Discrete Mathematics in Computer Science What is a Proof?

Malte Helmert, Gabriele Röger

University of Basel

What is a Proof?

A mathematical proof is

- a sequence of logical steps
- starting with one set of statements
- that comes to the confusion that some statement must be true.

What is a Proof?

A mathematical proof is

- a sequence of logical steps
- starting with one set of statements
- that comes to the confusion that some statement must be true.

What is a statement?

Mathematical Statements

Mathematical Statement

A mathematical statement consists of a set of preconditions and a set of conclusions.

The statement is true if the conclusions are true whenever the preconditions are true.

Mathematical Statements

Mathematical Statement

A mathematical statement consists of a set of preconditions and a set of conclusions.

The statement is true if the conclusions are true whenever the preconditions are true.

Notes:

- set of preconditions is sometimes empty
- often, "assumptions" is used instead of "preconditions"; slightly unfortunate because "assumption" is also used with another meaning (~> cf. indirect proofs)

Examples of Mathematical Statements

Examples (some true, some false):

- "Let $p \in \mathbb{N}_0$ be a prime number. Then p is odd."
- "There exists an even prime number."
- "Let $p \in \mathbb{N}_0$ with $p \ge 3$ be a prime number. Then p is odd."
- "All prime numbers $p \ge 3$ are odd."
- "For all sets A, B, C: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ "
- "0 is a natural number."
- "The equation $a^k + b^k = c^k$ has infinitely many solutions with $a, b, c, k \in \mathbb{N}_1$ and $k \ge 2$."
- "The equation $a^k + b^k = c^k$ has no solutions with $a, b, c, k \in \mathbb{N}_1$ and $k \ge 3$."

What are the preconditions, what are the conclusions?

On what Statements can we Build the Proof?

A mathematical proof is

- a sequence of logical steps
- starting with one set of statements
- that comes to the confusion that some statement must be true.

We can use:

- axioms: statements that are assumed to always be true in the current context
- theorems and lemmas: statements that were already proven
 - lemma: an intermediate tool
 - theorem: itself a relevant result
- premises: assumptions we make to see what consequences they have

What is a Logical Step?

A mathematical proof is

- a sequence of logical steps
- starting with one set of statements
- that comes to the confusion that some statement must be true.

Each step directly follows

- from the axioms,
- premises,
- previously proven statements and
- the preconditions of the statement we want to prove.

What is a Logical Step?

A mathematical proof is

- a sequence of logical steps
- starting with one set of statements
- that comes to the confusion that some statement must be true.

Each step directly follows

- from the axioms,
- premises,
- previously proven statements and
- the preconditions of the statement we want to prove.

For a formal definition, we would need formal logics.

The Role of Definitions

Definition

A set is an unordered collection of distinct objects.

The set that does not contain any objects is the *empty set* \emptyset .

The Role of Definitions

Definition

A set is an unordered collection of distinct objects. The set that does not contain any objects is the *empty set* \emptyset .

- A definition introduces an abbreviation.
- Whenever we say "set", we could instead say "an unordered collection of distinct objects" and vice versa.
- Definitions can also introduce notation.

Disproofs

- A disproof (refutation) shows that a given mathematical statement is false by giving an example where the preconditions are true, but the conclusion is false.
- This requires deriving, in a sequence of proof steps, the opposite (negation) of the conclusion.
- Formally, disproofs are proofs of modified ("negated") statements.
- Be careful about how to negate a statement!

A Word on Style

A proof should help the reader to see why the result must be true.

- A proof should be easy to follow.
- Omit unnecessary information.
- Move self-contained parts into separate lemmas.
- In complicated proofs, reveal the overall structure in advance.
- Have a clear line of argument.

A Word on Style

A proof should help the reader to see why the result must be true.

- A proof should be easy to follow.
- Omit unnecessary information.
- Move self-contained parts into separate lemmas.
- In complicated proofs, reveal the overall structure in advance.
- Have a clear line of argument.
- \rightarrow Writing a proof is like writing an essay.

Discrete Mathematics in Computer Science Proof Strategies

Malte Helmert, Gabriele Röger

University of Basel

Common Forms of Statements

Many statements have one of these forms:

- "All $x \in S$ with the property P also have the property Q."
- (2) "A is a subset of B."
- "For all $x \in S$: x has property P iff x has property Q."
- \bullet "A = B", where A and B are sets.

Common Forms of Statements

Many statements have one of these forms:

- "All $x \in S$ with the property P also have the property Q."
- (2) "A is a subset of B."
- "For all $x \in S$: x has property P iff x has property Q."
- \bullet "A = B", where A and B are sets.

In the following, we will discuss some typical proof/disproof strategies for such statements.

- **1** "All $x \in S$ with the property P also have the property Q." "For all $x \in S$: if x has property P, then x has property Q."
 - To prove, assume you are given an arbitrary x ∈ S that has the property P.
 Give a sequence of proof steps showing that x must have the property Q.
 - To disprove, find a counterexample, i. e., find an $x \in S$ that has property P but not Q and prove this.

- (a) "A is a subset of B."
 - To prove, assume you have an arbitrary element $x \in A$ and prove that $x \in B$.
 - To disprove, find an element in $x \in A \setminus B$ and prove that $x \in A \setminus B$.

- "For all $x \in S$: x has property P iff x has property Q." ("iff": "if and only if")
 - \blacksquare To prove, separately prove "if P then Q" and "if Q then P".
 - To disprove, disprove "if P then Q" or disprove "if Q then P".

- $^{\bullet}$ "A=B", where A and B are sets.
 - To prove, separately prove " $A \subseteq B$ " and " $B \subseteq A$ ".
 - To disprove, disprove " $A \subseteq B$ " or disprove " $B \subseteq A$ ".

Proof Techniques

most common proof techniques:

- direct proof
- indirect proof (proof by contradiction)
- contrapositive
- mathematical induction
- structural induction

Discrete Mathematics in Computer Science Direct Proof

Malte Helmert, Gabriele Röger

University of Basel

Direct Proof

Direct Proof

Direct derivation of the statement by deducing or rewriting.

Direct Proof: Example

 $\rightarrow \mathsf{Separate}\ \LaTeX/\mathsf{PDF}\ \mathsf{file}$

Discrete Mathematics in Computer Science

Malte Helmert, Gabriele Röger

University of Basel

Indirect Proof

Indirect Proof (Proof by Contradiction)

- Make an assumption that the statement is false.
- Derive a contradiction from the assumption together with the preconditions of the statement.
- This shows that the assumption must be false given the preconditions of the statement, and hence the original statement must be true.

Indirect Proof: Example

 $\rightarrow \mathsf{Separate}\ \LaTeX/\mathsf{PDF}\ \mathsf{file}$

Discrete Mathematics in Computer Science Proof by Contrapositive

Malte Helmert, Gabriele Röger

University of Basel

Contrapositive

(Proof by) Contrapositive

Prove "If A, then B" by proving "If not B, then not A."

Contrapositive

(Proof by) Contrapositive

Prove "If A, then B" by proving "If not B, then not A."

Examples:

- Prove "For all $n \in \mathbb{N}_0$: if n^2 is odd, then n is odd" by proving "For all $n \in \mathbb{N}_0$, if n is even, then n^2 is even."
- Prove "For all $n \in \mathbb{N}_0$: if n is not a square number, then \sqrt{n} is irrational" by proving "For all $n \in \mathbb{N}_0$: if \sqrt{n} is rational, then n is a square number."

Contrapositive: Example

 \rightarrow Separate LATEX/PDF file

Discrete Mathematics in Computer Science Excursus: Computer-assisted Theorem Proving

Malte Helmert, Gabriele Röger

University of Basel

Computer-assisted Proofs

- Computers can help proving theorems.
- Computer-aided proofs have for example been used for proving theorems by exhaustion.
- Example: Four color theorem

On the lowest abstraction level, rigorous mathematical proofs rely on formal logic.

- On the lowest abstraction level, rigorous mathematical proofs rely on formal logic.
- On this level, proofs can be automatically verified by computers.

- On the lowest abstraction level, rigorous mathematical proofs rely on formal logic.
- On this level, proofs can be automatically verified by computers.
- Nobody wants to write or read proofs on this level of detail.

- On the lowest abstraction level, rigorous mathematical proofs rely on formal logic.
- On this level, proofs can be automatically verified by computers.
- Nobody wants to write or read proofs on this level of detail.
- In Interactive Theorem Proving a human guides the proof and the computer tries to fill in the details.

- On the lowest abstraction level, rigorous mathematical proofs rely on formal logic.
- On this level, proofs can be automatically verified by computers.
- Nobody wants to write or read proofs on this level of detail.
- In Interactive Theorem Proving a human guides the proof and the computer tries to fill in the details.
- If it succeeds, we can be very confident that the proof is valid.

- On the lowest abstraction level, rigorous mathematical proofs rely on formal logic.
- On this level, proofs can be automatically verified by computers.
- Nobody wants to write or read proofs on this level of detail.
- In Interactive Theorem Proving a human guides the proof and the computer tries to fill in the details.
- If it succeeds, we can be very confident that the proof is valid.
- Example theorem provers: Isabelle/HOL, Lean