

Planning and Optimization

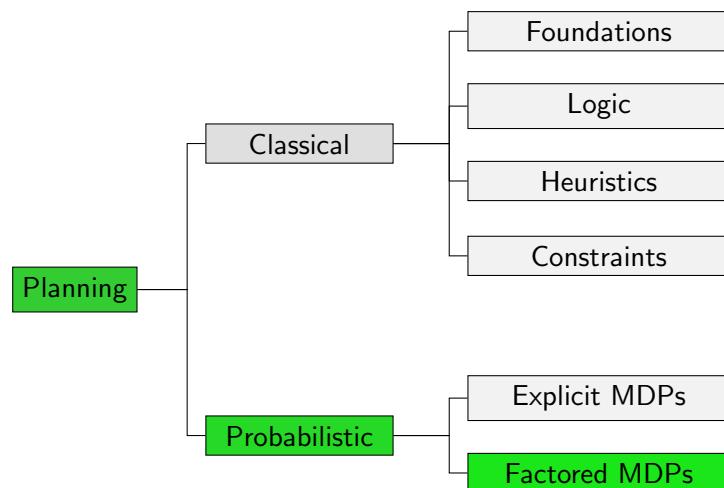
F6. Real-time Dynamic Programming

Malte Helmert and Gabriele Röger

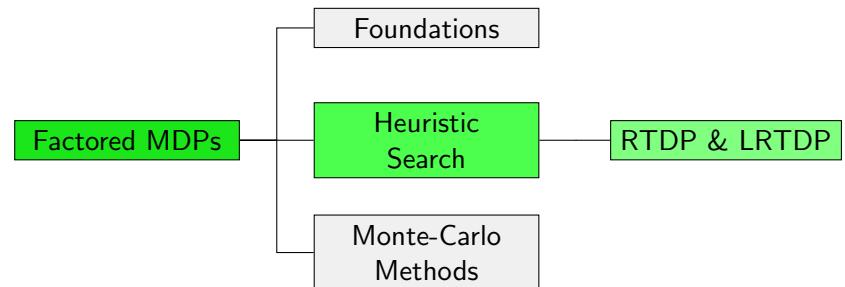
Universität Basel

Planning and Optimization

— F6. Real-time Dynamic Programming


F6.1 Motivation

F6.2 Real-time Dynamic Programming


F6.3 Labeled Real-time Dynamic Programming

F6.4 Summary

Content of this Course

Content of this Course: Factored MDPs

F6.1 Motivation

Motivation: Real-time Dynamic Programming

- ▶ Asynchronous VI maintains table with state-value estimates for all states ...
- ▶ ... and has to update all states repeatedly.
- ▶ **Real-time Dynamic Programming (RTDP)** generates **hash map** with state-value estimates of **relevant states**
- ▶ uses **admissible heuristic** to achieve convergence albeit not updating all states
- ▶ Proposed by Barto, Bradtke & Singh (1995)

F6.2 Real-time Dynamic Programming

Real-time Dynamic Programming

- ▶ RTDP updates only states **relevant** to the agent
- ▶ Originally motivated from agent that **acts** in environment by following **greedy policy** w.r.t. current state-value estimates.
- ▶ Performs **Bellman backup** in each encountered state
- ▶ Uses **admissible heuristic** for states not updated before

Trial-based Real-time Dynamic Programming

- We consider the **offline** version here.
⇒ Interaction with environment is **simulated** in **trials**.
- In real world, outcome of action application cannot be **chosen**.
⇒ In simulation, outcomes are **sampled** according to probabilities.

Real-time Dynamic Programming

RTDP for SSP $\mathcal{T} = \langle S, A, c, T, s_0, S_* \rangle$

while more trials required:

$s := s_0$

while $s \notin S_*$:

$$\hat{V}(s) := \min_{a \in A(s)} \left(c(a) + \sum_{s' \in S} T(s, a, s') \cdot \hat{V}(s') \right)$$

$$s \sim \text{succ}(s, a_{\hat{V}}(s))$$

Note: $\hat{V}(s)$ is maintained as a hash table of states. On the right hand side of line 4 or 5, if a state s is not in \hat{V} , $h(s)$ is used.

Example: RTDP

	1	2	3	4	s_*
5	$\Rightarrow 3.00$	$\Rightarrow 2.00$	$\Rightarrow 1.00$	0.00	
4	$\uparrow 4.00$	3.00	4.00	1.00	
3	$\uparrow 5.00$	4.00	3.00	2.00	
2	$\uparrow 6.00$	5.00	4.00	3.00	
1	$\uparrow s_0$ 7.00	6.00	5.00	4.00	

Start of 1st trial

Used heuristic: shortest path assuming agent **never gets stuck**

Example: RTDP

	1	2	3	4	s_*
5	4.31	$\Rightarrow 2.00$	$\Rightarrow 1.00$	0.00	
4	5.31	$\uparrow 3.00$	4.00	1.00	
3	5.60	$\uparrow 4.00$	3.00	2.00	
2	6.96	$\uparrow 5.00$	4.00	3.00	
1	$\Rightarrow s_0$ 7.00	$\uparrow 6.00$	5.00	4.00	

Start of 2nd trial

Used heuristic: shortest path assuming agent **never gets stuck**

Example: RTDP

5	4.31	2.00	1.00	s_* 0.00
4	5.31	3.00	4.00	\uparrow 1.00
3	5.60	4.00	\Rightarrow 3.00	\uparrow 2.00
2	6.96	5.96	\uparrow 4.00	3.00
1	\Rightarrow^{s_0} 7.00	\Rightarrow 6.00	\uparrow 5.00	4.00
	1	2	3	4

Start of 3rd trial

Used heuristic: shortest path assuming agent **never gets stuck**

Example: RTDP

5	4.31	2.00	1.00	s_* 0.00
4	5.31	3.00	4.00	\uparrow 1.60
3	5.60	4.00	\Rightarrow 3.00	\uparrow 3.43
2	6.96	5.96	\uparrow 4.00	3.00
1	\Rightarrow^{s_0} 7.00	\Rightarrow 6.00	\uparrow 5.00	4.00
	1	2	3	4

End of 3rd trial

Used heuristic: shortest path assuming agent **never gets stuck**

Example: RTDP

5	\Rightarrow 4.31	\Rightarrow 2.00	\Rightarrow 1.00	s_* 0.00
4	\uparrow 5.31	3.00	7.92	2.38
3	\uparrow 6.18	4.00	5.00	4.80
2	\uparrow 7.77	6.50	6.00	7.03
1	\Rightarrow^{s_0} 8.50	\uparrow 7.50	7.00	7.18
	1	2	3	4

End of 16th trial

Used heuristic: shortest path assuming agent **never gets stuck**

RTDP: Theoretical Properties

Theorem

Using an admissible heuristic, RTDP converges to an optimal solution without (necessarily) computing state-value estimates for all states.

Proof omitted.

F6.3 Labeled Real-time Dynamic Programming

Motivation

Issues of RTDP:

- ▶ States are still updated after **state-value estimate** has **converged**.
- ▶ No **termination criterion** \Rightarrow algorithm is underspecified

Most popular algorithm to overcome these shortcomings:
Labeled RTDP (Bonet & Geffner, 2003)

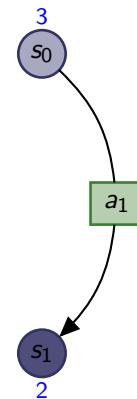
Labeled RTDP: Idea

The main idea of Labeled RTDP (LRTDP) is to **label states as solved**

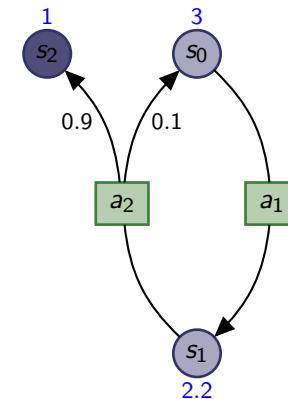
- ▶ Each **trial terminates** when a solved state is encountered
 \Rightarrow solved states no longer updated
- ▶ **LRTDP terminates** when the initial state is labeled as solved
 \Rightarrow well-defined termination criterion

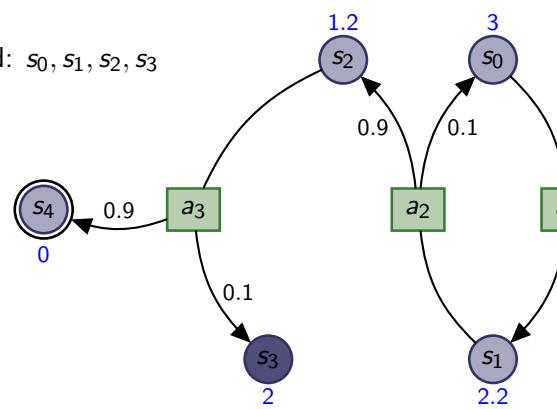
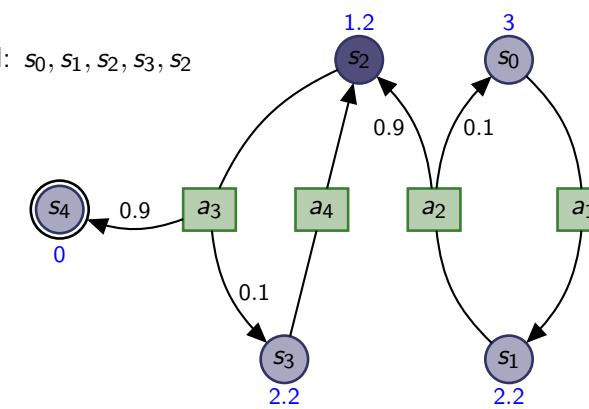
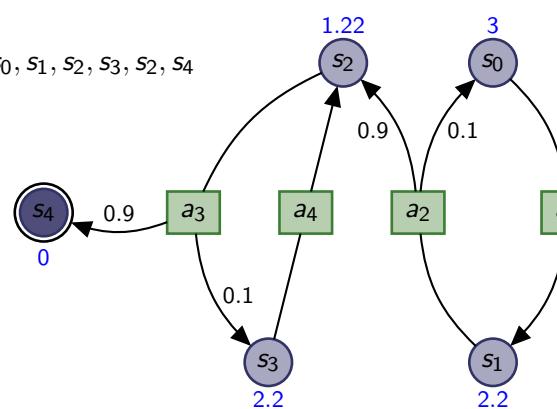
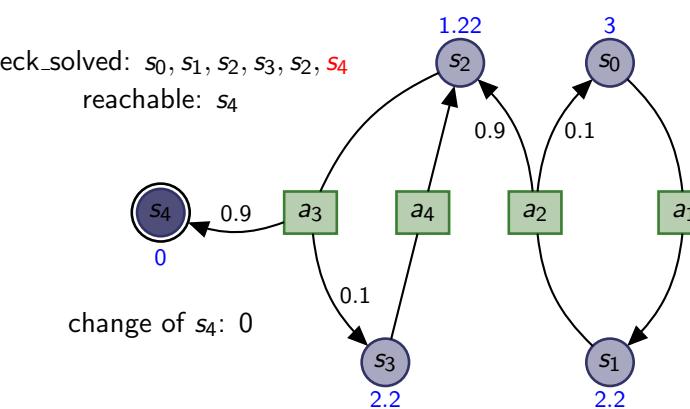
Solved States in SSPs

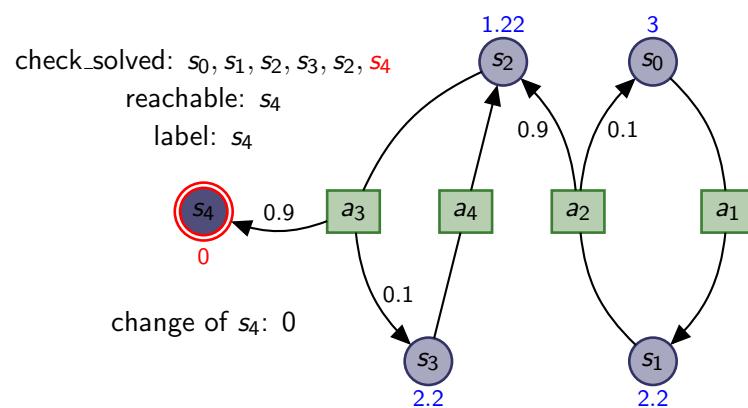
- ▶ States are solved if the state-value estimate **changes only little**
- ▶ In presence of **cycles**, all states in a **strongly connected component** (SCC) are considered simultaneously
- ▶ Labeled RTDP uses sub-algorithm **CheckSolved** to check whether all states in a SCC are solved


CheckSolved Procedure

- ▶ CheckSolved is called on all states that were encountered in a trial in **reverse order**.
- ▶ CheckSolved checks how much the state-value estimates of unlabeled states reachable under the greedy policy would change with another update.
- ▶ If this change is below some constant ε for all these states then they are all labeled as solved.
- ▶ Otherwise, CheckSolved performs an additional backup for the encountered states, hence improving the state value estimate for at least one of them.

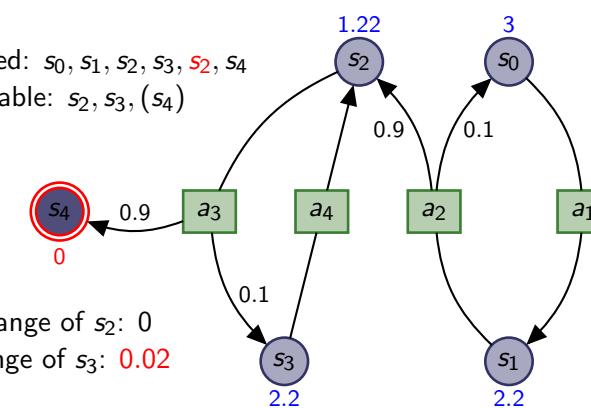
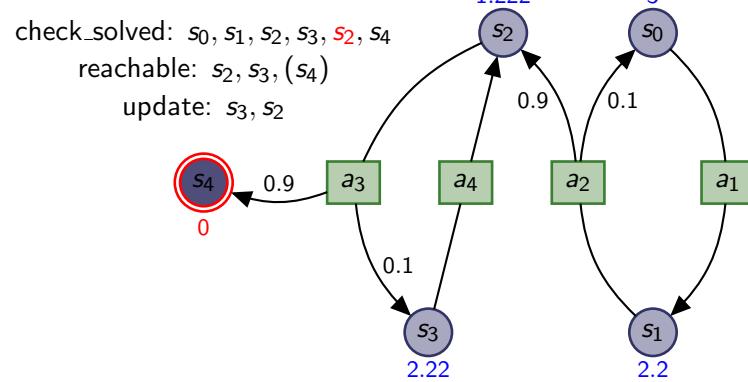

Labeled RTDP: Example ($\varepsilon = 0.005$)





visited: s_0


Labeled RTDP: Example ($\varepsilon = 0.005$)

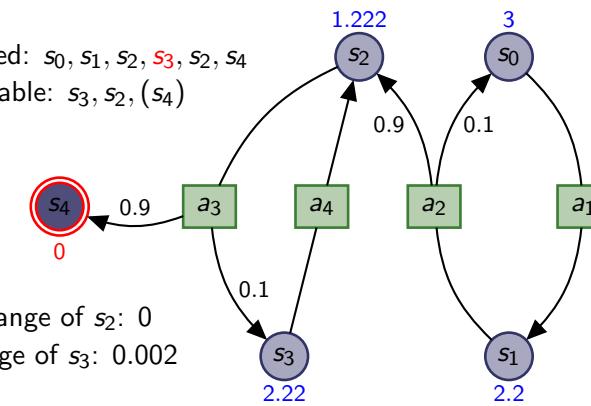
visited: s_0, s_1

Labeled RTDP: Example ($\varepsilon = 0.005$)



visited: s_0, s_1, s_2

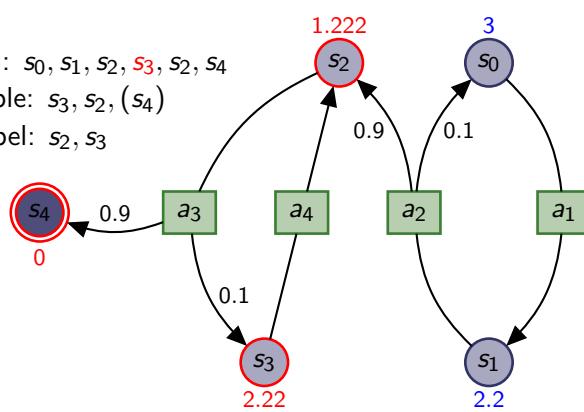
Labeled RTDP: Example ($\varepsilon = 0.005$)visited: s_0, s_1, s_2, s_3 Labeled RTDP: Example ($\varepsilon = 0.005$)visited: s_0, s_1, s_2, s_3, s_2 Labeled RTDP: Example ($\varepsilon = 0.005$)visited: $s_0, s_1, s_2, s_3, s_2, s_4$ Labeled RTDP: Example ($\varepsilon = 0.005$)check_solved: $s_0, s_1, s_2, s_3, s_2, s_4$ reachable: s_4

Labeled RTDP: Example ($\varepsilon = 0.005$)Labeled RTDP: Example ($\varepsilon = 0.005$)

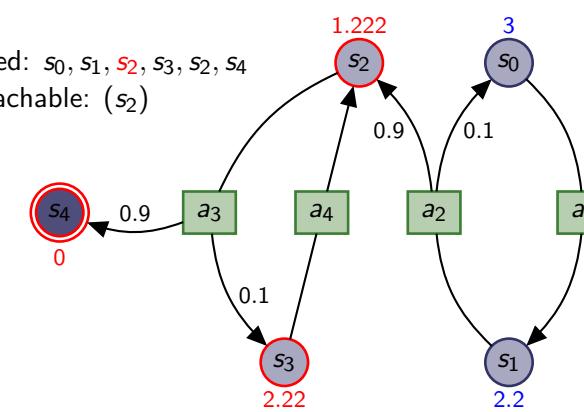

check_solved: $s_0, s_1, s_2, s_3, s_2, s_4$
 reachable: $s_2, s_3, (s_4)$

change of s_2 : 0
 change of s_3 : 0.02

Labeled RTDP: Example ($\varepsilon = 0.005$)Labeled RTDP: Example ($\varepsilon = 0.005$)


check_solved: $s_0, s_1, s_2, s_3, s_2, s_4$
 reachable: $s_3, s_2, (s_4)$

change of s_2 : 0
 change of s_3 : 0.002



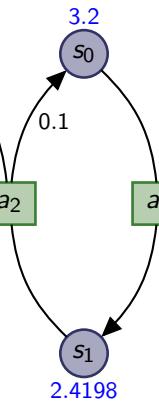
Labeled RTDP: Example ($\varepsilon = 0.005$)

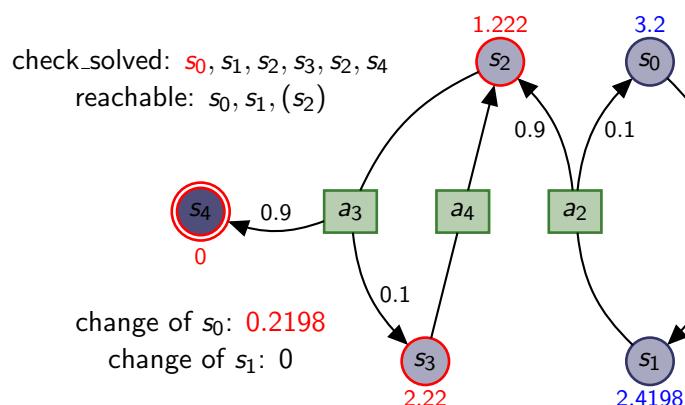
check_solved: $s_0, s_1, s_2, s_3, s_2, s_4$
 reachable: $s_3, s_2, (s_4)$
 label: s_2, s_3

Labeled RTDP: Example ($\varepsilon = 0.005$)

check_solved: $s_0, s_1, s_2, s_3, s_2, s_4$
 reachable: (s_2)

Labeled RTDP: Example ($\varepsilon = 0.005$)


check_solved: $s_0, s_1, s_2, s_3, s_2, s_4$
 reachable: $s_1, s_0, (s_2)$


change of s_0 : 0.2
 change of s_1 : 0.1998

Labeled RTDP: Example ($\varepsilon = 0.005$)

check_solved: $s_0, s_1, s_2, s_3, s_2, s_4$
 reachable: $s_1, s_0, (s_2)$

update: s_0, s_1

Labeled RTDP: Example ($\varepsilon = 0.005$)

Labeled Real-time Dynamic Programming

Labeled RTDP for SSP \mathcal{T}

```
while  $s_0$  is not solved:
  visit( $s_0$ )
```

visit state s

```
if  $s$  is solved or  $s \in S_*$ :
  return
   $\hat{V}(s) := \min_{a \in A(s)} \left( c(a) + \sum_{s' \in S} T(s, a, s') \cdot \hat{V}(s') \right)$ 
   $s' := \text{succ}(s, a_{\hat{V}}(s))$ 
  visit( $s'$ )
  check_solved( $s$ )
```

$\hat{V}(s)$ is maintained as a hash table of states. On the right hand side of line 3 or 4 in $\text{visit}(s)$, if a state s is not in \hat{V} , $h(s)$ is used.

Labeled RTDP: Example ($\varepsilon = 0.005$)check_solved: $s_0, s_1, s_2, s_3, s_2, s_4$ reachable: $s_0, s_1, (s_2)$ update: s_1, s_0

Labeled Real-time Dynamic Programming

Labeled RTDP for SSP \mathcal{T}

```
while  $s_0$  is not solved:
  visit( $s_0$ )
```

visit state s

```
if  $s$  is solved or  $s \in S_*$ :
  return
   $\hat{V}(s) := \min_{a \in A(s)} \left( c(a) + \sum_{s' \in S} T(s, a, s') \cdot \hat{V}(s') \right)$ 
   $s' := \text{succ}(s, a_{\hat{V}}(s))$ 
  visit( $s'$ )
  check_solved( $s$ )
```

$\hat{V}(s)$ is maintained as a hash table of states. On the right hand side of line 3 or 4 in $\text{visit}(s)$, if a state s is not in \hat{V} , $h(s)$ is used.

Labeled RTDP: CheckSolved

```
check_solved for state  $s$ 
allsolved := true
open, closed := stack
if  $s$  not solved then push  $s$  to open
while open is not empty:
  pop  $s'$  from open and insert it into closed
  if change of  $s' > \varepsilon$ 
    allsolved := false
  else push all  $s'' \in \text{succ}(s', a_{\hat{V}}(s'))$  to open that are
    not a goal state, not solved and not in open or closed
  if allsolved then label all states in closed as solved
  else
    while closed is not empty:
      pop  $s'$  from closed and update its state value
```

Labeled RTDP: Theoretical Properties

Theorem

Using an admissible heuristic, Labeled RTDP converges to an optimal solution without (necessarily) computing state-value estimates for all states.

Proof omitted.

F6.4 Summary

Experimental Results [Bonet and Geffner, ICAPS 2003]

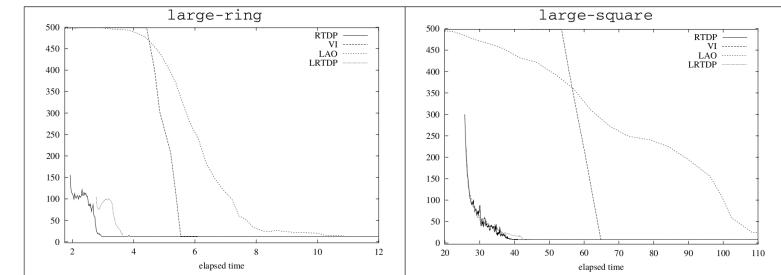


Figure 3: Quality profiles: Average cost to the goal vs. time for RTDP, VI, ILAO* and LRTDP with the heuristic $h = 0$ and $\epsilon = 10^{-3}$.

algorithm	small-b	large-b	h-track	small-r	large-r	small-s	large-s	small-y	large-y
VI($h = 0$)	1.101	4.045	15.451	0.662	5.435	5.896	78.720	16.418	61.773
ILAO* $(h = 0)$	2.568	11.794	43.591	1.114	11.166	12.212	250.739	57.488	182.649
LRTDP($h = 0$)	0.885	7.116	15.591	0.431	4.275	3.238	49.312	9.393	34.100

Table 2: Convergence time in seconds for the different algorithms with initial value function $h = 0$ and $\epsilon = 10^{-3}$. Times for RTDP not shown as they exceed the cutoff time for convergence (10 minutes). Faster times are shown in bold font.

algorithm	small-b	large-b	h-track	small-r	large-r	small-s	large-s	small-y	large-y
VI(h_{min})	1.317	4.093	12.693	0.737	5.932	6.855	102.946	17.636	66.253
ILAO* (h_{min})	1.161	2.910	11.401	0.309	3.514	0.387	1.055	0.692	1.367
LRTDP(h_{min})	0.521	2.660	7.944	0.187	1.599	0.259	0.653	0.336	0.749

Table 3: Convergence time in seconds for the different algorithms with initial value function $h = h_{min}$ and $\epsilon = 10^{-3}$. Times for RTDP not shown as they exceed the cutoff time for convergence (10 minutes). Faster times are shown in bold font.

Summary

- ▶ Real-time Dynamic Programming is an optimal algorithm for SSPs ...
- ▶ ... that backups only a subset of states ...
- ▶ ... without generating an explicit representation of the state-space.
- ▶ Labeled RTDP labels states as solved to stop updating converged states ...
- ▶ ... and speeds up convergence with additional backups in reverse order.