Planning and Optimization
F4. Value Iteration

Malte Helmert and Gabriele Roger

Universitat Basel

Content of this Course

Foundations |

Logic |

—| Classical I—

Heuristics |

LT T 1

Constraints |

|:: Factored MDPs |

Content of this Course: Explicit MDPs

—{ Foundations ‘

Linear
Programing

Policy
Iteration

Value
Iteration

Introduction
®0

Introduction

Introduction
oe

From Policy Iteration to Value lteration

m Policy Iteration:

m search over policies
m by evaluating their state-values

m Value lteration:

m search directly over state-values
m optimal policy induced by final state-values

Value Iteration
©0000

Value lteration

Introduction Value Iteration chronous VI

0@000

Value lteration: ldea

m Value Iteration (V1) was first proposed by Bellman in 1957
B computes estimates \70, \71, ... of Vi in an iterative process
m starts with arbitrary Vo

m bases estimate V/*1 on values of estimate V' by treating
Bellman equation as update rule on all states:

Viti(s) =”L<((@)+2 T(s.as W))

s'es

(for SSPs; for MDPs accordingly)
B converges to state-values of optimal policy

m terminates when difference of estimates is small

[e]e] le]e}

Example: Value lteration

Introduction Value Iteration

Asynchronous VI

5 N

0.00 | 0.00 | 0.00 | 0.00
4

0.00 | 0.00 | 0.00 | 0.00
3

0.00 | 0.00 | 0.00 | 0.00
2

0.00 |{ 0.00 | 0.00 | 0.00

So

1

0.00 | 0.00 | 0.00 | 0.00

1 2 3 4

m cost of 3 to move from striped cells (cost is 1 otherwise)

m moving from gray cells unsuccessful with probability 0.6

[e]e] le]e}

Example: Value lteration

Introduction Value Iteration

Asynchronous VI

5 N

1.00 | 1.00 | 1.00 | 0.00
4

1.00 | 1.00 | 3.00 | 1.00
3

1.00 | 1.00 | 1.00 | 1.00
2

1.00 | 1.00 | 1.00 | 1.00

So

1

1.00 | 1.00 | 1.00 | 1.00

1 2 3 4

m cost of 3 to move from striped cells (cost is 1 otherwise)

m moving from gray cells unsuccessful with probability 0.6

[e]e] le]e}

Introduction Value Iteration

Example: Value lteration

Asynchronous VI

5 >

2.00 | 2.00 | 1.00 | 0.00
4

2.00 | 2.00 | 5.20 | 1.60
3

2.00 | 2.00 | 2.00 | 2.00
2

2.00 | 2.00 | 2.00 | 2.00
1 *

2.00 | 2.00 | 2.00 | 2.00

1 2 3 a4

m cost of 3 to move from striped cells (cost is 1 otherwise)

m moving from gray cells unsuccessful with probability 0.6

[e]e] le]e}

Introduction Value Iteration

Example: Value lteration

Asynchronous VI

5 >

3.96 | 2.00 | 1.00 | 0.00
4

460 | 3.00 | 7.79 | 2.31
3

5.00 | 4.00 | 4.49 | 3.96
2

5.00 | 5.00 | 4.84 | 4.76

So

1

5.00 | 5.00 | 5.00 | 4.97

1 2 3 4

m cost of 3 to move from striped cells (cost is 1 otherwise)

m moving from gray cells unsuccessful with probability 0.6

[e]e] le]e}

Introduction Value Iteration

Example: Value lteration

Asynchronous VI

5 N

446 | 2.00 | 1.00 | 0.00
4

5.43 | 3.00 | 8.44 | 2.48
3

6.38 | 4.00 | 5.00 | 4.87
2

8.30 | 6.38 | 6.00 | 6.95

So

1

8.18 | 7.31 | 7.00 | 8.50

1 2 3 4

m cost of 3 to move from striped cells (cost is 1 otherwise)

m moving from gray cells unsuccessful with probability 0.6

[e]e] le]e}

Introduction Value Iteration

Example: Value lteration

Asynchronous VI

5 N

450 | 2.00 | 1.00 | 0.00
4

5.50 | 3.00 | 8.50 | 2.50
3

6.50 | 4.00 | 5.00 | 5.00
2

8.99 | 6.50 | 6.00 | 7.49

So

1

8.50 | 7.50 | 7.00 | 9.49

1 2 3 4

A

m cost of 3 to move from striped cells (cost is 1 otherwise)

m moving from gray cells unsuccessful with probability 0.6

[e]e] le]e}

Introduction Value Iteration

Example: Value lteration

Asynchronous VI

5 N

450 | 2.00 | 1.00 | 0.00
4

5.50 | 3.00 | 8.50 | 2.50
3

6.50 | 4.00 | 5.00 | 5.00
2

9.00 | 6.50 | 6.00 | 7.50

So

1

8.50 | 7.50 | 7.00 | 9.50

1 2 3 4

A

m cost of 3 to move from striped cells (cost is 1 otherwise)

m moving from gray cells unsuccessful with probability 0.6

[e]e] le]e}

Introduction Value Iteration

Example: Value lteration

Asynchronous VI

sl === S
450 | 2.00 | 1.00 | 0.00
4 | = | 10 f
5.50 | 3.00 | 8.50 | 2.50
3 = M ~
6.50 | 4.00 | 5.00 | 5.00
2 o T)
9.00 | 6.50 | 6.00 | 7.50
1 =71 1| &=
8.50 | 7.50 | 7.00 | 9.50
1 2 3 4

Tx

m cost of 3 to move from striped cells (cost is 1 otherwise)

m moving from gray cells unsuccessful with probability 0.6

Introduction Value Iteration Asynchronous VI Summary
000®0

Value lteration for SSPs

Value Iteration for SSP T = (S, A,c, T, s, Sx) and € > 0

initialize V° for 0 for goal states, otherwise arbitrarily
for i=1,2,...:
for all states s € S\ S,
\A/i+1(s) 1= Min,c(s) <c(a) + > ves T(s,a,8)- Vi(s’))
if maxses |Vit1(s) — Vi(s)| < e
return a greedy policy i,

Introduction Value Iteration Asynchronous VI Summar
ooooe

Value lteration for MDPs

Value Iteration for MDP T = (S, A,R, T, sp,7) and € > 0

initialize V/° arbitrarily
for i=1,2,...:
for all states s € S:
V4 (s) i= maxacae) (R(S) + 7+ Lyes T(s,3,8) - Vi(s"))
if maxses |V/T1(s) — Vi(s)| < e
return it

Asynchronous VI

Introduction eratio Asynchronous VI

oeo

Asynchronous Value lteration

Updating all states simultaneously is called
synchronous backup

m Asynchronous VI performs backups for individual states

m Different approaches lead to different backup orders

m Can significantly reduce computation

m Guaranteed to converge if all states are selected repeatedly

= Optimal VI with asynchronous backups possible
=> No obvious termination criterion
= often used in any-time setting (run until you need the result)

Introduction eration Asynchronous VI

ooe

In-place Value Iteration

m Synchronous value iteration creates new copy of value
function (two are required simultaneously)

Vitl(s) := aren/{?s (a)—l—z s,a,s) Vi(s’))
s'eS

m In-place value iteration only requires a single copy of value
function

V(s) := min <c(a) + Z T(s,a,s)- V(s))

2€A(s) s'eS

m In-place VI is asynchronous because some backups are based
on “old” values, some on “new” values

Summary
[ele}

Summary

oeo

Introduction Value Iteration Asynchronous VI Summary

Linear Programming, Policy lteration, or Value Iteration?

Linear Programming is the only technique where the solution
is guaranteed to be optimal (independent from)

Pl and VI are often faster than LP

Policy evaluation is slighly cheaper than a VI iteration

m Pl faster than VI if few iterations required
m VI faster than Pl if number of Pl iterations outweighs
difference of policy evaluation compared to VI

m Asynchronous VI is basis of more sophisticated algorithm
that can be applied in large MDPs and SSPs

Introduction Iteration Asynchro Summary

ooe

Summary

m Value Iteration searches in the space of state-values
m VI applies Bellman equation as update rule iteratively
m VI converges to optimal state-values

m VI remains optimal with asynchronous backups
as long as all states are selected repeatedly

	Introduction
	

	Value Iteration
	

	Asynchronous VI
	

	Summary
	

