divisible by 10 for all odd $n \in \mathbb{N}_{0}$."

■ "For all $n \in \mathbb{N}_{0}$: if n is odd then $7^{n}+3^{n}$ is divisible by 10 ."

- $P(n)=$ "if n is odd then $7^{n}+3^{n}$ is divisible by 10 ."
- Need two base cases.

Reformulating Statements

It is sometimes convenient to rephrase a statement.
For example:

- " $7^{n}+3^{n}$ is divisible by 10 for all odd $n \in \mathbb{N}_{0}$."

■ "For all $n \in \mathbb{N}_{0}$: if n is odd then $7^{n}+3^{n}$ is divisible by 10 ."

- $P(n)=$ "if n is odd then $7^{n}+3^{n}$ is divisible by 10 ."
- Need two base cases.
- Case distinction (n even or odd) in inductive step

Reformulating Statements

It is sometimes convenient to rephrase a statement.
For example:

- " $7^{n}+3^{n}$ is divisible by 10 for all odd $n \in \mathbb{N}_{0}$."

■ "For all $n \in \mathbb{N}_{0}$: if n is odd then $7^{n}+3^{n}$ is divisible by 10 ."

- $P(n)=$ "if n is odd then $7^{n}+3^{n}$ is divisible by 10 ."
- Need two base cases.
- Case distinction (n even or odd) in inductive step
- "For all $n \in \mathbb{N}_{0}: 7^{(2 n+1)}+3^{(2 n+1)}$ is divisible by 10 ."

Reformulating Statements

It is sometimes convenient to rephrase a statement.
For example:

- " $7^{n}+3^{n}$ is divisible by 10 for all odd $n \in \mathbb{N}_{0}$."

■ "For all $n \in \mathbb{N}_{0}$: if n is odd then $7^{n}+3^{n}$ is divisible by 10 ."

- $P(n)=$ "if n is odd then $7^{n}+3^{n}$ is divisible by 10 ."
- Need two base cases.
- Case distinction (n even or odd) in inductive step
- "For all $n \in \mathbb{N}_{0}: 7^{(2 n+1)}+3^{(2 n+1)}$ is divisible by 10 ."
- $P^{\prime}(n)=" 7^{(2 n+1)}+3^{(2 n+1)}$ is divisible by 10 ."

Reformulating Statements

It is sometimes convenient to rephrase a statement.
For example:

- " $7^{n}+3^{n}$ is divisible by 10 for all odd $n \in \mathbb{N}_{0}$."

■ "For all $n \in \mathbb{N}_{0}$: if n is odd then $7^{n}+3^{n}$ is divisible by 10 ."

- $P(n)=$ "if n is odd then $7^{n}+3^{n}$ is divisible by 10 ."
- Need two base cases.
- Case distinction (n even or odd) in inductive step
- "For all $n \in \mathbb{N}_{0}: 7^{(2 n+1)}+3^{(2 n+1)}$ is divisible by 10 ."
- $P^{\prime}(n)=" 7^{(2 n+1)}+3^{(2 n+1)}$ is divisible by 10 ."

Reformulating Statements

It is sometimes convenient to rephrase a statement.
For example:

- " $7^{n}+3^{n}$ is divisible by 10 for all odd $n \in \mathbb{N}_{0}$."

■ "For all $n \in \mathbb{N}_{0}$: if n is odd then $7^{n}+3^{n}$ is divisible by 10 ."

- $P(n)=$ "if n is odd then $7^{n}+3^{n}$ is divisible by 10 ."
- Need two base cases.
- Case distinction (n even or odd) in inductive step
- "For all $n \in \mathbb{N}_{0}: 7^{(2 n+1)}+3^{(2 n+1)}$ is divisible by 10 ."
- $P^{\prime}(n)=" 7^{(2 n+1)}+3^{(2 n+1)}$ is divisible by 10 ."

Be careful about how to reformulate a statement!

Discrete Mathematics in Computer Science Structural Induction

Malte Helmert, Gabriele Röger

University of Basel

Inductively Defined Sets: Examples

Example (Natural Numbers)

The set \mathbb{N}_{0} of natural numbers is inductively defined as follows:

- 0 is a natural number.
- If n is a natural number, then $n+1$ is a natural number.

Inductively Defined Sets: Examples

Example (Natural Numbers)

The set \mathbb{N}_{0} of natural numbers is inductively defined as follows:

- 0 is a natural number.
- If n is a natural number, then $n+1$ is a natural number.

Example (Binary Tree)

The set \mathcal{B} of binary trees is inductively defined as follows:

- \square is a binary tree (a leaf)
- If L and R are binary trees, then $\langle L, \bigcirc, R\rangle$ is a binary tree (with inner node \bigcirc).

Inductively Defined Sets: Examples

Example (Natural Numbers)

The set \mathbb{N}_{0} of natural numbers is inductively defined as follows:

- 0 is a natural number.
- If n is a natural number, then $n+1$ is a natural number.

Example (Binary Tree)

The set \mathcal{B} of binary trees is inductively defined as follows:

- \square is a binary tree (a leaf)
- If L and R are binary trees, then $\langle L, \bigcirc, R\rangle$ is a binary tree (with inner node \bigcirc).

Implicit statement: all elements of the set can be constructed by finite application of these rules

Inductive Definition of a Set

Inductive Definition

A set M can be defined inductively by specifying

- basic elements that are contained in M
- construction rules of the form
"Given some elements of M, another element of M can be constructed like this."

Structural Induction

Structural Induction

Proof of statement for all elements of an inductively defined set
■ basis: proof of the statement for the basic elements

- induction hypothesis (IH):
suppose that the statement is true for some elements M
- inductive step: proof of the statement for elements constructed by applying a construction rule to M (one inductive step for each construction rule)

Structural Induction: Example (1)

Definition (Leaves of a Binary Tree)

The number of leaves of a binary tree B, written leaves(B), is defined as follows:

$$
\begin{aligned}
\operatorname{leaves}(\square) & =1 \\
\operatorname{leaves}(\langle L, \bigcirc, R\rangle) & =\operatorname{leaves}(L)+\operatorname{leaves}(R)
\end{aligned}
$$

Definition (Inner Nodes of a Binary Tree)

The number of inner nodes of a binary tree B, written inner (B), is defined as follows:

$$
\begin{aligned}
\operatorname{inner}(\square) & =0 \\
\operatorname{inner}(\langle L, \bigcirc, R\rangle) & =\operatorname{inner}(L)+\operatorname{inner}(R)+1
\end{aligned}
$$

Structural Induction: Example (2)

Theorem

For all binary trees B : inner $(B)=$ leaves $(B)-1$.

Structural Induction: Example (2)

Theorem

For all binary trees B : inner $(B)=$ leaves $(B)-1$.

Proof.

induction basis:

$\operatorname{inner}(\square)=0=1-1=$ leaves $(\square)-1$
\rightsquigarrow statement is true for base case

Structural Induction: Example (3)

Proof (continued).

induction hypothesis:
to prove that the statement is true for a composite tree $\langle L, \bigcirc, R\rangle$, we may use that it is true for the subtrees L and R.

Structural Induction: Example (3)

Proof (continued).

induction hypothesis:

to prove that the statement is true for a composite tree $\langle L, \bigcirc, R\rangle$, we may use that it is true for the subtrees L and R.
inductive step for $B=\langle L, \bigcirc, R\rangle$:

$$
\begin{aligned}
\operatorname{inner}(B) & =\operatorname{inner}(L)+\operatorname{inner}(R)+1 \\
& \stackrel{\text { IH }}{=}(\operatorname{leaves}(L)-1)+(\operatorname{leaves}(R)-1)+1 \\
& =\operatorname{leaves}(L)+\operatorname{leaves}(R)-1=\operatorname{leaves}(B)-1
\end{aligned}
$$

Structural Induction: Exercise

Definition (Height of a Binary Tree)

The height of a binary tree B, written height (B), is defined as follows:

$$
\begin{aligned}
\operatorname{height}(\square) & =0 \\
\operatorname{height}(\langle L, \bigcirc, R\rangle) & =\max \{\operatorname{height}(L), \operatorname{height}(R)\}+1
\end{aligned}
$$

Prove by structural induction:

Theorem

For all binary trees B : leaves $(B) \leq 2^{\text {height }(B)}$.

