Planning and Optimization
F8. Monte-Carlo Tree Search Algorithms (Part I)

Malte Helmert and Gabriele Roger

Universitat Basel

Planning and Optimization
— F8. Monte-Carlo Tree Search Algorithms (Part 1)

F8.1 Introduction

F8.2 Default Policy

F8.3 Asymptotic Optimality

F8.4 Multi-armed Bandit Problem

F8.5 Summary

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 1/ 40
Content of this Course
—I Foundations |
—I Logic |
—| Classical I—
—| Heuristics |
—I Constraints |
Explicit MDPs
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 3 /40

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 2 /40
Content of this Course: Factored MDPs
—| Foundations
| Factored MDPs | e
Search
Monte-Carlo
—| MCTS
Methods |
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 4 /40

F8. Monte-Carlo Tree Search Algorithms (Part)

F8.1 Introduction

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

Introduction

F8. Monte-Carlo Tree Search Algorithms (Part) Introduction

Monte-Carlo Tree Search: Reminder

Performs iterations with 4 phases:

P selection: use given tree policy to
traverse explicated tree

> expansion: add node(s) to the tree

» simulation: use given default policy
to simulate run

» backpropagation: update visited
nodes with Monte-Carlo backups

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 6 /40

F8. Monte-Carlo Tree Search Algorithms (Part)

Monte-Carlo Tree Search: Reminder

Performs iterations with 4 phases:

P selection: use given tree policy to
traverse explicated tree

> expansion: add node(s) to the tree

» simulation: use given default policy
to simulate run

» backpropagation: update visited
nodes with Monte-Carlo backups

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

Introduction

F8. Monte-Carlo Tree Search Algorithms (Part) Introduction

Monte-Carlo Tree Search: Reminder

Performs iterations with 4 phases:

P selection: use given tree policy to
traverse explicated tree

> expansion: add node(s) to the tree

» simulation: use given default policy
to simulate run

» backpropagation: update visited
nodes with Monte-Carlo backups

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 8 / 40

F8. Monte-Carlo Tree Search Algorithms (Part) Introduction

Monte-Carlo Tree Search: Reminder

Performs iterations with 4 phases:

P selection: use given tree policy to
traverse explicated tree

> expansion: add node(s) to the tree

» simulation: use given default policy
to simulate run

» backpropagation: update visited
nodes with Monte-Carlo backups

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 9 / 40

F8. Monte-Carlo Tree Search Algorithms (Part) Introduction

Motivation

» Monte-Carlo Tree Search is a framework of algorithms
» concrete MCTS algorithms are specified in terms of
> a tree policy;
> and a default policy

» for most tasks, a well-suited MCTS configuration exists

v

but for each task, many MCTS configurations perform poorly

» and every MCTS configuration that works well in one problem
performs poorly in another problem

= There is no "Swiss army knife” configuration for MCTS

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 10 / 40

F8. Monte-Carlo Tree Search Algorithms (Part) Introduction

Role of Tree Policy

P used to traverse explicated tree from root node to a leaf

» maps decision nodes to a probability distribution over actions
(usually as a function over a decision node and its children)

> exploits information from search tree

» able to learn over time
» requires MCTS tree to memorize collected information

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 11 / 40

F8. Monte-Carlo Tree Search Algorithms (Part) Introduction

Role of Default Policy

» used to simulate run from some state to a goal

P> maps states to a probability distribution over actions
» independent from MCTS tree

» does not improve over time
» can be computed quickly
P constant memory requirements
» accumulated cost of simulated run used to
initialize state-value estimate of decision node

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 12 / 40

F8. Monte-Carlo Tree Search Algorithms (Part) Default Policy

F8.2 Default Policy

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 13 / 40

F8. Monte-Carlo Tree Search Algorithms (Part)

MCTS Simulation

MCTS simulation with default policy 7 from state s

cost := 0
while s ¢ S,:
a:~7(s)

cost := cost + ¢(a)
s i~ succ(s, a)
return cost

Default policy must be proper
> to guarantee termination of the procedure

» and a finite cost

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

Default Policy

14 / 40

F8. Monte-Carlo Tree Search Algorithms (Part) Default Policy

Default Policy: Example

Consider deterministic default policy 7

10 State-value of s under 7: 60

Accumulated cost of run: 60

32:50

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 15 / 40

F8. Monte-Carlo Tree Search Algorithms (Part)

Default Policy Realizations

» Early MCTS implementations used random default policy:

m if a € A(s)

m(als)=
(als) 0 otherwise

> only proper if goal can be reached from each state

» poor guidance, and due to high variance even misguidance

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

Default Policy

16

/ 40

F8. Monte-Carlo Tree Search Algorithms (Part) Default Policy

Default Policy Realizations

There are only few alternatives to random default policy, e.g.,
» heuristic-based policy
» domain-specific policy

Reason: No matter how good the policy,
result of simulation can be arbitrarily poor

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 17 / 40

F8. Monte-Carlo Tree Search Algorithms (Part) Default Policy

Default Policy: Example (2)

Consider deterministic default policy 7

a0 : 10 State-value of s under w: 60

Accumulated cost of run: 110

22250

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 18 / 40

F8. Monte-Carlo Tree Search Algorithms (Part) Default Policy

Default Policy Realizations

Possible solution to overcome this weakness:
P average over multiple random walks
> converges to true action-values of policy

» computationally often very expensive

Cheaper and more successful alternative:
» skip simulation step of MCTS
P use heuristic directly for initialization of state-value estimates
> instead of simulating execution of heuristic-guided policy

» much more successful (e.g. neural networks of AlphaGo)

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 19 / 40

F8. Monte-Carlo Tree Search Algorithms (Part) Asymptotic Optimality

F8.3 Asymptotic Optimality

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 20 / 40

F8. Monte-Carlo Tree Search Algorithms (Part)

Optimal Search

Heuristic search algorithms (like RTDP)
achieve optimality by combining

> greedy search

» admissible heuristic

» Bellman backups

In Monte-Carlo Tree Search
» search behavior defined by a tree policy

» admissibility of default policy / heuristic irrelevant
(and usually not given)

» Monte-Carlo backups
MCTS requires a different idea for optimal behavior in the limit.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

Asymptotic Optimality

21 /40

F8. Monte-Carlo Tree Search Algorithms (Part) Asymptotic Optimality

Asymptotic Optimality

Asymptotic Optimality
Let an MCTS algorithm build an MCTS tree G = (dy, D, C, E).
The MCTS algorithm is asymptotically optimal if

limy 00 QX(c) = Qu(s(c), a(c)) for all c e CK,

where k is the number of trials.

> this is just one special form of asymptotic optimality
> some optimal MCTS algorithms are
not asymptotically optimal by this definition
(e.g., limy_oo @ (c) = £- Qu(s(c), a(c)) for some £ € RY)
» all practically relevant optimal MCTS algorithms are
asymptotically optimal by this definition

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 22 /40

F8. Monte-Carlo Tree Search Algorithms (Part)

Asymptotically Optimal Tree Policy

An MCTS algorithm is asymptotically optimal if
@ its tree policy explores forever:

» the (infinite) sum of the probabilities that a decision node is
visited must diverge

» = every search node is explicated eventually and visited
infinitely often

@ its tree policy is greedy in the limit:
» probability that optimal action is selected converges to 1
» = in the limit, backups based on iterations where only
an optimal policy is followed dominate suboptimal backups

© its default policy initializes decision nodes with finite values

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

Asymptotic Optimality

23 / 40

F8. Monte-Carlo Tree Search Algorithms (Part) Asymptotic Optimality

Example: Random Tree Policy

Example
Consider the random tree policy for decision node d where:

m(ald)= m if a € A(s(d))
0 otherwise

The random tree policy explores forever:

Let (do, o, - - -, dn, Cn, d) be a sequence of connected nodes in Gk
and let p = min0<,-<,,_1 T(S(d,‘), a(c,-),s(d,-+1)).

Let P¥ be the probability that d is visited in trial k. With

Pk > (ﬁ - p)", we have that

k

. 1

llmk_on P Zk-(w-p)":oo
i=1

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 24 /40

F8. Monte-Carlo Tree Search Algorithms (Part) Asymptotic Optimality

Example: Random Tree Policy

Example
Consider the random tree policy for decision node d where:

0 otherwise

The random tree policy is not greedy in the limit unless all actions
are always optimal:

The probability that an optimal action a is selected in decision

node d is 1
Mol = Y e < L
A(s(d
ooy A

~» MCTS with random tree policy not asymptotically optimal

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 25 / 40

F8. Monte-Carlo Tree Search Algorithms (Part) Asymptotic Optimality

Example: Greedy Tree Policy

Example
Consider the greedy tree policy for decision node d where:

1 . k
(2| d) = AR (@)] if a € AY(d))
0 otherwise,

A

with A{(d) = {a(c) € A(s(d)) | ¢ € arg mincechitdren(a) Q“(c')}-

> Greedy tree policy is greedy in the limit
P Greedy tree policy does not explore forever

~» MCTS with greedy tree policy not asymptotically optimal

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 26 / 40

F8. Monte-Carlo Tree Search Algorithms (Part) Asymptotic Optimality

Tree Policy: Objective

To satisfy both requirements, MCTS tree policies have two
contradictory objectives:

> explore parts of the search space that have not been
investigated thoroughly

> exploit knowledge about good actions to focus search
on promising areas of the search space

central challenge: balance exploration and exploitation

= borrow ideas from related multi-armed bandit problem

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 27 / 40

F8. Monte-Carlo Tree Search Algorithms (Part) Multi-armed Bandit Problem

F8.4 Multi-armed Bandit Problem

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 28 / 40

F8. Monte-Carlo Tree Search Algorithms (Part) Multi-armed Bandit Problem

Multi-armed Bandit Problem

» most commonly used tree policies are inspired from research
on the multi-armed bandit problem (MAB)

» MAB is a learning scenario (model not revealed to agent)

> agent repeatedly faces the same decision:
to pull one of several arms of a slot machine

» pulling an arm yields stochastic reward
= in MABs, we have rewards rather than costs

» can be modeled as an MDP

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 29 / 40

F8. Monte-Carlo Tree Search Algorithms (Part) Multi-armed Bandit Problem

Multi-armed Bandit Problem: Planning Scenario

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 30 / 40

F8. Monte-Carlo Tree Search Algorithms (Part) Multi-armed Bandit Problem

Multi-armed Bandit Problem: Learning Scenario

» Pull arms following policy to explore or exploit
> Update Q and N based on observations

» Accumulated reward after 1 trial is 3

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 31 /40

F8. Monte-Carlo Tree Search Algorithms (Part) Multi-armed Bandit Problem

Multi-armed Bandit Problem: Learning Scenario

» Pull arms following policy to explore or exploit
» Update @ and N based on observations
» Accumulated reward after 2 trialsis 34+6 =9

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 32 /40

F8. Monte-Carlo Tree Search Algorithms (Part) Multi-armed Bandit Problem

Multi-armed Bandit Problem: Learning Scenario

» Pull arms following policy to explore or exploit
> Update Q and N based on observations
» Accumulated reward after 3 trials is 3+6+0=9

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 33 /40

F8. Monte-Carlo Tree Search Algorithms (Part) Multi-armed Bandit Problem

Multi-armed Bandit Problem: Learning Scenario

» Pull arms following policy to explore or exploit
> Update Q and N based on observations
» Accumulated reward after 4 trialsis 3+6+0+6 =15

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 34 / 40

F8. Monte-Carlo Tree Search Algorithms (Part) Multi-armed Bandit Problem

Multi-armed Bandit Problem: Learning Scenario

» Pull arms following policy to explore or exploit
> Update Q and N based on observations
» Accumulated reward after 5 trials is 34+6+0+4+6+0 =15

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 35 /40

F8. Monte-Carlo Tree Search Algorithms (Part) Multi-armed Bandit Problem

Multi-armed Bandit Problem: Learning Scenario

» Pull arms following policy to explore or exploit
» Update @ and N based on observations
» Accumulated reward after 6 trialsis3+6+0+6+0+8 =23

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 36 / 40

F8. Monte-Carlo Tree Search Algorithms (Part) Multi-armed Bandit Problem

Policy Quality

» Since model unknown to MAB agent, it cannot achieve
accumulated reward of k- V, with V, := max, Q.(a) in k trials

» Quality of MAB policy m measured in terms of regret, i.e., the
difference between k - V, and expected reward of 7 in k trials

P Regret cannot grow slower than logarithmically in the number
of trials

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

37/

40

F8. Monte-Carlo Tree Search Algorithms (Part)

MABs in MCTS Tree

P> many tree policies treat each

decision node as MAB

Multi-armed Bandit Problem

» where each action yields a

stochastic reward

» dependence of reward on future

decision is ignored

» MCTS planner uses simulations
to learn reasonable behavior

» SSP model is not considered

M. Helmert, G. Roger (Universitat Basel)

Planning and Optimization

38 / 40

F8. Monte-Carlo Tree Search Algorithms (Part) Summary

F8.5 Summary

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

39 /

40

F8. Monte-Carlo Tree Search Algorithms (Part)

Summary

» The simulation phase simulates the execution of the default

policy

» MCTS algorithms are optimal in the limit if
P the tree policy is greedy in the limit,
» the tree policy explores forever, and

P the default policy initializes with finite value

» Central challenge of most tree policies:

balance exploration and exploitation

» each decision of an MCTS tree policy can be viewed as an

multi-armed bandit problem.

M. Helmert, G. Roger (Universitat Basel)

Planning and Optimization

Summary

40 / 40

	Introduction
	

	Default Policy
	

	Asymptotic Optimality
	

	Multi-armed Bandit Problem
	

	Summary
	

