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Monte-Carlo Methods: Brief History

1930s: first researchers experiment with Monte-Carlo methods
1998: Ginsberg's GIB player competes with Bridge experts
2002: Kearns et al. propose Sparse Sampling

2002: Auer et al. present UCB1 action selection for
multi-armed bandits

2006: Coulom coins term Monte-Carlo Tree Search (MCTYS)
m 2006: Kocsis and Szepesvari combine UCB1 and MCTS to
the famous MCTS variant, UCT

m 2007-2016: Constant progress of MCTS in Go culminates in
AlphaGo's historical defeat of dan 9 player Lee Sedol
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Monte-Carlo Methods: Idea

m Summarize a broad family of algorithms

m Decisions are based on random samples
(Monte-Carlo sampling)

m Results of samples are aggregated by computing the average
(Monte-Carlo backups)

m Apart from that, algorithms can differ significantly
Careful: Many different definitions of MC methods in the literature
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Types of Random Samples

Random samples have in common that something is
drawn from a given probability distribution. Some examples:

m a determinization is sampled (Hindsight Optimization)
m runs under a fixed policy are simulated (Policy Simulation)
m considered outcomes are sampled (Sparse Sampling)

m runs under an evolving policy are simulated
(Monte-Carlo Tree Search)

Summar
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Reminder: Bellman Backups

Algorithms like Value lteration or (L)RTDP use
the Bellman equation as an update procedure.

The j-th state-value estimate of state s, \A/"(s), is computed with
Bellman backups as

Vi(s) = arerl‘ms) (c(a + Z s,a,s') \A/i_l(s’)> .

s'eS

(Some algorithms use a heuristic if the state-value estimate on the
right hand side of the Bellman backup is undefined.)
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Monte-Carlo Backups

Monte-Carlo methods instead estimate state-values
by averaging over all samples.

Let N(s) be the number of samples for state s in the first
algorithm iterations and let cost*(s) be the cost for s in the k-th
sample (cost*(s) = 0 if the k-th sample has no estimate for s).

The i-th state-value estimate of state s, \A/"(s), is computed with

Monte-Carlo backups as

N R
V'(s) = N(s) kz_; cost*(s).
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Monte-Carlo Backups: Properties

m no need to store cost“(s) for k =1,...,i:
it is possible to compute Monte-Carlo backups iteratively as

Vi(s) := Vi7l(s) + (cost'(s) — VI=1(s))

1
Ni(s)

m no need to know SSP model for backups

m if s is a random variable, V/(s) converges to E[s]
due to the strong law of large numbers

m if s is not a random variable, this is not always the case
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Monte-Carlo Tree Search

While Monte-Carlo Tree Search (MCTS) has wildely been
used for games, we only consider the case for SSPs.

m MCTS successively builds up the most promising parts of the
search tree by repeated random sampling of the search space.

m Like (L)RTDP, MCTS performs trials (also called rollouts).

m In each trials, it extends the search tree with potentially
interesting nodes.

m It uses Monte-Carlo backups to improve the state-value
estimates with the information gathered in the trial.

To be more specific, we need to know the details of the MCTS tree.
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MCTS Tree

m Unlike previous methods, the SSP
is explicated as a tree

m Duplicates (also: transpositions)
possible,
i.e., multiple search nodes with
identical associated state

m Search tree can (and often will)
have unbounded depth
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Tree Structure

Differentiate between two types of search nodes:

m Decision nodes
m Chance nodes

Search nodes correspond 1:1 to traces from initial state
Decision and chance nodes alternate
Decision nodes correspond to states in a trace

Chance nodes correspond to actions in a trace

Decision nodes have one child node for each applicable action
(if all children are explicated)

Chance nodes have one child node for each outcome
(if all children are explicated)
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MCTS Tree

Definition (MCTS Tree)
An MCTS tree is given by a tuple G = (do, D, C, E), where
m D and C are disjoint sets of decision and chance nodes
(simply search node if the type does not matter)

m dp € D is the root node
m £ C (D x C)U(C x D) is the set of edges such that the
graph (DU C,E) is a tree

Note: can be regarded as an AND/OR tree
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Search Node Annotations

Definition (Search Node Annotations)

Let G = (do, D, C, E) be an MCTS Tree.
m Each search node n € D U C is annotated with

m a visit counter N(n)
m a state s(n)

m Each decision node d € D is annotated with
® a state-value estimate V/(d)
m a probability p(d)

m Each chance node ¢ € C is annotated with

= an action-value estimate (or Q-value estimate) Q(c)
m an action a(c)

Note: some annotations can be computed on the fly to save
memory
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Trials

The MCTS tree is built in trials

Trials are performed as long as resources
(deliberation time, memory) allow

Initially, the MCTS tree consists of only the root node
for the initial state

Trials (may) add search nodes to the tree
MCTS tree at the end of the i-th trial is denoted with G'

Use same superscript for annotations of search nodes



arlo Methods \ Framework

00@000000000

Trials

/—> Selection —— Expansion — Simulation —> Backpropagation w
A

Tree Dejf.ault

Policy Policy
v

N - J

Taken from Browne et al., “A Survey of Monte Carlo Tree Search Methods”, 2012
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Phases of Trials

Each trial consists of (up to) four phases:
m Selection: traverse the tree by sampling the execution of the
tree policy until
@ an action is applicable that is not explicated, or
@ an outcome is sampled that is not explicated, or
© a goal state is reached (jump to backpropagation)
m Expansion: create search nodes for the applicable action and a
sampled outcome (case 1) or just the outcome (case 2)

m Simulation: simulate default policy until a goal is reached
m Backpropagation: update visited nodes in reverse order by

m increasing visit counter by 1
m performing Monte-Carlo backup of state-/action-value estimate
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Monte-Carlo Backups in MCTS Tree

m let dy, co,...,ch_1,d, be the decision and chance nodes that
were visited in a trial of MCTS (including explicated ones),

m let h be the cost incurred by the simulation of the default
policy until a goal state is reached

m each decision node d; for 0 < j < nis updated by
. 1 n—1
Vi(dy) = V'~ 1(d)+ Zcost (ck)) +h— Vi7(d))
m each chance node ¢; for 0 < j < n is updated by

n—1

0i(g) = O Y(g) + N,-}C_)(Z cost(a(ci)) + h— O Y(g)))
i)
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MCTS: (Unit-cost) Example

Selection phase: apply tree policy to traverse tree
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MCTS: (Unit-cost) Example

Selection phase: apply tree policy to traverse tree
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MCTS: (Unit-cost) Example

Selection phase: apply tree policy to traverse tree
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MCTS: (Unit-cost) Example
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Selection phase: apply tree policy to traverse tree




Framework
[e]e]elele] lelelelelo]e)

MCTS: (Unit-cost) Example

Expansion phase: create search nodes
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MCTS: (Unit-cost) Example
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Simulation phase: apply default policy until goal
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MCTS: (Unit-cost) Example

Backpropagation phase: update visited nodes
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MCTS: (Unit-cost) Example

Backpropagation phase: update visited nodes
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MCTS: (Unit-cost) Example

Backpropagation phase: update visited nodes
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MCTS: (Unit-cost) Example

Backpropagation phase: update visited nodes
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MCTS: (Unit-cost) Example

Backpropagation phase: update visited nodes
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MCTS Framework

Member of MCTS framework are specified in terms of:
m Tree policy
m Default policy
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MCTS Tree Policy

Definition (Tree Policy)

Let 7 be an SSP. An MCTS tree policy is a probability distribution
m(a | d) over all a € A(s(d)) for each decision node d.

Note: The tree policy may take information
annotated in the current tree into account.
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Definition (Default Policy)

Let 7 be an SSP. An MCTS default policy is a probability
distribution 7(a | s) over actions a € A(s) for each state s.

Note: The default policy is independent of the MCTS tree.
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Monte-Carlo Tree Search

MCTS for SSP T = (5, A, ¢, T, s0, S4)

do = create root node associated with sy

while time allows:
visit_decision_node(dp, T)

n

return a(argmmCEChlldren (db) Q( ))
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I\/ICTS Visit a Decision Node

visit_decision_node for decision node d, SSP

T =(S,Ac, T,%,5)

if s(d) € S, then return 0
if there is a € A(s(d)) s.t. a(c) # a for all ¢ € children(d):
select such an a and add node ¢ with a(c) = a to children(d)
else:
c = tree_policy(d)
cost = visit_chance_node(c, T)
N(d) == N(d) + 1
V(d) := V(d) + g - (cost — V(d))
return cost
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MCTS: Visit a Chance Node

visit_chance_node for chance node ¢, SSP T = (S,L,c, T, s, Si)

s’ ~ succ(s(c), a(c))
let d be the node in children(c) with s(d) = s’
if there is no such node:
add node d with s(d) = s’ to children(c)
cost = sample_default_policy(s’)
N(d) := 1, V(d) := cost
else:
cost = visit_decision_node(d, T)
cost = cost + cost(s(c), a(c))
N(c) := N(c)+1
Q(c) := Q(e) + g - (cost — Q(c))

return cost
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Summary

Monte-Carlo Tree Search is a framework for algorithms
MCTS algorithms perform trials
Each trial consists of (up to) 4 phases

MCTS algorithms are specified by two policies:

m a tree policy that describes behavior “in” tree
m and a default policy that describes behavior “outside” of tree
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