
Planning and Optimization
F7. Monte-Carlo Tree Search: Framework

Malte Helmert and Gabriele Röger

Universität Basel

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 1 / 36

Planning and Optimization
— F7. Monte-Carlo Tree Search: Framework

F7.1 History

F7.2 Monte-Carlo Methods

F7.3 MCTS Tree

F7.4 Framework

F7.5 Summary

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 2 / 36

Content of this Course

Planning

Classical

Foundations

Logic

Heuristics

Constraints

Probabilistic

Explicit MDPs

Factored MDPs

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 3 / 36

Content of this Course: Factored MDPs

Factored MDPs

Foundations

Heuristic
Search

Monte-Carlo
Methods

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 4 / 36



F7. Monte-Carlo Tree Search: Framework History

F7.1 History

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 5 / 36

F7. Monte-Carlo Tree Search: Framework History

Monte-Carlo Methods: Brief History

I 1930s: first researchers experiment with Monte-Carlo methods

I 1998: Ginsberg’s GIB player competes with Bridge experts

I 2002: Kearns et al. propose Sparse Sampling

I 2002: Auer et al. present UCB1 action selection for
multi-armed bandits

I 2006: Coulom coins term Monte-Carlo Tree Search (MCTS)

I 2006: Kocsis and Szepesvári combine UCB1 and MCTS to
the famous MCTS variant, UCT

I 2007–2016: Constant progress of MCTS in Go culminates in
AlphaGo’s historical defeat of dan 9 player Lee Sedol

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 6 / 36

F7. Monte-Carlo Tree Search: Framework Monte-Carlo Methods

F7.2 Monte-Carlo Methods

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 7 / 36

F7. Monte-Carlo Tree Search: Framework Monte-Carlo Methods

Monte-Carlo Methods: Idea

I Summarize a broad family of algorithms

I Decisions are based on random samples
(Monte-Carlo sampling)

I Results of samples are aggregated by computing the average
(Monte-Carlo backups)

I Apart from that, algorithms can differ significantly

Careful: Many different definitions of MC methods in the literature

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 8 / 36



F7. Monte-Carlo Tree Search: Framework Monte-Carlo Methods

Types of Random Samples

Random samples have in common that something is
drawn from a given probability distribution. Some examples:

I a determinization is sampled (Hindsight Optimization)

I runs under a fixed policy are simulated (Policy Simulation)

I considered outcomes are sampled (Sparse Sampling)

I runs under an evolving policy are simulated
(Monte-Carlo Tree Search)

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 9 / 36

F7. Monte-Carlo Tree Search: Framework Monte-Carlo Methods

Reminder: Bellman Backups

Algorithms like Value Iteration or (L)RTDP use
the Bellman equation as an update procedure.

The i-th state-value estimate of state s, V̂ i (s), is computed with
Bellman backups as

V̂ i (s) := min
a∈A(s)

(
c(a) +

∑
s′∈S

T (s, a, s ′) · V̂ i−1(s ′)

)
.

(Some algorithms use a heuristic if the state-value estimate on the
right hand side of the Bellman backup is undefined.)

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 10 / 36

F7. Monte-Carlo Tree Search: Framework Monte-Carlo Methods

Monte-Carlo Backups

Monte-Carlo methods instead estimate state-values
by averaging over all samples.

Let N i (s) be the number of samples for state s in the first i
algorithm iterations and let costk(s) be the cost for s in the k-th
sample (costk(s) = 0 if the k-th sample has no estimate for s).

The i-th state-value estimate of state s, V̂ i (s), is computed with
Monte-Carlo backups as

V̂ i (s) :=
1

N i (s)
·

i∑
k=1

costk(s).

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 11 / 36

F7. Monte-Carlo Tree Search: Framework Monte-Carlo Methods

Monte-Carlo Backups: Properties

I no need to store costk(s) for k = 1, . . . , i :
it is possible to compute Monte-Carlo backups iteratively as

V̂ i (s) := V̂ i−1(s) +
1

N i (s)
(costi (s)− V̂ i−1(s))

I no need to know SSP model for backups

I if s is a random variable, V̂ i (s) converges to E[s]
due to the strong law of large numbers

I if s is not a random variable, this is not always the case

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 12 / 36



F7. Monte-Carlo Tree Search: Framework MCTS Tree

F7.3 MCTS Tree

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 13 / 36

F7. Monte-Carlo Tree Search: Framework MCTS Tree

Content of this Course: Factored MDPs

Factored MDPs

Foundations

Heuristic
Search

Monte-Carlo
Methods

MCTS

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 14 / 36

F7. Monte-Carlo Tree Search: Framework MCTS Tree

Monte-Carlo Tree Search

I While Monte-Carlo Tree Search (MCTS) has wildely been
used for games, we only consider the case for SSPs.

I MCTS successively builds up the most promising parts of the
search tree by repeated random sampling of the search space.

I Like (L)RTDP, MCTS performs trials (also called rollouts).

I In each trials, it extends the search tree with potentially
interesting nodes.

I It uses Monte-Carlo backups to improve the state-value
estimates with the information gathered in the trial.

To be more specific, we need to know the details of the MCTS tree.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 15 / 36

F7. Monte-Carlo Tree Search: Framework MCTS Tree

MCTS Tree

I Unlike previous methods, the SSP
is explicated as a tree

I Duplicates (also: transpositions)
possible,
i.e., multiple search nodes with
identical associated state

I Search tree can (and often will)
have unbounded depth

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 16 / 36



F7. Monte-Carlo Tree Search: Framework MCTS Tree

Tree Structure

I Differentiate between two types of search nodes:
I Decision nodes
I Chance nodes

I Search nodes correspond 1:1 to traces from initial state

I Decision and chance nodes alternate

I Decision nodes correspond to states in a trace

I Chance nodes correspond to actions in a trace

I Decision nodes have one child node for each applicable action
(if all children are explicated)

I Chance nodes have one child node for each outcome
(if all children are explicated)

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 17 / 36

F7. Monte-Carlo Tree Search: Framework MCTS Tree

MCTS Tree

Definition (MCTS Tree)

An MCTS tree is given by a tuple G = 〈d0,D,C ,E 〉, where

I D and C are disjoint sets of decision and chance nodes
(simply search node if the type does not matter)

I d0 ∈ D is the root node

I E ⊆ (D × C ) ∪ (C × D) is the set of edges such that the
graph 〈D ∪ C ,E 〉 is a tree

Note: can be regarded as an AND/OR tree

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 18 / 36

F7. Monte-Carlo Tree Search: Framework MCTS Tree

Search Node Annotations

Definition (Search Node Annotations)

Let G = 〈d0,D,C ,E 〉 be an MCTS Tree.
I Each search node n ∈ D ∪ C is annotated with

I a visit counter N(n)
I a state s(n)

I Each decision node d ∈ D is annotated with
I a state-value estimate V̂ (d)
I a probability p(d)

I Each chance node c ∈ C is annotated with
I an action-value estimate (or Q-value estimate) Q̂(c)
I an action a(c)

Note: some annotations can be computed on the fly to save
memory

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 19 / 36

F7. Monte-Carlo Tree Search: Framework Framework

F7.4 Framework

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 20 / 36



F7. Monte-Carlo Tree Search: Framework Framework

Trials

I The MCTS tree is built in trials

I Trials are performed as long as resources
(deliberation time, memory) allow

I Initially, the MCTS tree consists of only the root node
for the initial state

I Trials (may) add search nodes to the tree

I MCTS tree at the end of the i-th trial is denoted with G i

I Use same superscript for annotations of search nodes

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 21 / 36

F7. Monte-Carlo Tree Search: Framework Framework

Trials

Taken from Browne et al., “A Survey of Monte Carlo Tree Search Methods”, 2012

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 22 / 36

F7. Monte-Carlo Tree Search: Framework Framework

Phases of Trials

Each trial consists of (up to) four phases:
I Selection: traverse the tree by sampling the execution of the

tree policy until
1 an action is applicable that is not explicated, or
2 an outcome is sampled that is not explicated, or
3 a goal state is reached (jump to backpropagation)

I Expansion: create search nodes for the applicable action and a
sampled outcome (case 1) or just the outcome (case 2)

I Simulation: simulate default policy until a goal is reached
I Backpropagation: update visited nodes in reverse order by

I increasing visit counter by 1
I performing Monte-Carlo backup of state-/action-value estimate

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 23 / 36

F7. Monte-Carlo Tree Search: Framework Framework

Monte-Carlo Backups in MCTS Tree

I let d0, c0, . . . , cn−1, dn be the decision and chance nodes that
were visited in a trial of MCTS (including explicated ones),

I let h be the cost incurred by the simulation of the default
policy until a goal state is reached

I each decision node dj for 0 ≤ j ≤ n is updated by

V̂ i (dj) := V̂ i−1(dj) +
1

N i (dj)
(
n−1∑
k=j

cost(a(ck)) + h − V̂ i−1(dj))

I each chance node cj for 0 ≤ j < n is updated by

Q̂ i (cj) := Q̂ i−1(cj) +
1

N i (cj)
(
n−1∑
k=j

cost(a(ck)) + h − Q̂ i−1(cj))

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 24 / 36



F7. Monte-Carlo Tree Search: Framework Framework

MCTS: (Unit-cost) Example

Selection phase: apply tree policy to traverse tree

19 9

35/1 9/4 25/4

34 1 9 2 7 2 21 2 27 2

11/1 9/1 15/1 23/1

10 1 8 1 14 1 22 1

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 25 / 36

F7. Monte-Carlo Tree Search: Framework Framework

MCTS: (Unit-cost) Example

Expansion phase: create search nodes

19 9

35/1 9/4 25/4

34 1 9 2 7 2 21 2 27 2

/ 11/1 9/1 15/1 23/1

10 1 8 1 14 1 22 1

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 26 / 36

F7. Monte-Carlo Tree Search: Framework Framework

MCTS: (Unit-cost) Example

Simulation phase: apply default policy until goal

19 9

35/1 9/4 25/4

34 1 9 2 7 2 21 2 27 2

/ 11/1 9/1 15/1 23/1

10 1 8 1 14 1 22 1

17

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 27 / 36

F7. Monte-Carlo Tree Search: Framework Framework

MCTS: (Unit-cost) Example

Backpropagation phase: update visited nodes

19 10

35/1 11/5 25/4

34 1 12 3 7 2 21 2 27 2

18/1

17 1

11/1 9/1 15/1 23/1

10 1 8 1 14 1 22 1

17

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 28 / 36



F7. Monte-Carlo Tree Search: Framework Framework

MCTS Framework

Member of MCTS framework are specified in terms of:

I Tree policy

I Default policy

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 29 / 36

F7. Monte-Carlo Tree Search: Framework Framework

MCTS Tree Policy

Definition (Tree Policy)

Let T be an SSP. An MCTS tree policy is a probability distribution
π(a | d) over all a ∈ A(s(d)) for each decision node d .

Note: The tree policy may take information
annotated in the current tree into account.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 30 / 36

F7. Monte-Carlo Tree Search: Framework Framework

MCTS Default Policy

Definition (Default Policy)

Let T be an SSP. An MCTS default policy is a probability
distribution π(a | s) over actions a ∈ A(s) for each state s.

Note: The default policy is independent of the MCTS tree.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 31 / 36

F7. Monte-Carlo Tree Search: Framework Framework

Monte-Carlo Tree Search

MCTS for SSP T = 〈S ,A, c ,T , s0, S?〉
d0 = create root node associated with s0
while time allows:

visit decision node(d0, T )
return a(arg minc∈children(d0) Q̂(c))

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 32 / 36



F7. Monte-Carlo Tree Search: Framework Framework

MCTS: Visit a Decision Node

visit decision node for decision node d , SSP
T = 〈S ,A, c ,T , s0,S?〉
if s(d) ∈ S? then return 0
if there is a ∈ A(s(d)) s.t. a(c) 6= a for all c ∈ children(d):

select such an a and add node c with a(c) = a to children(d)
else:

c = tree policy(d)
cost = visit chance node(c , T )
N(d) := N(d) + 1
V̂ (d) := V̂ (d) + 1

N(d) · (cost− V̂ (d))
return cost

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 33 / 36

F7. Monte-Carlo Tree Search: Framework Framework

MCTS: Visit a Chance Node

visit chance node for chance node c , SSP T = 〈S , L, c ,T , s0,S?〉
s ′ ∼ succ(s(c), a(c))
let d be the node in children(c) with s(d) = s ′

if there is no such node:
add node d with s(d) = s ′ to children(c)
cost = sample default policy(s ′)
N(d) := 1, V̂ (d) := cost

else:
cost = visit decision node(d , T )

cost = cost + cost(s(c), a(c))
N(c) := N(c) + 1
Q̂(c) := Q̂(c) + 1

N(c) · (cost− Q̂(c))
return cost

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 34 / 36

F7. Monte-Carlo Tree Search: Framework Summary

F7.5 Summary

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 35 / 36

F7. Monte-Carlo Tree Search: Framework Summary

Summary

I Monte-Carlo Tree Search is a framework for algorithms

I MCTS algorithms perform trials

I Each trial consists of (up to) 4 phases
I MCTS algorithms are specified by two policies:

I a tree policy that describes behavior “in” tree
I and a default policy that describes behavior “outside” of tree

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 36 / 36


	History
	

	Monte-Carlo Methods
	

	MCTS Tree
	

	Framework
	

	Summary
	


