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F7. Monte-Carlo Tree Search: Framework History

Monte-Carlo Methods: Brief History

I 1930s: first researchers experiment with Monte-Carlo methods

I 1998: Ginsberg’s GIB player competes with Bridge experts

I 2002: Kearns et al. propose Sparse Sampling

I 2002: Auer et al. present UCB1 action selection for
multi-armed bandits

I 2006: Coulom coins term Monte-Carlo Tree Search (MCTS)

I 2006: Kocsis and Szepesvári combine UCB1 and MCTS to
the famous MCTS variant, UCT

I 2007–2016: Constant progress of MCTS in Go culminates in
AlphaGo’s historical defeat of dan 9 player Lee Sedol
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Monte-Carlo Methods: Idea

I Summarize a broad family of algorithms

I Decisions are based on random samples
(Monte-Carlo sampling)

I Results of samples are aggregated by computing the average
(Monte-Carlo backups)

I Apart from that, algorithms can differ significantly

Careful: Many different definitions of MC methods in the literature
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Types of Random Samples

Random samples have in common that something is
drawn from a given probability distribution. Some examples:

I a determinization is sampled (Hindsight Optimization)

I runs under a fixed policy are simulated (Policy Simulation)

I considered outcomes are sampled (Sparse Sampling)

I runs under an evolving policy are simulated
(Monte-Carlo Tree Search)
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Reminder: Bellman Backups

Algorithms like Value Iteration or (L)RTDP use
the Bellman equation as an update procedure.

The i-th state-value estimate of state s, V̂ i (s), is computed with
Bellman backups as

V̂ i (s) := min
a∈A(s)

(
c(a) +

∑
s′∈S

T (s, a, s ′) · V̂ i−1(s ′)

)
.

(Some algorithms use a heuristic if the state-value estimate on the
right hand side of the Bellman backup is undefined.)
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Monte-Carlo Backups

Monte-Carlo methods instead estimate state-values
by averaging over all samples.

Let N i (s) be the number of samples for state s in the first i
algorithm iterations and let costk(s) be the cost for s in the k-th
sample (costk(s) = 0 if the k-th sample has no estimate for s).

The i-th state-value estimate of state s, V̂ i (s), is computed with
Monte-Carlo backups as

V̂ i (s) :=
1

N i (s)
·

i∑
k=1

costk(s).
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Monte-Carlo Backups: Properties

I no need to store costk(s) for k = 1, . . . , i :
it is possible to compute Monte-Carlo backups iteratively as

V̂ i (s) := V̂ i−1(s) +
1

N i (s)
(costi (s)− V̂ i−1(s))

I no need to know SSP model for backups

I if s is a random variable, V̂ i (s) converges to E[s]
due to the strong law of large numbers

I if s is not a random variable, this is not always the case
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F7.3 MCTS Tree
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Monte-Carlo Tree Search

I While Monte-Carlo Tree Search (MCTS) has wildely been
used for games, we only consider the case for SSPs.

I MCTS successively builds up the most promising parts of the
search tree by repeated random sampling of the search space.

I Like (L)RTDP, MCTS performs trials (also called rollouts).

I In each trials, it extends the search tree with potentially
interesting nodes.

I It uses Monte-Carlo backups to improve the state-value
estimates with the information gathered in the trial.

To be more specific, we need to know the details of the MCTS tree.
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MCTS Tree

I Unlike previous methods, the SSP
is explicated as a tree

I Duplicates (also: transpositions)
possible,
i.e., multiple search nodes with
identical associated state

I Search tree can (and often will)
have unbounded depth
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Tree Structure

I Differentiate between two types of search nodes:
I Decision nodes
I Chance nodes

I Search nodes correspond 1:1 to traces from initial state

I Decision and chance nodes alternate

I Decision nodes correspond to states in a trace

I Chance nodes correspond to actions in a trace

I Decision nodes have one child node for each applicable action
(if all children are explicated)

I Chance nodes have one child node for each outcome
(if all children are explicated)
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MCTS Tree

Definition (MCTS Tree)

An MCTS tree is given by a tuple G = 〈d0,D,C ,E 〉, where

I D and C are disjoint sets of decision and chance nodes
(simply search node if the type does not matter)

I d0 ∈ D is the root node

I E ⊆ (D × C ) ∪ (C × D) is the set of edges such that the
graph 〈D ∪ C ,E 〉 is a tree

Note: can be regarded as an AND/OR tree
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Search Node Annotations

Definition (Search Node Annotations)

Let G = 〈d0,D,C ,E 〉 be an MCTS Tree.
I Each search node n ∈ D ∪ C is annotated with

I a visit counter N(n)
I a state s(n)

I Each decision node d ∈ D is annotated with
I a state-value estimate V̂ (d)
I a probability p(d)

I Each chance node c ∈ C is annotated with
I an action-value estimate (or Q-value estimate) Q̂(c)
I an action a(c)

Note: some annotations can be computed on the fly to save
memory
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F7.4 Framework
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Trials

I The MCTS tree is built in trials

I Trials are performed as long as resources
(deliberation time, memory) allow

I Initially, the MCTS tree consists of only the root node
for the initial state

I Trials (may) add search nodes to the tree

I MCTS tree at the end of the i-th trial is denoted with G i

I Use same superscript for annotations of search nodes

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 21 / 36

F7. Monte-Carlo Tree Search: Framework Framework

Trials

Taken from Browne et al., “A Survey of Monte Carlo Tree Search Methods”, 2012
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Phases of Trials

Each trial consists of (up to) four phases:
I Selection: traverse the tree by sampling the execution of the

tree policy until
1 an action is applicable that is not explicated, or
2 an outcome is sampled that is not explicated, or
3 a goal state is reached (jump to backpropagation)

I Expansion: create search nodes for the applicable action and a
sampled outcome (case 1) or just the outcome (case 2)

I Simulation: simulate default policy until a goal is reached
I Backpropagation: update visited nodes in reverse order by

I increasing visit counter by 1
I performing Monte-Carlo backup of state-/action-value estimate
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Monte-Carlo Backups in MCTS Tree

I let d0, c0, . . . , cn−1, dn be the decision and chance nodes that
were visited in a trial of MCTS (including explicated ones),

I let h be the cost incurred by the simulation of the default
policy until a goal state is reached

I each decision node dj for 0 ≤ j ≤ n is updated by

V̂ i (dj) := V̂ i−1(dj) +
1

N i (dj)
(
n−1∑
k=j

cost(a(ck)) + h − V̂ i−1(dj))

I each chance node cj for 0 ≤ j < n is updated by

Q̂ i (cj) := Q̂ i−1(cj) +
1

N i (cj)
(
n−1∑
k=j

cost(a(ck)) + h − Q̂ i−1(cj))
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MCTS: (Unit-cost) Example

Selection phase: apply tree policy to traverse tree

19 9

35/1 9/4 25/4

34 1 9 2 7 2 21 2 27 2

11/1 9/1 15/1 23/1

10 1 8 1 14 1 22 1
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MCTS: (Unit-cost) Example

Expansion phase: create search nodes

19 9

35/1 9/4 25/4

34 1 9 2 7 2 21 2 27 2

/ 11/1 9/1 15/1 23/1

10 1 8 1 14 1 22 1
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MCTS: (Unit-cost) Example

Simulation phase: apply default policy until goal

19 9

35/1 9/4 25/4

34 1 9 2 7 2 21 2 27 2

/ 11/1 9/1 15/1 23/1

10 1 8 1 14 1 22 1

17
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MCTS: (Unit-cost) Example

Backpropagation phase: update visited nodes

19 10

35/1 11/5 25/4

34 1 12 3 7 2 21 2 27 2

18/1

17 1

11/1 9/1 15/1 23/1

10 1 8 1 14 1 22 1

17
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MCTS Framework

Member of MCTS framework are specified in terms of:

I Tree policy

I Default policy
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MCTS Tree Policy

Definition (Tree Policy)

Let T be an SSP. An MCTS tree policy is a probability distribution
π(a | d) over all a ∈ A(s(d)) for each decision node d .

Note: The tree policy may take information
annotated in the current tree into account.
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MCTS Default Policy

Definition (Default Policy)

Let T be an SSP. An MCTS default policy is a probability
distribution π(a | s) over actions a ∈ A(s) for each state s.

Note: The default policy is independent of the MCTS tree.
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Monte-Carlo Tree Search

MCTS for SSP T = 〈S ,A, c ,T , s0, S?〉
d0 = create root node associated with s0
while time allows:

visit decision node(d0, T )
return a(arg minc∈children(d0) Q̂(c))
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MCTS: Visit a Decision Node

visit decision node for decision node d , SSP
T = 〈S ,A, c ,T , s0,S?〉
if s(d) ∈ S? then return 0
if there is a ∈ A(s(d)) s.t. a(c) 6= a for all c ∈ children(d):

select such an a and add node c with a(c) = a to children(d)
else:

c = tree policy(d)
cost = visit chance node(c , T )
N(d) := N(d) + 1
V̂ (d) := V̂ (d) + 1

N(d) · (cost− V̂ (d))
return cost
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MCTS: Visit a Chance Node

visit chance node for chance node c , SSP T = 〈S , L, c ,T , s0,S?〉
s ′ ∼ succ(s(c), a(c))
let d be the node in children(c) with s(d) = s ′

if there is no such node:
add node d with s(d) = s ′ to children(c)
cost = sample default policy(s ′)
N(d) := 1, V̂ (d) := cost

else:
cost = visit decision node(d , T )

cost = cost + cost(s(c), a(c))
N(c) := N(c) + 1
Q̂(c) := Q̂(c) + 1

N(c) · (cost− Q̂(c))
return cost
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F7.5 Summary
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Summary

I Monte-Carlo Tree Search is a framework for algorithms

I MCTS algorithms perform trials

I Each trial consists of (up to) 4 phases
I MCTS algorithms are specified by two policies:

I a tree policy that describes behavior “in” tree
I and a default policy that describes behavior “outside” of tree
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