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Factored MDPs

We would like to specify MDPs and SSPs with large state spaces.
In classical planning, we introduced planning tasks to represent
large transition systems compactly.

> represent aspects of the world in terms of state variables
> states are a valuation of state variables

» n (propositional) state variables induce 2" states
~~ exponentially more compact than “explicit” representation
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Finite-Domain State Variables

Definition (Finite-Domain State Variable)
A finite-domain state variable is a symbol v with an associated
domain dom(v), which is a finite non-empty set of values.

Let V be a finite set of finite-domain state variables.

A state s over V is an assignment s : V — (J, .\, dom(v)
such that s(v) € dom(v) for all v € V.

A formula over V is a propositional logic formula whose atomic

propositions are of the form v = d where v € V and d € dom(v).

For simplicity, we only consider finite-domain state variables here.
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Syntax of Operators

Definition (SSP and MDP Operators)

An SSP operator o over a set of state variables V has three
components:

» a precondition pre(o), a logical formula over V
» an effect eff0) over V, defined on the following slides
> a cost cost(o) € Ry

An MDP operator o over a set of state variables V' has three
components:

» a precondition pre(o), a logical formula over V
» an effect eff0) over V, defined on the following slides

» a reward reward(o) over V, defined on the following slides

Whenever we just say operator (without SSP or MDP),
both kinds of operators are allowed.
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Syntax of Effects

Definition (Effect)
Effects over state variables V' are inductively defined as follows:
» If v € V is a finite-domain state variable and d € dom(v),
then v := d is an effect (atomic effect).

> If er,...,e, are effects, then (e A--- A e,) is an effect
(conjunctive effect).
The special case with n = 0 is the empty effect T.

> If er,...,e, are effects and py, ..., py € [0, 1] such that
Yoripi=1, then (p1:ei|...|py: en) is an effect
(probabilistic effect).

Note: To simplify definitions, conditional effects are omitted.
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Effects: Intuition

Intuition for effects:

» Atomic effects can be understood as assignments
that update the value of a state variable.

» A conjunctive effect e = (e1 A --- A e,) means that

all subeffects ey, ..., e, take place simultaneously.

» A probabilistic effect e = (p1 : e1]...|pn : €n) means that
exactly one subeffect e; € {ey,...,e,} takes place with
probability p;.
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Semantics of Effects

Definition

The effect set [e] of an effect e is a set of pairs (p, w), where p is
a probability 0 < p <1 and w is a partial assignment. The effect
set [e] is the set obtained recursively as

[v :=d] ={(1.0,{v—d})},
[ene]= L—lj

(p,w)€lel,(p',w')€le’]

{<p ' p/v wU W,>}7

o1 1l .- lpn < €] = [ {ipi - pw) | (p,w) € [a]).
i=1

where (4 is like | J but merges (p, w’) and (p’,w’) to (p + p’, w’').

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 11 / 34

F5. Factored MDPs

Semantics of Operators

Definition (Applicable, Outcomes)

Let V be a set of finite-domain state variables.

Let s be a state over V, and let o be an operator over V.
Operator o is applicable in s if s |= pre(o).

The outcomes of applying an operator o in s, written s[o], are

slel= i {psi))
{p,w)€[ef0)]
with s/, (v) =d if v=d € w and s,(v) = s(v) otherwise
and | is like | J but merges (p,s’) and (p,s’) to (p+ p',s’).
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Rewards

Definition (Reward)
A reward over state variables V is inductively defined as follows:

» ccRis a reward
> If x is a propositional formula over V, [x] is a reward
» If rand r" are rewards, r +r', r —r', r-r’" and 5 are rewards

Applying an MDP operator o in s induces reward reward(o)(s),
i.e., the value of the arithmetic function reward(o) where all
occurrences of v € V are replaced with s(v).
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Probabilistic Planning Tasks

Definition (SSP and MDP Planning Task)
An SSP planning task is a 4-tuple N = (V, I, O,~) where
> V is a finite set of finite-domain state variables,
» [ is a valuation over V called the initial state,
> O is a finite set of SSP operators over V, and
> ~ is a formula over V called the goal.
An MDP planning task is a 4-tuple M = (V,/, O, d) where
» V is a finite set of finite-domain state variables,
» | is a valuation over V called the initial state,
» O is a finite set of MDP operators over V/, and
» d € (0,1) is the discount factor.

A probabilistic planning task is an SSP or MDP planning task.
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Mapping SSP Planning Tasks to SSPs

Definition (SSP Induced by an SSP Planning Task)

The SSP planning task M= (V. I, O,~) induces
the SSP T = (S,A,c, T, s, Si), where

> S is the set of all states over V,
> A is the set of operators O,
» c(o0) = cost(o) for all 0 € O,

» T(s,0,5)= {

» s9=1, and
> S,={seS|skE~}

p if o applicable in s and (p,s’) € s[o]

0 otherwise
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Mapping MDP Planning Tasks to MDPs

Definition (MDP Induced by an MDP Planning Task)
The MDP planning task = (V. I, O, d) induces
the MDP T = (5, A, R, T, sp,7), where
> S is the set of all states over V,
> A is the set of operators O,
» R(s,o0) = reward(o)(s) for all o € O and s € S,
> T(s,0.5) = {p if o ap;.)licable in s and (p,s’) € s[o]
0 otherwise
» s9=1, and
> v =d.
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F5.3 Complexity
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Complexity of Probabilistic Planning

Definition (Policy Existence)
Policy existence (PoLICYEX) is the following decision problem:

GIVEN: SSP planning task Il
QUESTION: Is there a proper policy for 1?7
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Membership in EXP

Theorem
PoLicYEX € EXP

Proof.

The number of states in an SSP planning task is exponential in the
number of variables. The induced SSP can be solved in time
polynomial in |S| - |A| via linear programming and hence in time
exponential in the input size. O
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EXP-completeness of Probabilistic Planning

Theorem
PoLicYEX is EXP-complete.

Proof Sketch.
Membership for POLICYEX: see previous slide.

Hardness is shown by Littman (1997) by reducing the
EXP-complete game G; to POLICYEX.
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F5.4 Estimated Policy Evaluation
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Large SSPs and MDPs

» Before: optimal policies and exact state-values for small SSPs
and MDPs.

» Now: focus on large SSPs and MDPs

» Further algorithms not necessarily optimal
(may generate suboptimal policies)
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Interleaved Planning & Execution

» Number of reachable states of a policy usually exponential in
the number of state variables

» For large SSPs and MDPs, policies cannot be provided
explicitly.

» Solution: (possibly approximate) compact representation of
policy required to describe solution
= not part of this lecture.

> Alternative solution: interleave planning and execution
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Interleaved Planning & Execution for SSPs

Plan-execute-monitor cycle for SSP T

> plan action a for the current state s
P> execute a
> observe new current state s’
> sets:=5s
> repeat until s € S,
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization
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Interleaved Planning & Execution for MDPs

Plan-execute-monitor cycle for MDP T
» plan action a for the current state s

P> execute a

> observe new current state s’

> sets:=5s

>

repeat until discounted reward sufficiently small
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Interleaved Planning & Execution in Practice

avoids loss of precision that often comes
with compact description of policy

does not waste time with planning for states

that are never reached during execution

poor decisions can be avoided by

spending more time with planning before execution

in SSPs, this can even mean that computed policy is
not proper and execution never reaches the goal

in MDPs, it is not clear when the
discounted reward is sufficiently small
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Estimated Policy Evaluation

» The quality of a policy is described by the state-value of the
initial state V(o)

» Quality of given policy 7 can be computed (via LP or
backward induction) or approximated arbitrarily closely
(via iterative policy evaluation) in small SSPs or MDPs

» Impossible if planning and execution are interleaved
as policy is incomplete

= Estimate quality of policy m by executing it n € N times
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Executing a Policy

Definition (Run in SSP)
Let 7 be an SSP and 7 be a proper policy for 7.
A sequence of transitions

p1:7(s0) pn:m(sn—1)
Prn =5 ——*>Sl,---,5-1 ——— 7 5n

is a run pp of w if siy1 ~ si[n(s;)] and s, € S..
The cost of run py is cost(pr) = S5 cost(n(s;)).

A run in an SSP can easily be generated by executing 7
from sp until a state s € S, is encountered.
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Executing a Policy

Definition (Run in MDP)
Let 7 be an MDP and 7 be a policy for T.
A sequence of transitions

p1:m(s0) Pnim(Sn—1)
pr =50 ——— S1,...,50-1 ———— Sp

is a run p, of wif sip1 ~ si[n(s)]-
The reward of run p, is reward(p;) = S 7"0 ' - reward(s;, 7(s;))-

To generate a run, a termination criterion (e.g., based on the
change of the accumulated reward) must be specified.
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Estimated Policy Evaluation

Definition (Estimated Policy Evaluation)

Let 7 be an SSP, 7 be a policy for 7 and (p},...,p") be a
sequence of runs of .
The estimated quality of 7 via estimated policy evaluation is

- 1 <& )
Vi = o Z cost(pr.).
i=1
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Convergence of Estimated Policy Evaluation in SSPs

Theorem

Let T be an SSP, 7 be a policy for T and {(pL,... p") be a
sequence of runs of .

Then V, — Vi(so) for n — oc.

Proof.
Holds due to the strong law of large numbers. [

= V, is a good approximation of v(sp) if n sufficiently large.
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Summary

» MDP and SSP planning tasks represent
MDPs and SSPs compactly.

» Policy existence in SSPs is EXP-complete.

» Interleaving planning and execution avoids representation
issues of (typically exponentially sized) policy.

» Quality of such an incomplete policy can be estimated by
executing it a fixed number of times.

» In SSPs, estimated policy evaluation converges
to the true quality of the policy.
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