Planning and Optimization
F8. Monte-Carlo Tree Search Algorithms (Part I)

Malte Helmert and Gabriele Roger

Universitat Basel

Content of this Course

Foundations |

Logic |

—| Classical I—

Heuristics |

LT T 1

Constraints |

D Explicit MDPs |

Content of this Course: Factored MDPs

—{ Foundations

| Factored MDPs | Feunistic
Search

Monte-Carlo
Methods MC TS ‘

Introduction
©0000

Introduction

Introduction
00000

Monte-Carlo Tree Search: Reminder

Performs iterations with 4 phases:

m selection: use given tree policy to
traverse explicated tree

Introduction
00000

Monte-Carlo Tree Search: Reminder

Performs iterations with 4 phases:

m selection: use given tree policy to
traverse explicated tree

m expansion: add node(s) to the tree

Introduction
00000

Monte-Carlo Tree Search: Reminder

Performs iterations with 4 phases:

m selection: use given tree policy to
traverse explicated tree

m expansion: add node(s) to the tree

m simulation: use given default policy
to simulate run

Introduction
00000

Monte-Carlo Tree Search: Reminder

Performs iterations with 4 phases:

m selection: use given tree policy to
traverse explicated tree

m expansion: add node(s) to the tree

m simulation: use given default policy
to simulate run

m backpropagation: update visited
nodes with Monte-Carlo backups

Introduction

[e]e] le]e}

Motivation

Monte-Carlo Tree Search is a framework of algorithms

concrete MCTS algorithms are specified in terms of

m a tree policy;
m and a default policy

for most tasks, a well-suited MCTS configuration exists

but for each task, many MCTS configurations perform poorly

and every MCTS configuration that works well in one problem
performs poorly in another problem

= There is no “Swiss army knife" configuration for MCTS

Introduction D
0000 5

Role of Tree Policy

m used to traverse explicated tree from root node to a leaf

B maps decision nodes to a probability distribution over actions
(usually as a function over a decision node and its children)

m exploits information from search tree

m able to learn over time
m requires MCTS tree to memorize collected information

Introduction cy 0 3 Summar
0000e 5 8 8

Role of Default Policy

m used to simulate run from some state to a goal

B maps states to a probability distribution over actions
m independent from MCTS tree
m does not improve over time
® can be computed quickly
m constant memory requirements
m accumulated cost of simulated run used to
initialize state-value estimate of decision node

Default Policy
©000000

Default Policy

Default Policy

O@00000

MCTS Simulation

MCTS simulation with default policy 7 from state s

cost :=0
while s ¢ S,:
a:~7(s)

cost := cost + ¢(a)
s :~ succ(s, a)
return cost

Default policy must be proper
m to guarantee termination of the procedure

m and a finite cost

Default Policy
foJe] Yelolelo)

Default Policy: Example

Consider deterministic default policy 7

a0 : 10 State-value of s under 7: 60

: 50

Default Policy
foJe] Yelolelo)

Consider deterministic default policy 7

a0 : 10 State-value of s under 7: 60

an .

Accumulated cost of run: 0

50

Summar

Default Policy
foJe] Yelolelo)

Consider deterministic default policy 7

a0 : 10 State-value of s under 7: 60

an .

Accumulated cost of run: 10

50

Summar

Default Policy
foJe] Yelolelo)

Consider deterministic default policy 7

a0 : 10 State-value of s under 7: 60

an .

Accumulated cost of run: 60

50

Summar

Introduction Default Policy Op 3 Summar

)OO([e]e]e] le]ee)

Default Policy Realizations

m Early MCTS implementations used random default policy:

7r(a|s):{wls)| if a € A(s)

0 otherwise

m only proper if goal can be reached from each state

m poor guidance, and due to high variance even misguidance

Default Policy
0000800

Default Policy Realizations

There are only few alternatives to random default policy, e.g.,
m heuristic-based policy

m domain-specific policy

Reason: No matter how good the policy,
result of simulation can be arbitrarily poor

Default Policy
000000

Default Policy: Example (2)

Consider deterministic default policy 7

a0 : 10 State-value of s under 7: 60

Accumulated cost of run: 0

32250

Default Policy
000000

Default Policy: Example (2)

Consider deterministic default policy 7

a0 : 10 State-value of s under 7: 60

Accumulated cost of run: 10

32250

Default Policy
000000

Default Policy: Example (2)

Consider deterministic default policy 7

a0 : 10 State-value of s under 7: 60

Accumulated cost of run: 60

32250

Default Policy
000000

Default Policy: Example (2)

Consider deterministic default policy 7

a0 : 10 State-value of s under 7: 60

Accumulated cost of run: 110

32250

Default Policy
0000000

Default Policy Realizations

Possible solution to overcome this weakness:
m average over multiple random walks
m converges to true action-values of policy

m computationally often very expensive

Cheaper and more successful alternative:
m skip simulation step of MCTS
m use heuristic directly for initialization of state-value estimates
m instead of simulating execution of heuristic-guided policy

m much more successful (e.g. neural networks of AlphaGo)

Asymptotic Optimality

Introduction Default Policy Optimality VAB Summary

Jele] [J 0O@00000

Optimal Search

Heuristic search algorithms (like RTDP)
achieve optimality by combining

m greedy search

m admissible heuristic

m Bellman backups

In Monte-Carlo Tree Search
m search behavior defined by a tree policy

m admissibility of default policy / heuristic irrelevant
(and usually not given)

m Monte-Carlo backups

MCTS requires a different idea for optimal behavior in the limit.

Optimality MAB Summary

[e]e] lele]ele)

Asymptotic Optimality

Asymptotic Optimality
Let an MCTS algorithm build an MCTS tree G = (dy, D, C, E).
The MCTS algorithm is asymptotically optimal if

limy_00 @“(c) = Qu(s(c), a(c)) for all c € CK,

where k is the number of trials.

m this is just one special form of asymptotic optimality

m some optimal MCTS algorithms are
not asymptotically optimal by this definition
(e.g., limi_00Q¥(c) = - Qu(s(c), a(c)) for some £ € RT)
m all practically relevant optimal MCTS algorithms are
asymptotically optimal by this definition

D cy Optimality
0008000

Asymptotically Optimal Tree Policy

An MCTS algorithm is asymptotically optimal if
@ its tree policy explores forever:

m the (infinite) sum of the probabilities that a decision node is
visited must diverge

m = every search node is explicated eventually and visited
infinitely often

@ its tree policy is greedy in the limit:

m probability that optimal action is selected converges to 1

® = in the limit, backups based on iterations where only
an optimal policy is followed dominate suboptimal backups

© its default policy initializes decision nodes with finite values

Introduction Default Policy Optimality MAB Summary

0000e00

Example: Random Tree Policy

Consider the random tree policy for decision node d where:

m(a|d) = {m if a € A(s(d))

0 otherwise

The random tree policy explores forever:

Let (do, co, - - -, dn, Cn, d) be a sequence of connected nodes in G¥
and let p := ming<j<n—1 T(s(d;), a(ci), s(di+1))-

Let PX be the probability that d is visited in trial k. With
Pk > (IA\ p)", we have that

l/mk_ﬂx,Z]P’k > k- (
i=1

-p)" =00
AP

Introduction efault Policy Optimality MAB Summary

0000e00

Example: Random Tree Policy

Consider the random tree policy for decision node d where:

m(al|d)= {m if a € A(s(d))

0 otherwise

The random tree policy is not greedy in the limit unless all actions
are always optimal:

The probability that an optimal action a is selected in decision

node d is i
limg ool — — < 1.
- , 2 |A(s(d))
{a'gmy«(s)}

~» MCTS with random tree policy not asymptotically optimal

Introduction Default Policy Optimality MAB Summary

o] o] 0000080

Example: Greedy Tree Policy

Consider the greedy tree policy for decision node d where:

1 . k
w(a|d) = { PE@ if 2 € Ay(d))
0 otherwise,

with Af(d) = {a(c) € A(s(d)) | ¢ € arg minechidren(d) Qk(cN}.

m Greedy tree policy is greedy in the limit
m Greedy tree policy does not explore forever

~» MCTS with greedy tree policy not asymptotically optimal

icy Optimality
000000@

Tree Policy: Objective

To satisfy both requirements, MCTS tree policies have two
contradictory objectives:

m explore parts of the search space that have not been
investigated thoroughly

m exploit knowledge about good actions to focus search
on promising areas of the search space

central challenge: balance exploration and exploitation

= borrow ideas from related multi-armed bandit problem

OOOOO

Multi-armed Bandit Problem

Multi-armed Bandit Problem

m most commonly used tree policies are inspired from research
on the multi-armed bandit problem (MAB)

m MAB is a learning scenario (model not revealed to agent)

m agent repeatedly faces the same decision:
to pull one of several arms of a slot machine

m pulling an arm yields stochastic reward
= in MABs, we have rewards rather than costs

m can be modeled as an MDP

Introduction

Summar

Multi-armed Bandit Problem

Summar

m Compute Q.(a) for a € {a1, a2, a3}
m Pull arm arg max,c(a, 2,,2,} @+(a) = a3 forever

m Expected accumulated reward after k trials is 8 - k

MAB
00800

Multi-armed Bandit Problem: Learning Scenario

m Pull arms following policy to explore or exploit

m Update @ and N based on observations

MAB
00800

Multi-armed Bandit Problem: Learning Scenario

m Pull arms following policy to explore or exploit
m Update @ and N based on observations

m Accumulated reward after 1 trial is 3

Introduction

ality MAB Summar
000 [e]e] lele] [e]e]

Multi-armed Bandit Problem: Learning Scenario

m Pull arms following policy to explore or exploit
m Update Q and N based on observations

m Accumulated reward after 2 trials is3+6 =9

Introduction

ality MAB Summar
000 [e]e] lele] [e]e]

Multi-armed Bandit Problem: Learning Scenario

m Pull arms following policy to explore or exploit
m Update Q and N based on observations
m Accumulated reward after 3 trialsis3+64+0=9

Introduction

Summar

Multi-armed Bandit Problem: Learning Scenario

m Pull arms following policy to explore or exploit
m Update Q and N based on observations

m Accumulated reward after 4 trialsis3+6+0+6 =15

Introduction

Summar

Multi-armed Bandit Problem: Learning Scenario

m Pull arms following policy to explore or exploit
m Update Q and N based on observations

m Accumulated reward after 5 trialsis3+6+0+6 +0 =15

Introduction Default Policy

m Pull arms following policy to explore or exploit
m Update Q and N based on observations
m Accumulated reward after 6 trialsis3+6+0+6+0+8 =23

Policy Quality

m Since model unknown to MAB agent, it cannot achieve
accumulated reward of k- V, with V, := max, Q«(a) in k trials

m Quality of MAB policy m measured in terms of regret, i.e., the
difference between k - V, and expected reward of 7 in k trials

m Regret cannot grow slower than logarithmically in the number
of trials

MABs in MCTS Tree

many tree policies treat each
decision node as MAB

m where each action yields a
stochastic reward

dependence of reward on future
decision is ignored

MCTS planner uses simulations
to learn reasonable behavior

m SSP model is not considered

[Je]

Summary

Summary

oe

Summary

m The simulation phase simulates the execution of the default
policy
m MCTS algorithms are optimal in the limit if
m the tree policy is greedy in the limit,
m the tree policy explores forever, and
m the default policy initializes with finite value
m Central challenge of most tree policies:
balance exploration and exploitation

m each decision of an MCTS tree policy can be viewed as an
multi-armed bandit problem.

	Introduction
	

	Default Policy
	

	Asymptotic Optimality
	

	Multi-armed Bandit Problem
	

	Summary
	

