

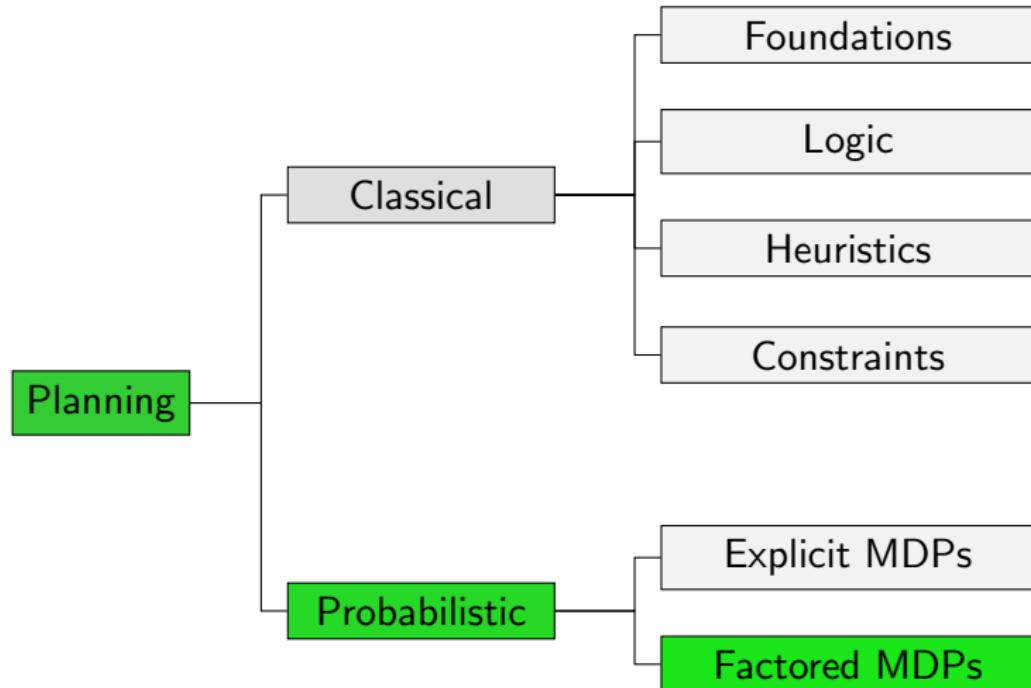
Planning and Optimization

F8. Monte-Carlo Tree Search Algorithms (Part I)

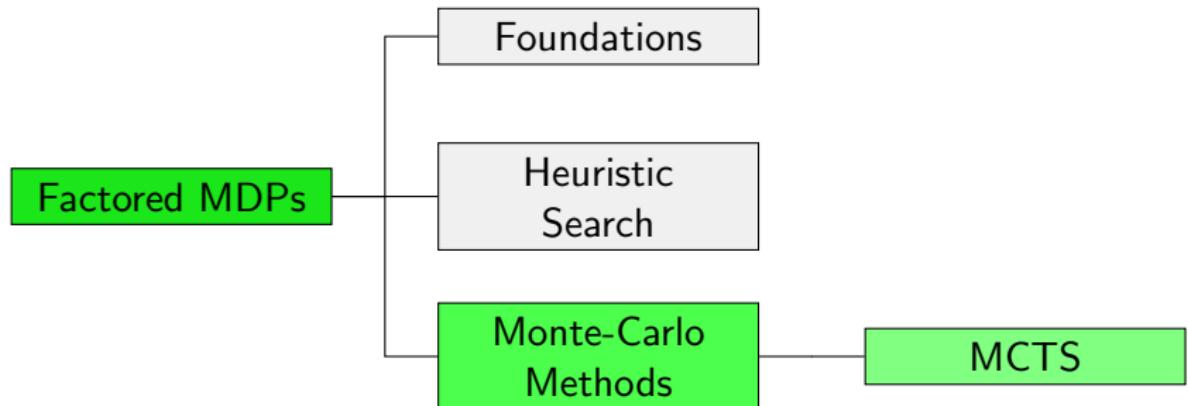
Malte Helmert and Gabriele Röger

Universität Basel

Content of this Course



Content of this Course: Factored MDPs



Introduction
●oooo

Default Policy
oooooooo

Optimality
oooooooo

MAB
ooooo

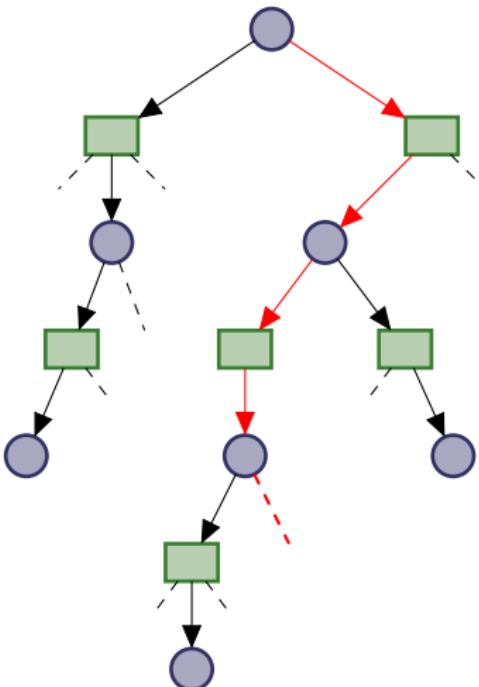
Summary
oo

Introduction

Monte-Carlo Tree Search: Reminder

Performs iterations with 4 phases:

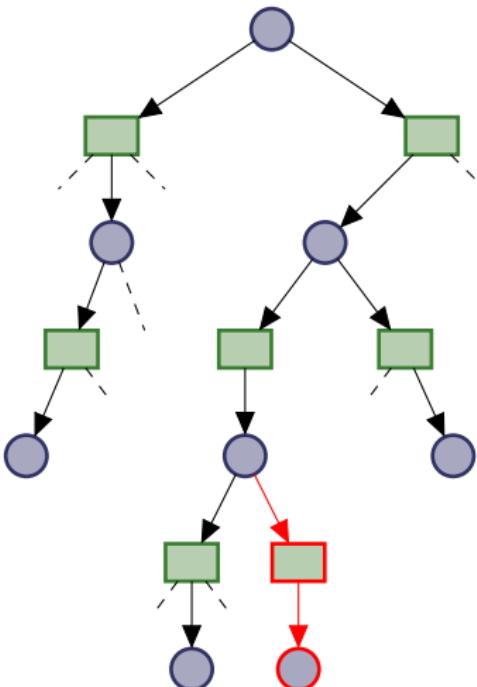
- selection: use **given tree policy** to traverse explicated tree



Monte-Carlo Tree Search: Reminder

Performs iterations with 4 phases:

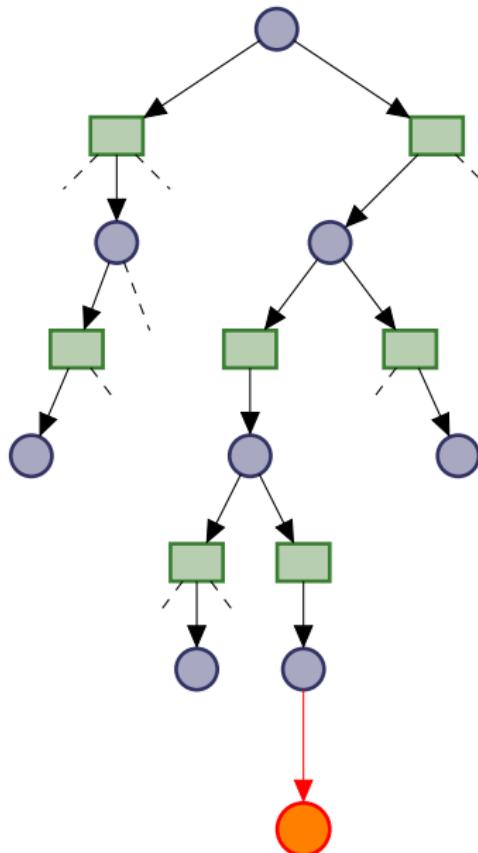
- selection: use **given tree policy** to traverse explicated tree
- expansion: add node(s) to the tree



Monte-Carlo Tree Search: Reminder

Performs iterations with 4 phases:

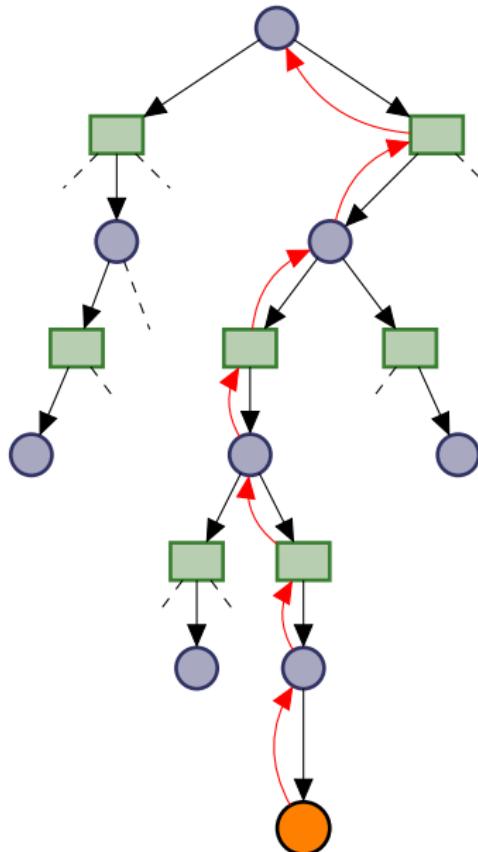
- selection: use **given tree policy** to traverse explicated tree
- expansion: add node(s) to the tree
- simulation: use **given default policy** to simulate run



Monte-Carlo Tree Search: Reminder

Performs iterations with 4 phases:

- selection: use **given tree policy** to traverse explicated tree
- expansion: add node(s) to the tree
- simulation: use **given default policy** to simulate run
- backpropagation: update visited nodes with Monte-Carlo backups



Motivation

- Monte-Carlo Tree Search is a **framework** of algorithms
- concrete MCTS algorithms are specified in terms of
 - a tree policy;
 - and a default policy
- for most tasks, a **well-suited** MCTS configuration exists
- but for each task, many MCTS configurations **perform poorly**
- and every MCTS configuration that **works well** in one problem **performs poorly** in another problem

⇒ There is no “Swiss army knife” configuration for MCTS

Role of Tree Policy

- used to **traverse explicated tree** from root node to a leaf
- maps **decision nodes** to a probability distribution over actions (usually as a function over a decision node and its children)
- **exploits** information from search tree
 - able to **learn over time**
 - requires MCTS tree to **memorize collected information**

Role of Default Policy

- used to **simulate run** from some state to a goal
- maps **states** to a probability distribution over actions
- **independent** from MCTS tree
 - does not improve over time
 - can be **computed quickly**
 - **constant memory** requirements
- accumulated cost of simulated run used to initialize **state-value estimate** of decision node

Default Policy

MCTS Simulation

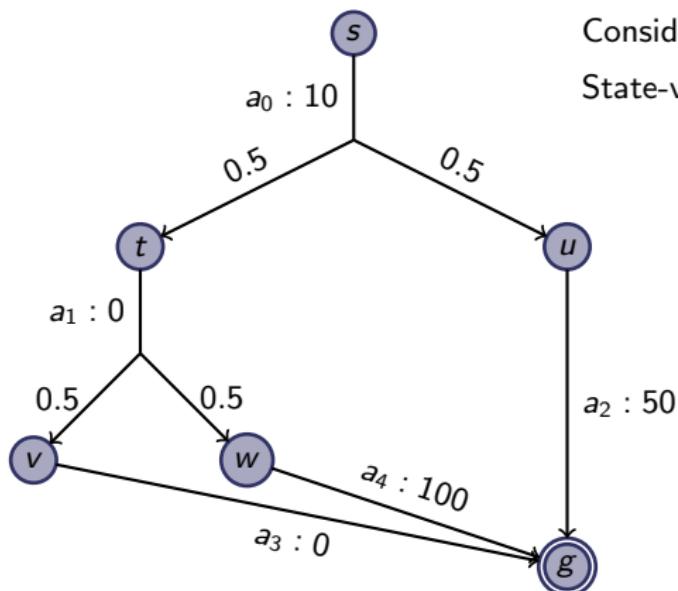
MCTS simulation with default policy π from state s

```
cost := 0
while  $s \notin S_*$ :
     $a : \sim \pi(s)$ 
    cost := cost +  $c(a)$ 
     $s : \sim \text{succ}(s, a)$ 
return cost
```

Default policy must be **proper**

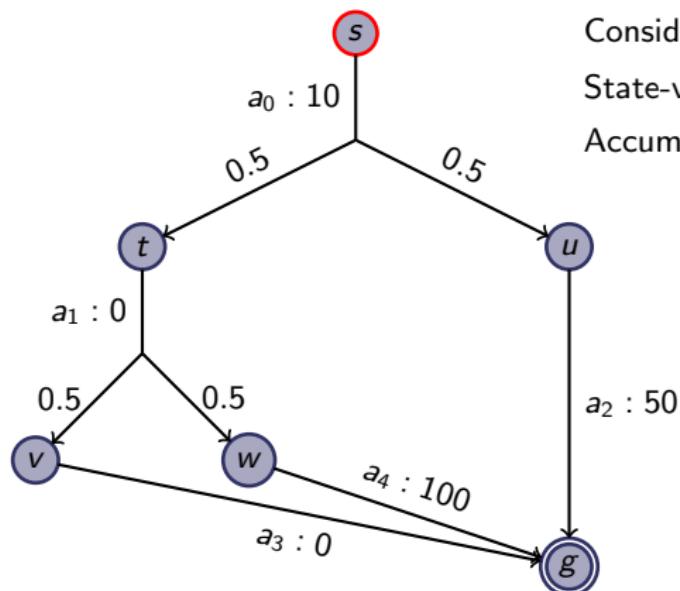
- to guarantee **termination** of the procedure
- and a **finite cost**

Default Policy: Example



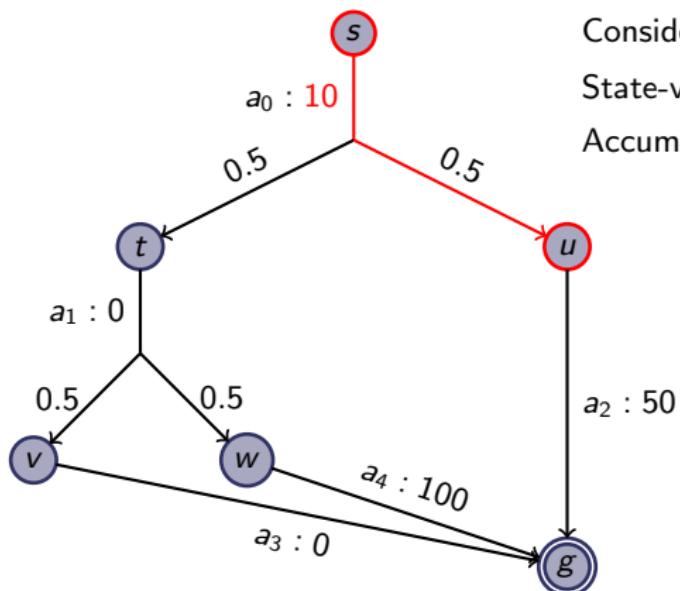
Consider deterministic default policy π
State-value of s under π : 60

Default Policy: Example



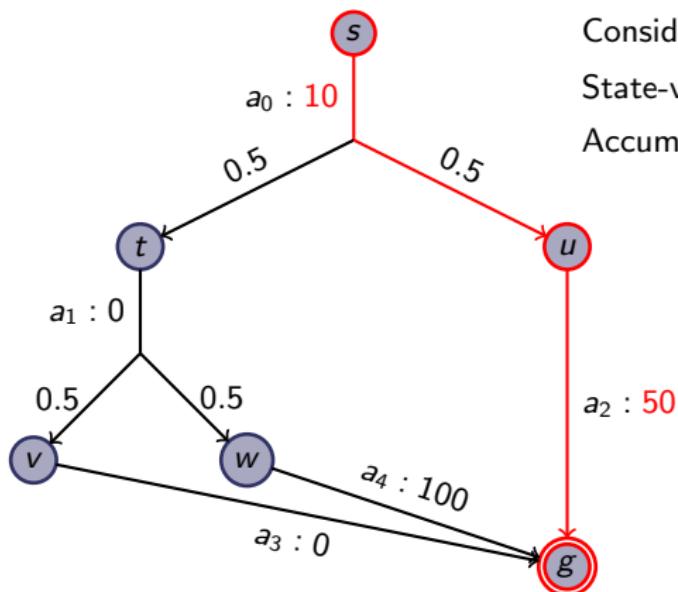
Consider deterministic default policy π
State-value of s under π : 60
Accumulated cost of run: 0

Default Policy: Example



Consider deterministic default policy π
State-value of s under π : 60
Accumulated cost of run: 10

Default Policy: Example



Consider deterministic default policy π
State-value of s under π : 60
Accumulated cost of run: 60

Default Policy Realizations

- Early MCTS implementations used **random default policy**:

$$\pi(a | s) = \begin{cases} \frac{1}{|A(s)|} & \text{if } a \in A(s) \\ 0 & \text{otherwise} \end{cases}$$

- only **proper** if goal can be reached from each state
- **poor** guidance, and due to high variance even **misguidance**

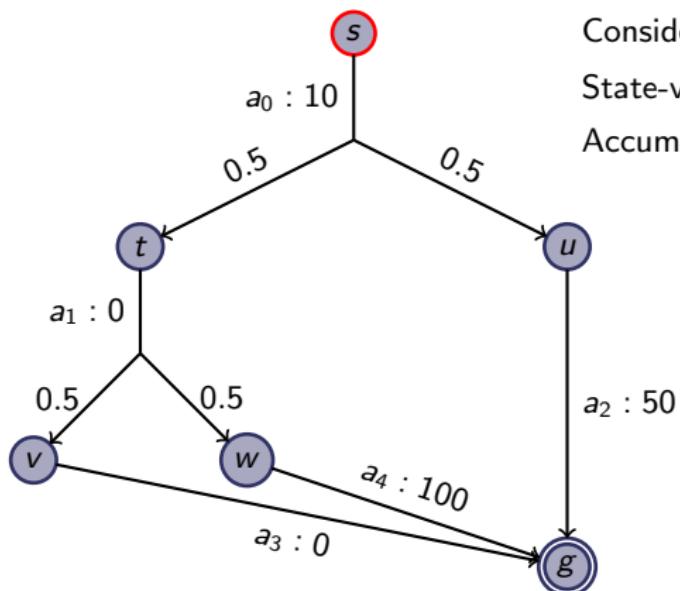
Default Policy Realizations

There are only **few alternatives** to random default policy, e.g.,

- heuristic-based policy
- domain-specific policy

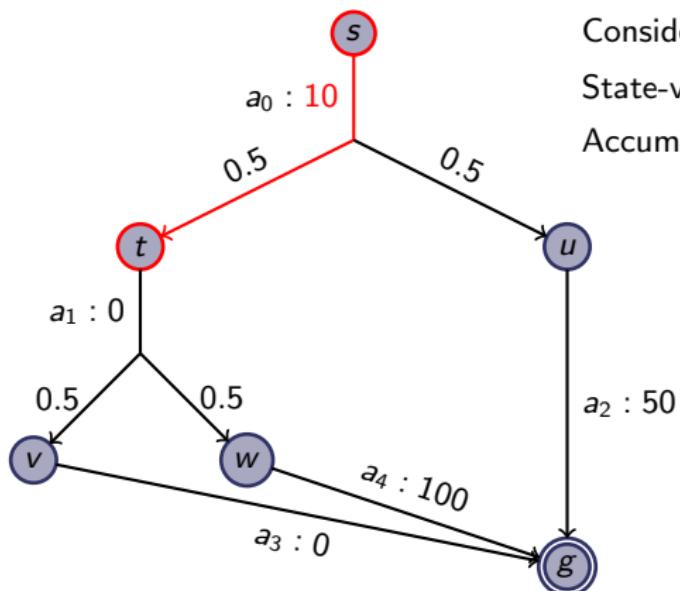
Reason: No matter how good the policy,
result of simulation can be arbitrarily poor

Default Policy: Example (2)



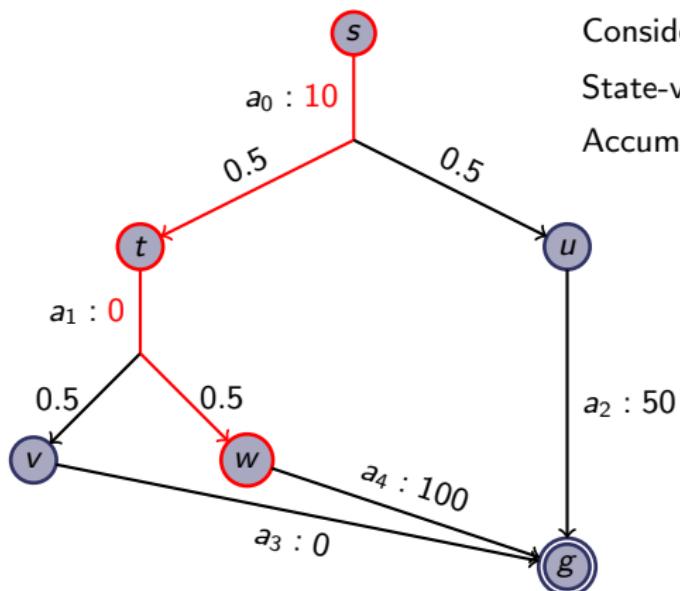
Consider deterministic default policy π
State-value of s under π : 60
Accumulated cost of run: 0

Default Policy: Example (2)



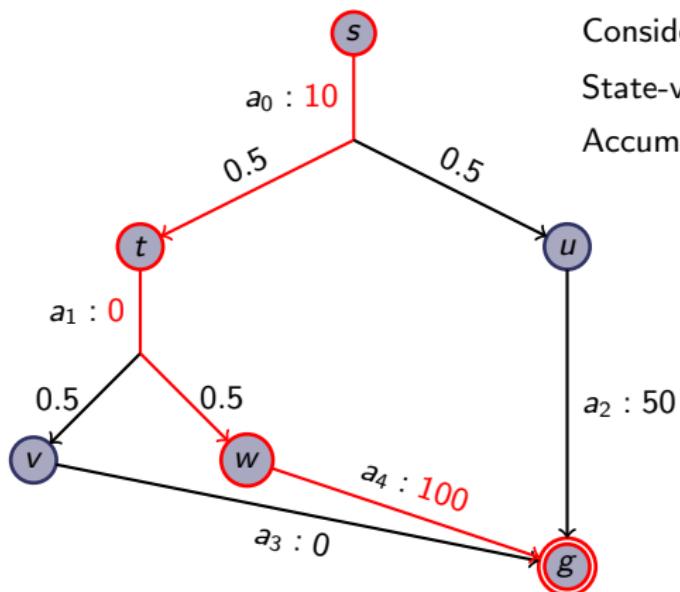
Consider deterministic default policy π
State-value of s under π : 60
Accumulated cost of run: 10

Default Policy: Example (2)



Consider deterministic default policy π
State-value of s under π : 60
Accumulated cost of run: 60

Default Policy: Example (2)



Consider deterministic default policy π
State-value of s under π : 60
Accumulated cost of run: 110

Default Policy Realizations

Possible solution to overcome this weakness:

- **average** over multiple random walks
- **converges** to true action-values of policy
- computationally **often very expensive**

Cheaper and more successful alternative:

- skip **simulation** step of MCTS
- use heuristic **directly for initialization** of state-value estimates
- instead of simulating execution of heuristic-guided policy
- much more successful (e.g. neural networks of **AlphaGo**)

Introduction
ooooo

Default Policy
ooooooo

Optimality
●oooooo

MAB
ooooo

Summary
oo

Asymptotic Optimality

Optimal Search

Heuristic search algorithms (like RTDP)
achieve optimality by combining

- greedy search
- admissible heuristic
- Bellman backups

In Monte-Carlo Tree Search

- search behavior defined by a **tree policy**
- **admissibility** of default policy / heuristic **irrelevant**
(and usually **not given**)
- **Monte-Carlo backups**

MCTS requires a different idea for **optimal behavior in the limit**.

Asymptotic Optimality

Asymptotic Optimality

Let an MCTS algorithm build an MCTS tree $\mathcal{G} = \langle d_0, D, C, E \rangle$.
The MCTS algorithm is **asymptotically optimal** if

$$\lim_{k \rightarrow \infty} \hat{Q}^k(c) = Q_*(s(c), a(c)) \text{ for all } c \in C^k,$$

where k is the number of trials.

- this is just one special form of asymptotic optimality
- some optimal MCTS algorithms are not asymptotically optimal by this definition
(e.g., $\lim_{k \rightarrow \infty} \hat{Q}^k(c) = \ell \cdot Q_*(s(c), a(c))$ for some $\ell \in \mathbb{R}^+$)
- all **practically relevant** optimal MCTS algorithms are asymptotically optimal by this definition

Asymptotically Optimal Tree Policy

An MCTS algorithm is **asymptotically optimal** if

- ➊ its tree policy **explores forever**:
 - the (infinite) sum of the probabilities that a decision node is visited must diverge
 - \Rightarrow every search node is **explicated eventually** and **visited infinitely often**
- ➋ its tree policy is **greedy in the limit**:
 - probability that optimal action is selected converges to 1
 - \Rightarrow in the limit, backups based on iterations where only an **optimal policy** is followed dominate suboptimal backups
- ➌ its default policy initializes decision nodes with **finite values**

Example: Random Tree Policy

Example

Consider the **random tree policy** for decision node d where:

$$\pi(a | d) = \begin{cases} \frac{1}{|A(s(d))|} & \text{if } a \in A(s(d)) \\ 0 & \text{otherwise} \end{cases}$$

The random tree policy **explores forever**:

Let $\langle d_0, c_0, \dots, d_n, c_n, d \rangle$ be a sequence of connected nodes in \mathcal{G}^k and let $p := \min_{0 < i < n-1} T(s(d_i), a(c_i), s(d_{i+1}))$.

Let \mathbb{P}^k be the probability that d is visited in trial k . With $\mathbb{P}^k \geq (\frac{1}{|A|} \cdot p)^n$, we have that

$$\lim_{k \rightarrow \infty} \sum_{i=1}^k \mathbb{P}^k \geq k \cdot \left(\frac{1}{|A|} \cdot p\right)^n = \infty$$

Example: Random Tree Policy

Example

Consider the **random tree policy** for decision node d where:

$$\pi(a | d) = \begin{cases} \frac{1}{|A(s(d))|} & \text{if } a \in A(s(d)) \\ 0 & \text{otherwise} \end{cases}$$

The random tree policy is **not greedy in the limit** unless all actions are always optimal:

The probability that an optimal action a is selected in decision node d is

$$\lim_{k \rightarrow \infty} 1 - \sum_{\{a' \notin \pi_{V^*}(s)\}} \frac{1}{|A(s(d))|} < 1.$$

~~ MCTS with random tree policy **not asymptotically optimal**

Example: Greedy Tree Policy

Example

Consider the **greedy tree policy** for decision node d where:

$$\pi(a | d) = \begin{cases} \frac{1}{|A_*^k(d)|} & \text{if } a \in A_*^k(d) \\ 0 & \text{otherwise,} \end{cases}$$

with $A_*^k(d) = \{a(c) \in A(s(d)) \mid c \in \arg \min_{c' \in \text{children}(d)} \hat{Q}^k(c')\}$.

- Greedy tree policy is **greedy in the limit**
- Greedy tree policy does **not explore forever**

~ MCTS with greedy tree policy **not asymptotically optimal**

Tree Policy: Objective

To satisfy **both** requirements, MCTS tree policies have two contradictory objectives:

- **explore** parts of the search space that have not been investigated thoroughly
- **exploit** knowledge about good actions to focus search on promising areas of the search space

central challenge: **balance** exploration and exploitation

⇒ borrow ideas from related **multi-armed bandit** problem

Introduction
ooooo

Default Policy
oooooooo

Optimality
oooooooo

MAB
●oooo

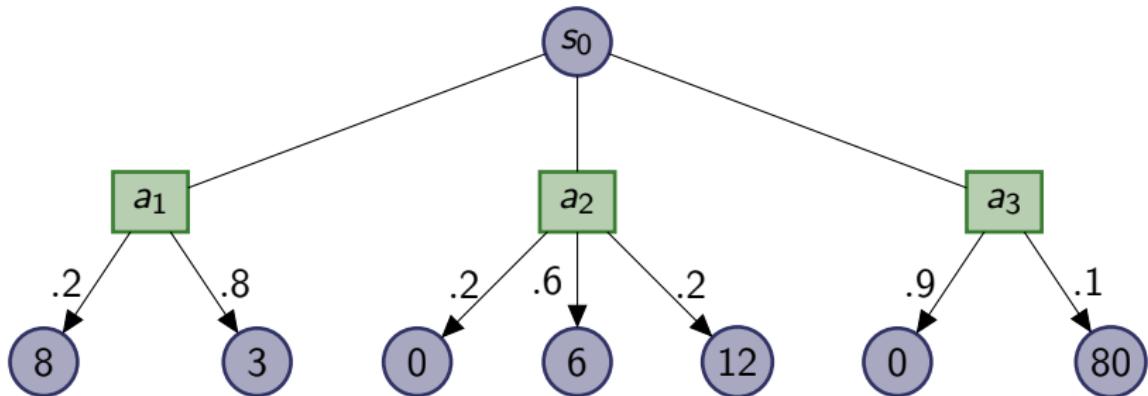
Summary
oo

Multi-armed Bandit Problem

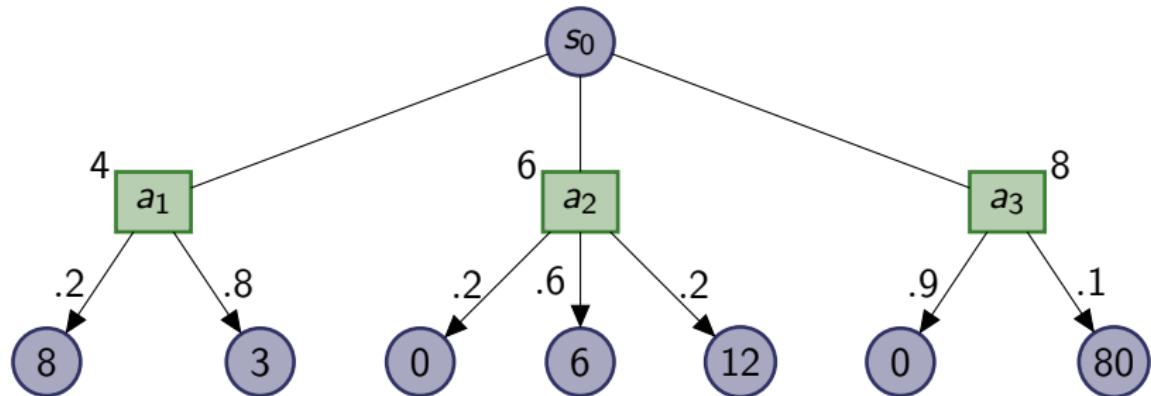
Multi-armed Bandit Problem

- most commonly used tree policies are **inspired** from research on the multi-armed bandit problem (MAB)
- MAB is a **learning** scenario (model not revealed to agent)
- agent repeatedly faces the same decision:
to pull one of several arms of a **slot machine**
- pulling an arm yields **stochastic reward**
⇒ in MABs, we have rewards rather than costs
- can be modeled as an MDP

Multi-armed Bandit Problem

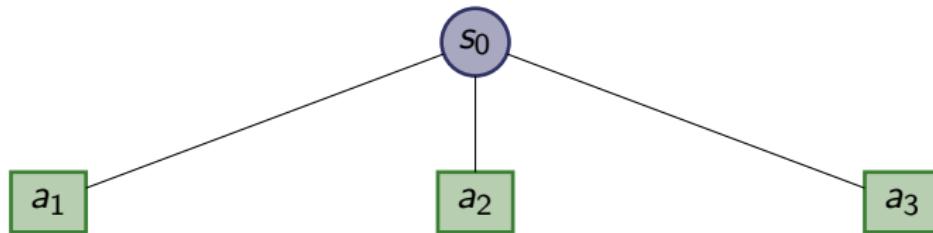


Multi-armed Bandit Problem: Planning Scenario



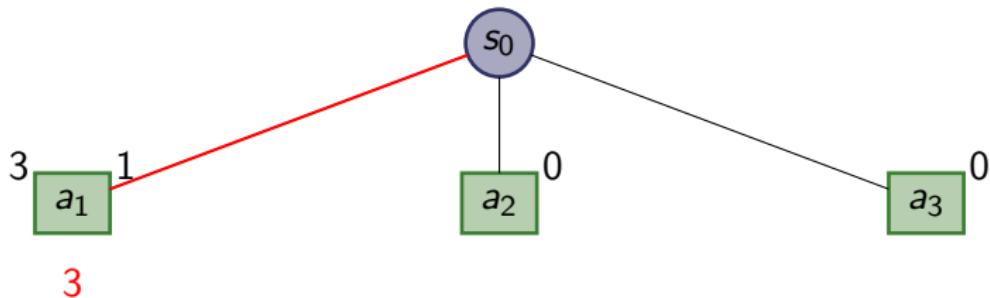
- Compute $Q_*(a)$ for $a \in \{a_1, a_2, a_3\}$
- Pull arm $\arg \max_{a \in \{a_1, a_2, a_3\}} Q_*(a) = a_3$ forever
- Expected accumulated reward after k trials is $8 \cdot k$

Multi-armed Bandit Problem: Learning Scenario



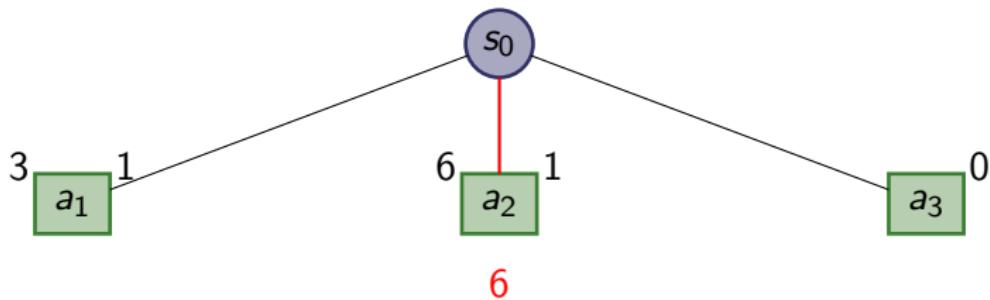
- Pull arms following **policy** to **explore** or **exploit**
- Update \hat{Q} and N based on observations

Multi-armed Bandit Problem: Learning Scenario



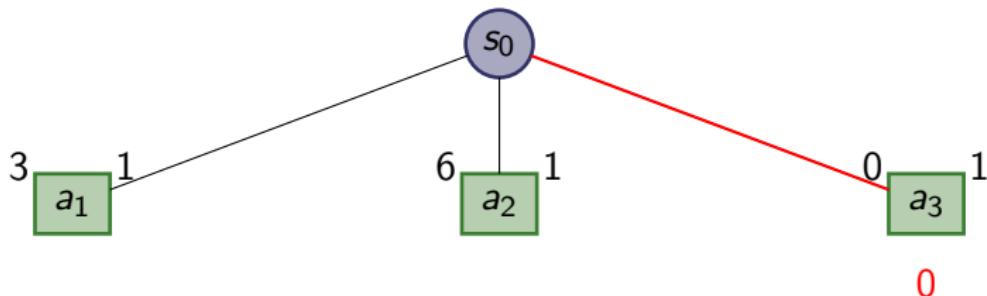
- Pull arms following **policy** to **explore** or **exploit**
- Update \hat{Q} and N based on observations
- Accumulated reward after 1 trial is 3

Multi-armed Bandit Problem: Learning Scenario



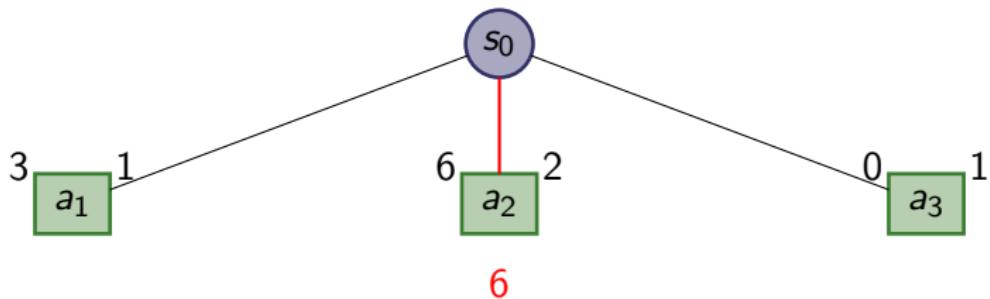
- Pull arms following **policy** to **explore** or **exploit**
- Update \hat{Q} and N based on observations
- Accumulated reward after 2 trials is $3 + 6 = 9$

Multi-armed Bandit Problem: Learning Scenario



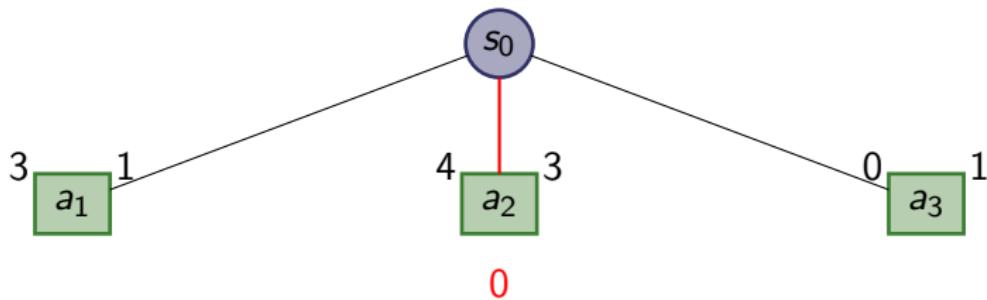
- Pull arms following **policy** to **explore** or **exploit**
- Update \hat{Q} and N based on observations
- Accumulated reward after 3 trials is $3 + 6 + 0 = 9$

Multi-armed Bandit Problem: Learning Scenario



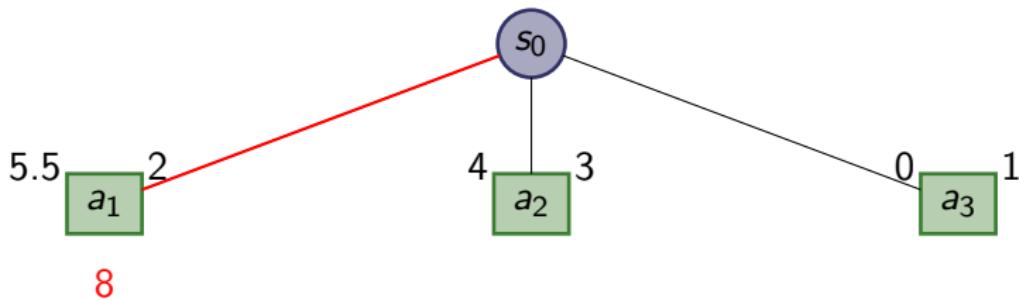
- Pull arms following **policy** to **explore** or **exploit**
- Update \hat{Q} and N based on observations
- Accumulated reward after 4 trials is $3 + 6 + 0 + 6 = 15$

Multi-armed Bandit Problem: Learning Scenario



- Pull arms following **policy** to **explore** or **exploit**
- Update \hat{Q} and N based on observations
- Accumulated reward after 5 trials is $3 + 6 + 0 + 6 + 0 = 15$

Multi-armed Bandit Problem: Learning Scenario



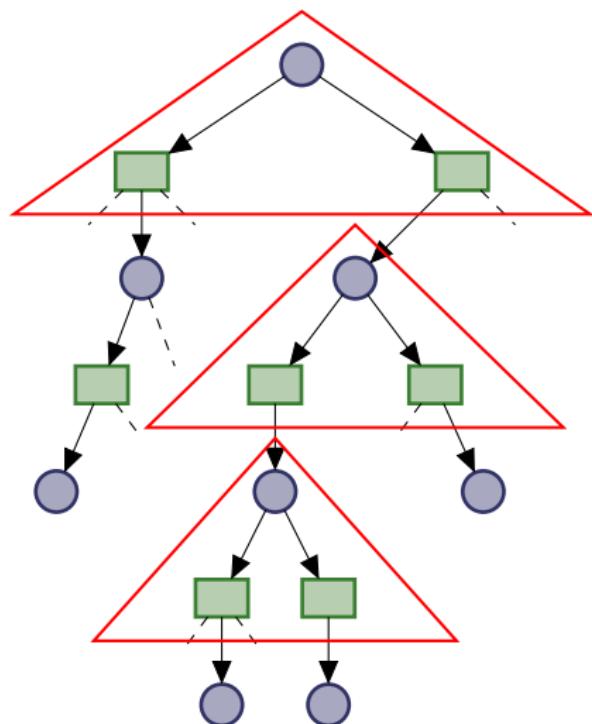
- Pull arms following **policy** to **explore** or **exploit**
- Update \hat{Q} and N based on observations
- Accumulated reward after 6 trials is $3 + 6 + 0 + 6 + 0 + 8 = 23$

Policy Quality

- Since model unknown to MAB agent, it cannot achieve accumulated reward of $k \cdot V_*$ with $V_* := \max_a Q_*(a)$ in k trials
- Quality of MAB policy π measured in terms of **regret**, i.e., the difference between $k \cdot V_*$ and expected reward of π in k trials
- Regret cannot grow slower than **logarithmically** in the number of trials

MABs in MCTS Tree

- many tree policies treat **each decision node** as MAB
- where each action yields a **stochastic reward**
- dependence of reward on future decision is **ignored**
- MCTS **planner** uses simulations to **learn reasonable** behavior
- SSP model is **not considered**



Introduction
ooooo

Default Policy
oooooooo

Optimality
oooooooo

MAB
ooooo

Summary
●○

Summary

Summary

- The simulation phase **simulates** the **execution** of the default policy
- MCTS algorithms are **optimal in the limit** if
 - the tree policy is **greedy in the limit**,
 - the tree policy **explores forever**, and
 - the default policy **initializes with finite value**
- Central challenge of most tree policies:
balance **exploration** and **exploitation**
- each decision of an MCTS tree policy can be viewed as an **multi-armed bandit** problem.