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F7.1 History
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F7. Monte-Carlo Tree Search: Framework History

Monte-Carlo Methods: Brief History

1930s: first researchers experiment with Monte-Carlo methods
1998: Ginsberg's GIB player competes with Bridge experts
2002: Kearns et al. propose Sparse Sampling
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2002: Auer et al. present UCB1 action selection for
multi-armed bandits

2006: Coulom coins term Monte-Carlo Tree Search (MCTS)

2006: Kocsis and Szepesvari combine UCB1 and MCTS to
the famous MCTS variant, UCT

» 2007-2016: Constant progress of MCTS in Go culminates in
AlphaGo’s historical defeat of dan 9 player Lee Sedol
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F7.2 Monte-Carlo Methods
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Monte-Carlo Methods: Idea

» Summarize a broad family of algorithms

» Decisions are based on random samples
(Monte-Carlo sampling)

» Results of samples are aggregated by computing the average
(Monte-Carlo backups)

> Apart from that, algorithms can differ significantly
Careful: Many different definitions of MC methods in the literature
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Types of Random Samples

Random samples have in common that something is
drawn from a given probability distribution. Some examples:

> a determinization is sampled (Hindsight Optimization)
» runs under a fixed policy are simulated (Policy Simulation)
» considered outcomes are sampled (Sparse Sampling)

» runs under an evolving policy are simulated
(Monte-Carlo Tree Search)
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Reminder: Bellman Backups

Algorithms like Value Iteration or (L)RTDP use
the Bellman equation as an update procedure.

The i-th state-value estimate of state s, \7i(s), is computed with
Bellman backups as

Vis) = min | c(a) + ZS T(s,a,5') V7(s)

(Some algorithms use a heuristic if the state-value estimate on the

right hand side of the Bellman backup is undefined.)

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

Monte-Carlo Methods

10 / 36

F7. Monte-Carlo Tree Search: Framework Monte-Carlo Methods

Monte-Carlo Backups

Monte-Carlo methods instead estimate state-values
by averaging over all samples.

Let N(s) be the number of samples for state s in the first i
algorithm iterations and let cost*(s) be the cost for s in the k-th
sample (cost“(s) = 0 if the k-th sample has no estimate for s).

The i-th state-value estimate of state s, V/(s), is computed with
Monte-Carlo backups as

vigey.— 1 i
Vi(s) = NT(s) g cost*(s).
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Monte-Carlo Backups: Properties

> no need to store cost(s) for k =1,..., i
it is possible to compute Monte-Carlo backups iteratively as

Vi(s) = Vi71(s) + (cost'(s) — V71(s))

1
Ni(s)
» no need to know SSP model for backups

> if s is a random variable, V/(s) converges to E[s]
due to the strong law of large numbers

» if s is not a random variable, this is not always the case
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F7.3 MCTS Tree
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Monte-Carlo Tree Search

» While Monte-Carlo Tree Search (MCTS) has wildely been
used for games, we only consider the case for SSPs.

» MCTS successively builds up the most promising parts of the
search tree by repeated random sampling of the search space.

» Like (L)RTDP, MCTS performs trials (also called rollouts).

P In each trials, it extends the search tree with potentially
interesting nodes.

» It uses Monte-Carlo backups to improve the state-value
estimates with the information gathered in the trial.

To be more specific, we need to know the details of the MCTS tree.
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MCTS Tree

» Unlike previous methods, the SSP
is explicated as a tree

» Duplicates (also: transpositions)
possible,
i.e., multiple search nodes with
identical associated state

» Search tree can (and often will)
have unbounded depth
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Tree Structure

> Differentiate between two types of search nodes:

» Decision nodes
» Chance nodes

Search nodes correspond 1:1 to traces from initial state
Decision and chance nodes alternate
Decision nodes correspond to states in a trace

Chance nodes correspond to actions in a trace

vvyYyyvyy

Decision nodes have one child node for each applicable action
(if all children are explicated)

v

Chance nodes have one child node for each outcome
(if all children are explicated)
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MCTS Tree

Definition (MCTS Tree)
An MCTS tree is given by a tuple G = (dy, D, C, E), where
» D and C are disjoint sets of decision and chance nodes
(simply search node if the type does not matter)
» dy € D is the root node

» EC (D x C)U(C x D) is the set of edges such that the
graph (DU C,E) is a tree

Note: can be regarded as an AND/OR tree
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Search Node Annotations

Definition (Search Node Annotations)
Let G = (do, D, C, E) be an MCTS Tree.
» Each search node n € DU C is annotated with

> a visit counter N(n)
> a state s(n)

» Each decision node d € D is annotated with
> a state-value estimate V/(d)
> a probability p(d)

» Each chance node ¢ € C is annotated with

> an action-value estimate (or Q-value estimate) Q(c)
> an action a(c)

Note: some annotations can be computed on the fly to save
memory
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F7.4 Framework
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Trials

» The MCTS tree is built in trials

» Trials are performed as long as resources
(deliberation time, memory) allow

> Initially, the MCTS tree consists of only the root node
for the initial state

» Trials (may) add search nodes to the tree
MCTS tree at the end of the i-th trial is denoted with G’

» Use same superscript for annotations of search nodes

v

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 21 / 36

F7. Monte-Carlo Tree Search: Framework Framework

Trials

/—> Selection — Expansion —— Simulation —> Backpropagation \

Tree Def:ault

Policy Po{icy
v
N A J

Taken from Browne et al., “A Survey of Monte Carlo Tree Search Methods”, 2012
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Phases of Trials

Each trial consists of (up to) four phases:

> Selection: traverse the tree by sampling the execution of the
tree policy until
@ an action is applicable that is not explicated, or
@ an outcome is sampled that is not explicated, or
© a goal state is reached (jump to backpropagation)
» Expansion: create search nodes for the applicable action and a
sampled outcome (case 1) or just the outcome (case 2)

» Simulation: simulate default policy until a goal is reached

> Backpropagation: update visited nodes in reverse order by

» increasing visit counter by 1
» performing Monte-Carlo backup of state-/action-value estimate
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Monte-Carlo Backups in MCTS Tree

> let dy, co, - -.,Cnh—1, dn be the decision and chance nodes that
were visited in a trial of MCTS (including explicated ones),

P let h be the cost incurred by the simulation of the default
policy until a goal state is reached

» each decision node d; for 0 < j < nis updated by

n—1

Vi(d) 1= V(e + s (O costlalen)) + h— V' H(d)
i) S

» each chance node ¢; for 0 < j < n is updated by

. i 1 n—1 N
Q'(¢) == Q" ¢) + 7(2 cost(a(ck)) + h— Q(¢))
N'(g) =
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MCTS: (Unit-cost) Example

Selection phase: apply tree policy to traverse tree
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MCTS: (Unit-cost) Example

Expansion phase: create search nodes
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MCTS: (Unit-cost) Example

Simulation phase: apply default policy until goal
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MCTS: (Unit-cost) Example

Backpropagation phase: update visited nodes
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MCTS Framework MCTS Tree Policy

Definition (Tree Policy)

) Let 7 be an SSP. An MCTS tree policy is a probability distribution
> Tree policy m(a | d) over all a € A(s(d)) for each decision node d.

» Default policy

Member of MCTS framework are specified in terms of:

Note: The tree policy may take information
annotated in the current tree into account.
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MCTS Default Policy Monte-Carlo Tree Search

MCTS for SSP T = (S, A,c, T, s, S)
dy = create root node associated with sp
while time allows:
visit_decision_node(dp, T')
Note: The default policy is independent of the MCTS tree. return a(arg minccchildren(do) Q

Definition (Default Policy)
Let 7 be an SSP. An MCTS default policy is a probability
distribution 7(a | s) over actions a € A(s) for each state s.

(<))
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MCTS: Visit a Decision Node

visit_decision_node for decision node d, SSP
T =(S,Ac T,s,5)
if s(d) € S, then return 0
if there is a € A(s(d)) s.t. a(c) # a for all ¢ € children(d):
select such an a and add node ¢ with a(c) = a to children(d)
else:
¢ = tree_policy(d)
cost = visit_chance_node(c, T)
N(d) := N(d)+1
V(d) = V(d) + yig; - (cost — V(d))
return cost

Framework
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MCTS: Visit a Chance Node

visit_chance_node for chance node ¢, SSP T = (S, L,c, T, sp, 5&)
s’ ~ succ(s(c), a(c))
let d be the node in children(c) with s(d) = s’
if there is no such node:
add node d with s(d) = s’ to children(c)
cost = sample_default_policy(s’)
N(d) := 1, V(d) := cost
else:
cost = visit_decision_node(d, T)
cost = cost + cost(s(c), a(c))
N(c) :== N(c) +1 A
Q(c) = Q(c) + g - (cost — Q(c))

return cost
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Summary

» Monte-Carlo Tree Search is a framework for algorithms
» MCTS algorithms perform trials

» Each trial consists of (up to) 4 phases

» MCTS algorithms are specified by two policies:

> a tree policy that describes behavior “in" tree
» and a default policy that describes behavior “outside” of tree
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