

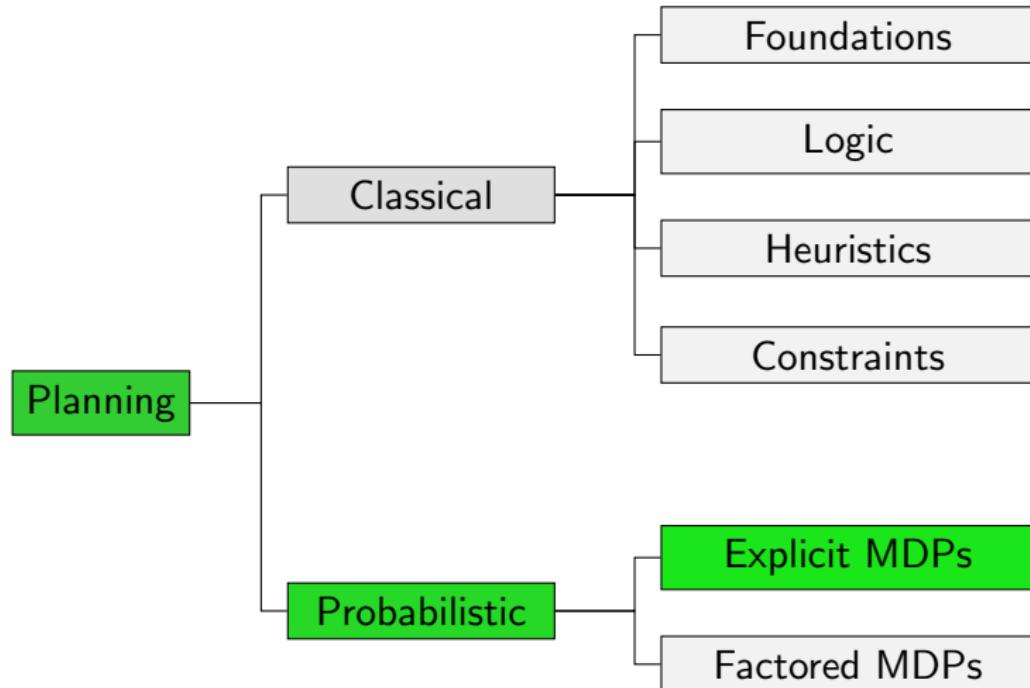
Planning and Optimization

F4. Value Iteration

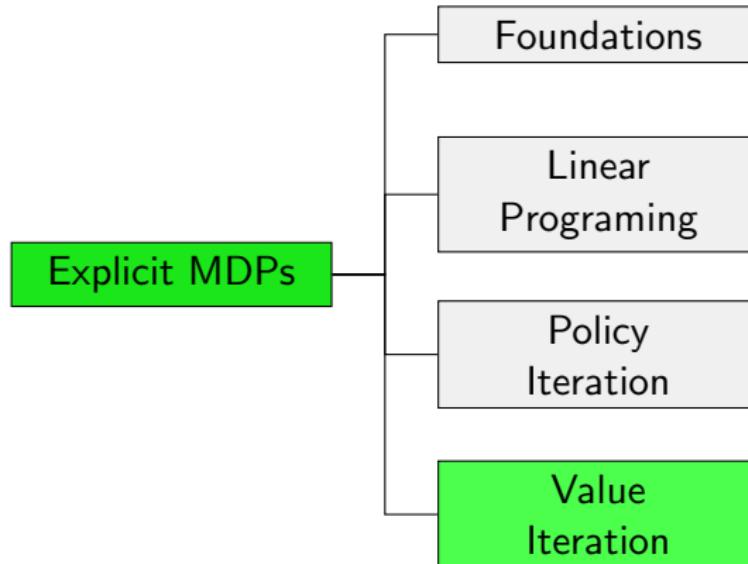
Malte Helmert and Gabriele Röger

Universität Basel

Content of this Course



Content of this Course: Explicit MDPs



Introduction

From Policy Iteration to Value Iteration

- Policy Iteration:
 - search over **policies**
 - by evaluating their **state-values**
- Value Iteration:
 - search directly over **state-values**
 - **optimal policy** induced by final state-values

Value Iteration

Value Iteration: Idea

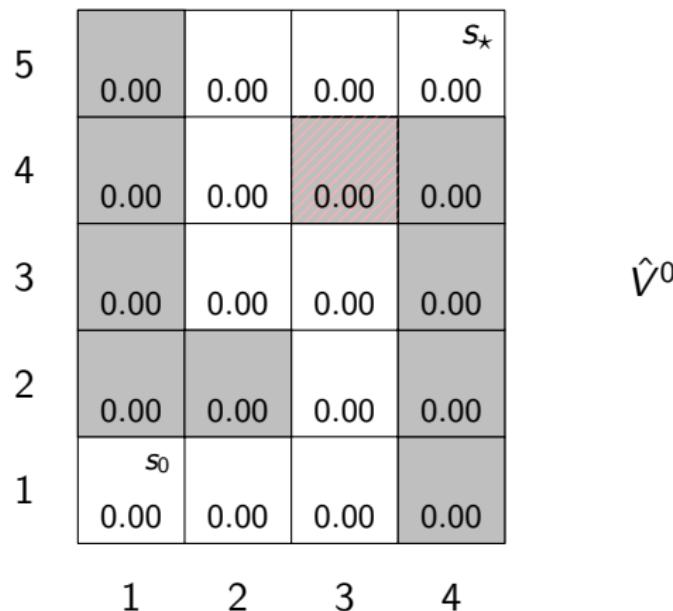
- Value Iteration (VI) was first proposed by Bellman in 1957
- computes estimates $\hat{V}^0, \hat{V}^1, \dots$ of V_* in an **iterative** process
- starts with arbitrary \hat{V}^0
- bases estimate \hat{V}^{i+1} on values of estimate \hat{V}^i by treating **Bellman equation as update rule** on all states:

$$\hat{V}^{i+1}(s) := \min_{a \in A(s)} \left(c(a) + \sum_{s' \in S} T(s, a, s') \cdot \hat{V}^i(s') \right)$$

(for SSPs; for MDPs accordingly)

- converges to state-values of **optimal policy**
- terminates when difference of estimates is small

Example: Value Iteration



- cost of 3 to move from striped cells (cost is 1 otherwise)
- moving from gray cells **unsuccessful** with probability 0.6

Example: Value Iteration

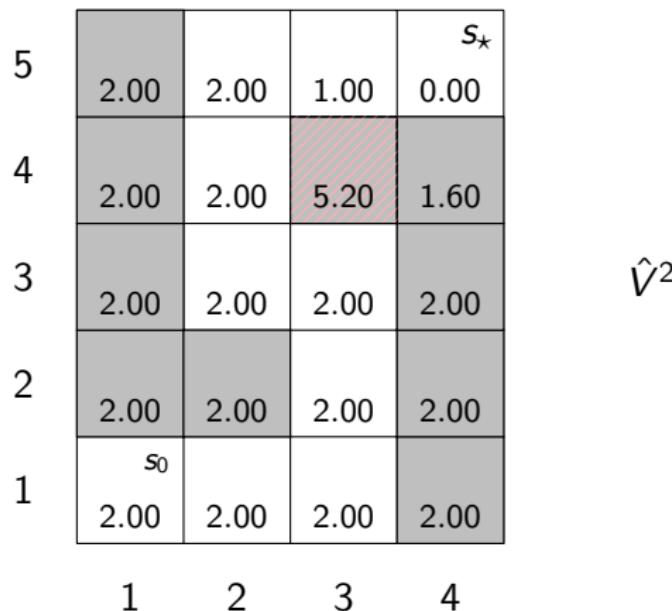
			s_*
5	1.00	1.00	1.00
4	1.00	1.00	3.00
3	1.00	1.00	1.00
2	1.00	1.00	1.00
1	s_0		
	1.00	1.00	1.00

1 2 3 4

\hat{V}^1

- cost of 3 to move from striped cells (cost is 1 otherwise)
- moving from gray cells **unsuccessful** with probability 0.6

Example: Value Iteration



- cost of 3 to move from striped cells (cost is 1 otherwise)
- moving from gray cells **unsuccessful** with probability 0.6

Example: Value Iteration

			s_*
5	3.96	2.00	1.00
4	4.60	3.00	7.79
3	5.00	4.00	4.49
2	5.00	5.00	4.84
1	s_0		4.76
	5.00	5.00	4.97

1 2 3 4

\hat{V}^5

- cost of 3 to move from striped cells (cost is 1 otherwise)
- moving from gray cells **unsuccessful** with probability 0.6

Example: Value Iteration

			s_*	
5	4.46	2.00	1.00	0.00
4	5.43	3.00	8.44	2.48
3	6.38	4.00	5.00	4.87
2	8.30	6.38	6.00	6.95
1	s_0			
	8.18	7.31	7.00	8.50

\hat{V}^{10}

1 2 3 4

- cost of 3 to move from striped cells (cost is 1 otherwise)
- moving from gray cells **unsuccessful** with probability 0.6

Example: Value Iteration

				s_*
5	4.50	2.00	1.00	0.00
4	5.50	3.00	8.50	2.50
3	6.50	4.00	5.00	5.00
2	8.99	6.50	6.00	7.49
1	s_0			
	8.50	7.50	7.00	9.49

\hat{V}^{20}

1 2 3 4

- cost of 3 to move from striped cells (cost is 1 otherwise)
- moving from gray cells **unsuccessful** with probability 0.6

Example: Value Iteration

				s_*
5	4.50	2.00	1.00	0.00
4	5.50	3.00	8.50	2.50
3	6.50	4.00	5.00	5.00
2	9.00	6.50	6.00	7.50
1	s_0			
	8.50	7.50	7.00	9.50

\hat{V}^{29}

1 2 3 4

- cost of 3 to move from striped cells (cost is 1 otherwise)
- moving from gray cells **unsuccessful** with probability 0.6

Example: Value Iteration

				s_*
5	\Rightarrow 4.50	\Rightarrow 2.00	\Rightarrow 1.00	0.00
4	\Rightarrow 5.50	\uparrow 3.00	\uparrow 8.50	\uparrow 2.50
3	\Rightarrow 6.50	\uparrow 4.00	\Leftarrow 5.00	\uparrow 5.00
2	\uparrow 9.00	\uparrow 6.50	\uparrow 6.00	\uparrow 7.50
1	\Rightarrow^{s_0} 8.50	\uparrow 7.50	\uparrow 7.00	\Leftarrow 9.50

π_*

1 2 3 4

- cost of 3 to move from striped cells (cost is 1 otherwise)
- moving from gray cells **unsuccessful** with probability 0.6

Value Iteration for SSPs

Value Iteration for SSP $\mathcal{T} = \langle S, A, c, T, s_0, S_* \rangle$ and $\epsilon > 0$

initialize \hat{V}^0 for 0 for goal states, otherwise arbitrarily

for $i = 1, 2, \dots$:

for all states $s \in S \setminus S_*$:

$$\hat{V}^{i+1}(s) := \min_{a \in A(s)} \left(c(a) + \sum_{s' \in S} T(s, a, s') \cdot \hat{V}^i(s') \right)$$

if $\max_{s \in S} |\hat{V}^{i+1}(s) - \hat{V}^i(s)| < \epsilon$:

return a greedy policy $\pi_{\hat{V}^{i+1}}$

Value Iteration for MDPs

Value Iteration for MDP $\mathcal{T} = \langle S, A, R, T, s_0, \gamma \rangle$ and $\epsilon > 0$

initialize \hat{V}^0 arbitrarily

for $i = 1, 2, \dots$:

for all states $s \in S$:

$$\hat{V}^{i+1}(s) := \max_{a \in A(s)} \left(R(s) + \gamma \cdot \sum_{s' \in S} T(s, a, s') \cdot \hat{V}^i(s') \right)$$

if $\max_{s \in S} |\hat{V}^{i+1}(s) - \hat{V}^i(s)| < \epsilon$:

return $\pi_{\hat{V}^{i+1}}$

Asynchronous VI

Asynchronous Value Iteration

- Updating all states simultaneously is called **synchronous backup**
- Asynchronous VI performs backups for individual states
- Different approaches lead to **different backup orders**
- Can significantly **reduce computation**
- **Guaranteed** to converge if all states are **selected repeatedly**
 - ⇒ Optimal VI with **asynchronous backups** possible
 - ⇒ No obvious termination criterion
 - ⇒ often used in any-time setting (run until you need the result)

In-place Value Iteration

- Synchronous value iteration creates new copy of value function (two are required simultaneously)

$$\hat{V}^{i+1}(s) := \min_{a \in A(s)} \left(c(a) + \sum_{s' \in S} T(s, a, s') \cdot \hat{V}^i(s') \right)$$

- In-place value iteration only requires a single copy of value function

$$\hat{V}(s) := \min_{a \in A(s)} \left(c(a) + \sum_{s' \in S} T(s, a, s') \cdot \hat{V}(s') \right)$$

- In-place VI is asynchronous because some backups are based on “old” values, some on “new” values

Summary

Linear Programming, Policy Iteration, or Value Iteration?

- Linear Programming is the only technique where the solution is **guaranteed to be optimal** (independent from ϵ)
- PI and VI are **often faster** than LP
- Policy evaluation is slightly cheaper than a VI iteration
 - PI faster than VI if **few iterations** required
 - VI faster than PI if number of PI iterations outweighs difference of policy evaluation compared to VI
- Asynchronous VI is basis of more sophisticated algorithm that can be applied in **large MDPs and SSPs**

Summary

- Value Iteration searches in the **space of state-values**
- VI applies **Bellman equation** as update rule iteratively
- VI converges to **optimal** state-values
- VI **remains optimal** with **asynchronous backups**
as long as all states are selected repeatedly