
Planning and Optimization
F8. Monte-Carlo Tree Search Algorithms (Part I)

Malte Helmert and Gabriele Röger

Universität Basel

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 1 / 40

Planning and Optimization
— F8. Monte-Carlo Tree Search Algorithms (Part I)

F8.1 Introduction

F8.2 Default Policy

F8.3 Asymptotic Optimality

F8.4 Multi-armed Bandit Problem

F8.5 Summary

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 2 / 40

Content of this Course

Planning

Classical

Foundations

Logic

Heuristics

Constraints

Probabilistic

Explicit MDPs

Factored MDPs

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 3 / 40

Content of this Course: Factored MDPs

Factored MDPs

Foundations

Heuristic
Search

Monte-Carlo
Methods

MCTS

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 4 / 40

F8. Monte-Carlo Tree Search Algorithms (Part I) Introduction

F8.1 Introduction

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 5 / 40

F8. Monte-Carlo Tree Search Algorithms (Part I) Introduction

Monte-Carlo Tree Search: Reminder

Performs iterations with 4 phases:

I selection: use given tree policy to
traverse explicated tree

I expansion: add node(s) to the tree

I simulation: use given default policy
to simulate run

I backpropagation: update visited
nodes with Monte-Carlo backups

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 6 / 40

F8. Monte-Carlo Tree Search Algorithms (Part I) Introduction

Monte-Carlo Tree Search: Reminder

Performs iterations with 4 phases:

I selection: use given tree policy to
traverse explicated tree

I expansion: add node(s) to the tree

I simulation: use given default policy
to simulate run

I backpropagation: update visited
nodes with Monte-Carlo backups

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 7 / 40

F8. Monte-Carlo Tree Search Algorithms (Part I) Introduction

Monte-Carlo Tree Search: Reminder

Performs iterations with 4 phases:

I selection: use given tree policy to
traverse explicated tree

I expansion: add node(s) to the tree

I simulation: use given default policy
to simulate run

I backpropagation: update visited
nodes with Monte-Carlo backups

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 8 / 40

F8. Monte-Carlo Tree Search Algorithms (Part I) Introduction

Monte-Carlo Tree Search: Reminder

Performs iterations with 4 phases:

I selection: use given tree policy to
traverse explicated tree

I expansion: add node(s) to the tree

I simulation: use given default policy
to simulate run

I backpropagation: update visited
nodes with Monte-Carlo backups

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 9 / 40

F8. Monte-Carlo Tree Search Algorithms (Part I) Introduction

Motivation

I Monte-Carlo Tree Search is a framework of algorithms
I concrete MCTS algorithms are specified in terms of

I a tree policy;
I and a default policy

I for most tasks, a well-suited MCTS configuration exists

I but for each task, many MCTS configurations perform poorly

I and every MCTS configuration that works well in one problem
performs poorly in another problem

⇒ There is no “Swiss army knife” configuration for MCTS

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 10 / 40

F8. Monte-Carlo Tree Search Algorithms (Part I) Introduction

Role of Tree Policy

I used to traverse explicated tree from root node to a leaf

I maps decision nodes to a probability distribution over actions
(usually as a function over a decision node and its children)

I exploits information from search tree
I able to learn over time
I requires MCTS tree to memorize collected information

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 11 / 40

F8. Monte-Carlo Tree Search Algorithms (Part I) Introduction

Role of Default Policy

I used to simulate run from some state to a goal

I maps states to a probability distribution over actions
I independent from MCTS tree

I does not improve over time
I can be computed quickly
I constant memory requirements

I accumulated cost of simulated run used to
initialize state-value estimate of decision node

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 12 / 40

F8. Monte-Carlo Tree Search Algorithms (Part I) Default Policy

F8.2 Default Policy

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 13 / 40

F8. Monte-Carlo Tree Search Algorithms (Part I) Default Policy

MCTS Simulation

MCTS simulation with default policy π from state s
cost := 0
while s /∈ S?:

a :∼ π(s)
cost := cost + c(a)
s :∼ succ(s, a)

return cost

Default policy must be proper

I to guarantee termination of the procedure

I and a finite cost

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 14 / 40

F8. Monte-Carlo Tree Search Algorithms (Part I) Default Policy

Default Policy: Example

s

t u

v w

g

a0 : 10

0.5
0.5

a1 : 0

0.5 0.5 a2 : 50

a3 : 0

a4 : 100

Consider deterministic default policy π

State-value of s under π: 60

Accumulated cost of run: 110

Accumulated cost of run: 60

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 15 / 40

F8. Monte-Carlo Tree Search Algorithms (Part I) Default Policy

Default Policy Realizations

I Early MCTS implementations used random default policy:

π(a | s) =

{
1
|A(s)| if a ∈ A(s)

0 otherwise

I only proper if goal can be reached from each state

I poor guidance, and due to high variance even misguidance

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 16 / 40

F8. Monte-Carlo Tree Search Algorithms (Part I) Default Policy

Default Policy Realizations

There are only few alternatives to random default policy, e.g.,

I heuristic-based policy

I domain-specific policy

Reason: No matter how good the policy,
result of simulation can be arbitrarily poor

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 17 / 40

F8. Monte-Carlo Tree Search Algorithms (Part I) Default Policy

Default Policy: Example (2)

s

t u

v w

g

a0 : 10

0.5
0.5

a1 : 0

0.5 0.5 a2 : 50

a3 : 0

a4 : 100

Consider deterministic default policy π

State-value of s under π: 60

Accumulated cost of run: 110

Accumulated cost of run: 110

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 18 / 40

F8. Monte-Carlo Tree Search Algorithms (Part I) Default Policy

Default Policy Realizations

Possible solution to overcome this weakness:

I average over multiple random walks

I converges to true action-values of policy

I computationally often very expensive

Cheaper and more successful alternative:

I skip simulation step of MCTS

I use heuristic directly for initialization of state-value estimates

I instead of simulating execution of heuristic-guided policy

I much more successful (e.g. neural networks of AlphaGo)

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 19 / 40

F8. Monte-Carlo Tree Search Algorithms (Part I) Asymptotic Optimality

F8.3 Asymptotic Optimality

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 20 / 40

F8. Monte-Carlo Tree Search Algorithms (Part I) Asymptotic Optimality

Optimal Search

Heuristic search algorithms (like RTDP)
achieve optimality by combining

I greedy search

I admissible heuristic

I Bellman backups

In Monte-Carlo Tree Search

I search behavior defined by a tree policy

I admissibility of default policy / heuristic irrelevant
(and usually not given)

I Monte-Carlo backups

MCTS requires a different idea for optimal behavior in the limit.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 21 / 40

F8. Monte-Carlo Tree Search Algorithms (Part I) Asymptotic Optimality

Asymptotic Optimality

Asymptotic Optimality

Let an MCTS algorithm build an MCTS tree G = 〈d0,D,C ,E 〉.
The MCTS algorithm is asymptotically optimal if

limk→∞Q̂k(c) = Q?(s(c), a(c)) for all c ∈ C k ,

where k is the number of trials.

I this is just one special form of asymptotic optimality

I some optimal MCTS algorithms are
not asymptotically optimal by this definition
(e.g., limk→∞Q̂k(c) = ` · Q?(s(c), a(c)) for some ` ∈ R+)

I all practically relevant optimal MCTS algorithms are
asymptotically optimal by this definition

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 22 / 40

F8. Monte-Carlo Tree Search Algorithms (Part I) Asymptotic Optimality

Asymptotically Optimal Tree Policy

An MCTS algorithm is asymptotically optimal if
1 its tree policy explores forever:

I the (infinite) sum of the probabilities that a decision node is
visited must diverge

I ⇒ every search node is explicated eventually and visited
infinitely often

2 its tree policy is greedy in the limit:
I probability that optimal action is selected converges to 1
I ⇒ in the limit, backups based on iterations where only

an optimal policy is followed dominate suboptimal backups

3 its default policy initializes decision nodes with finite values

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 23 / 40

F8. Monte-Carlo Tree Search Algorithms (Part I) Asymptotic Optimality

Example: Random Tree Policy

Example

Consider the random tree policy for decision node d where:

π(a | d) =

{
1

|A(s(d))| if a ∈ A(s(d))

0 otherwise

The random tree policy explores forever:

Let 〈d0, c0, . . . , dn, cn, d〉 be a sequence of connected nodes in Gk
and let p := min0<i<n−1 T (s(di), a(ci), s(di+1)).

Let Pk be the probability that d is visited in trial k . With
Pk ≥ (1

|A| · p)n, we have that

limk→∞

k∑
i=1

Pk ≥ k · (1

|A|
· p)n =∞

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 24 / 40

F8. Monte-Carlo Tree Search Algorithms (Part I) Asymptotic Optimality

Example: Random Tree Policy

Example

Consider the random tree policy for decision node d where:

π(a | d) =

{
1

|A(s(d))| if a ∈ A(s(d))

0 otherwise

The random tree policy is not greedy in the limit unless all actions
are always optimal:

The probability that an optimal action a is selected in decision
node d is

limk→∞1−
∑

{a′ 6∈πV? (s)}

1

|A(s(d))|
< 1.

 MCTS with random tree policy not asymptotically optimal

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 25 / 40

F8. Monte-Carlo Tree Search Algorithms (Part I) Asymptotic Optimality

Example: Greedy Tree Policy

Example

Consider the greedy tree policy for decision node d where:

π(a | d) =

{
1

|Ak
?(d)|

if a ∈ Ak
?(d))

0 otherwise,

with Ak
?(d) = {a(c) ∈ A(s(d)) | c ∈ arg minc ′∈children(d) Q̂

k(c ′)}.

I Greedy tree policy is greedy in the limit

I Greedy tree policy does not explore forever

 MCTS with greedy tree policy not asymptotically optimal

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 26 / 40

F8. Monte-Carlo Tree Search Algorithms (Part I) Asymptotic Optimality

Tree Policy: Objective

To satisfy both requirements, MCTS tree policies have two
contradictory objectives:

I explore parts of the search space that have not been
investigated thoroughly

I exploit knowledge about good actions to focus search
on promising areas of the search space

central challenge: balance exploration and exploitation

⇒ borrow ideas from related multi-armed bandit problem

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 27 / 40

F8. Monte-Carlo Tree Search Algorithms (Part I) Multi-armed Bandit Problem

F8.4 Multi-armed Bandit Problem

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 28 / 40

F8. Monte-Carlo Tree Search Algorithms (Part I) Multi-armed Bandit Problem

Multi-armed Bandit Problem

I most commonly used tree policies are inspired from research
on the multi-armed bandit problem (MAB)

I MAB is a learning scenario (model not revealed to agent)

I agent repeatedly faces the same decision:
to pull one of several arms of a slot machine

I pulling an arm yields stochastic reward
⇒ in MABs, we have rewards rather than costs

I can be modeled as an MDP

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 29 / 40

F8. Monte-Carlo Tree Search Algorithms (Part I) Multi-armed Bandit Problem

Multi-armed Bandit Problem: Planning Scenario

s0

a1 a2 a3
4

3

3 1

8

5.5 2

6

0

6

6 1

6

6 2

0

4 3

8

0

0

0 1

8 3 0 6 12 0 80

.2 .8 .2 .6 .2 .9 .1

I Compute Q?(a) for a ∈ {a1, a2, a3}
I Pull arm arg maxa∈{a1,a2,a3}Q?(a) = a3 forever

I Expected accumulated reward after k trials is 8 · k

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 30 / 40

F8. Monte-Carlo Tree Search Algorithms (Part I) Multi-armed Bandit Problem

Multi-armed Bandit Problem: Learning Scenario

s0

a1 a2 a3

4

3

3 1

8

5.5 2 6

0

6

6 1

6

6 2

0

4 3 8

0

0

0 1

8 3 0 6 12 0 80

.2 .8 .2 .6 .2 .9 .1

I Pull arms following policy to explore or exploit

I Update Q̂ and N based on observations

I Accumulated reward after 1 trial is 3

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 31 / 40

F8. Monte-Carlo Tree Search Algorithms (Part I) Multi-armed Bandit Problem

Multi-armed Bandit Problem: Learning Scenario

s0

a1 a2 a3

4

3

3 1

8

5.5 2 6 0

6

6 1

6

6 2

0

4 3 8

0

0

0 1

8 3 0 6 12 0 80

.2 .8 .2 .6 .2 .9 .1

I Pull arms following policy to explore or exploit

I Update Q̂ and N based on observations

I Accumulated reward after 2 trials is 3 + 6 = 9

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 32 / 40

F8. Monte-Carlo Tree Search Algorithms (Part I) Multi-armed Bandit Problem

Multi-armed Bandit Problem: Learning Scenario

s0

a1 a2 a3

4

3

3 1

8

5.5 2 6 0

6

6 1

6

6 2

0

4 3 80

0

0 1

8 3 0 6 12 0 80

.2 .8 .2 .6 .2 .9 .1

I Pull arms following policy to explore or exploit

I Update Q̂ and N based on observations

I Accumulated reward after 3 trials is 3 + 6 + 0 = 9

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 33 / 40

F8. Monte-Carlo Tree Search Algorithms (Part I) Multi-armed Bandit Problem

Multi-armed Bandit Problem: Learning Scenario

s0

a1 a2 a3

4

3

3 1

8

5.5 2 6 0

6

6 1

6

6 2

0

4 3 80

0

0 1

8 3 0 6 12 0 80

.2 .8 .2 .6 .2 .9 .1

I Pull arms following policy to explore or exploit

I Update Q̂ and N based on observations

I Accumulated reward after 4 trials is 3 + 6 + 0 + 6 = 15

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 34 / 40

F8. Monte-Carlo Tree Search Algorithms (Part I) Multi-armed Bandit Problem

Multi-armed Bandit Problem: Learning Scenario

s0

a1 a2 a3

4

3

3 1

8

5.5 2 6 0

6

6 1

6

6 2

0

4 3

80

0

0 1

8 3 0 6 12 0 80

.2 .8 .2 .6 .2 .9 .1

I Pull arms following policy to explore or exploit

I Update Q̂ and N based on observations

I Accumulated reward after 5 trials is 3 + 6 + 0 + 6 + 0 = 15

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 35 / 40

F8. Monte-Carlo Tree Search Algorithms (Part I) Multi-armed Bandit Problem

Multi-armed Bandit Problem: Learning Scenario

s0

a1 a2 a3

4

3

3 1

8

5.5 2

6 0

6

6 1

6

6 2

0

4 3

80

0

0 1

8 3 0 6 12 0 80

.2 .8 .2 .6 .2 .9 .1

I Pull arms following policy to explore or exploit

I Update Q̂ and N based on observations

I Accumulated reward after 6 trials is 3 + 6 + 0 + 6 + 0 + 8 = 23

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 36 / 40

F8. Monte-Carlo Tree Search Algorithms (Part I) Multi-armed Bandit Problem

Policy Quality

I Since model unknown to MAB agent, it cannot achieve
accumulated reward of k ·V? with V? := maxa Q?(a) in k trials

I Quality of MAB policy π measured in terms of regret, i.e., the
difference between k · V? and expected reward of π in k trials

I Regret cannot grow slower than logarithmically in the number
of trials

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 37 / 40

F8. Monte-Carlo Tree Search Algorithms (Part I) Multi-armed Bandit Problem

MABs in MCTS Tree

I many tree policies treat each
decision node as MAB

I where each action yields a
stochastic reward

I dependence of reward on future
decision is ignored

I MCTS planner uses simulations
to learn reasonable behavior

I SSP model is not considered

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 38 / 40

F8. Monte-Carlo Tree Search Algorithms (Part I) Summary

F8.5 Summary

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 39 / 40

F8. Monte-Carlo Tree Search Algorithms (Part I) Summary

Summary

I The simulation phase simulates the execution of the default
policy

I MCTS algorithms are optimal in the limit if
I the tree policy is greedy in the limit,
I the tree policy explores forever, and
I the default policy initializes with finite value

I Central challenge of most tree policies:
balance exploration and exploitation

I each decision of an MCTS tree policy can be viewed as an
multi-armed bandit problem.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 40 / 40

	Introduction
	

	Default Policy
	

	Asymptotic Optimality
	

	Multi-armed Bandit Problem
	

	Summary
	

