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From Policy Iteration to Value lteration

m Policy Iteration:

m search over policies
m by evaluating their state-values

m Value lteration:

m search directly over state-values
m optimal policy induced by final state-values
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Value lteration: ldea

m Value Iteration (V1) was first proposed by Bellman in 1957
B computes estimates \70, \71, ... of Vi in an iterative process
m starts with arbitrary Vo

m bases estimate V/*1 on values of estimate V' by treating
Bellman equation as update rule on all states:

Viti(s) =”L<( (@)+2 T(s.as W))

s'es

(for SSPs; for MDPs accordingly)
B converges to state-values of optimal policy

m terminates when difference of estimates is small
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Example: Value lteration

Introduction Value Iteration

Asynchronous VI

5 N

0.00 | 0.00 | 0.00 | 0.00
4

0.00 | 0.00 | 0.00 | 0.00
3

0.00 | 0.00 | 0.00 | 0.00
2

0.00 |{ 0.00 | 0.00 | 0.00

So

1

0.00 | 0.00 | 0.00 | 0.00

1 2 3 4

m cost of 3 to move from striped cells (cost is 1 otherwise)

m moving from gray cells unsuccessful with probability 0.6
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Example: Value lteration

Introduction Value Iteration

Asynchronous VI

5 N

1.00 | 1.00 | 1.00 | 0.00
4

1.00 | 1.00 | 3.00 | 1.00
3

1.00 | 1.00 | 1.00 | 1.00
2

1.00 | 1.00 | 1.00 | 1.00

So

1

1.00 | 1.00 | 1.00 | 1.00

1 2 3 4

m cost of 3 to move from striped cells (cost is 1 otherwise)

m moving from gray cells unsuccessful with probability 0.6
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Example: Value lteration

Asynchronous VI

5 >

2.00 | 2.00 | 1.00 | 0.00
4

2.00 | 2.00 | 5.20 | 1.60
3

2.00 | 2.00 | 2.00 | 2.00
2

2.00 | 2.00 | 2.00 | 2.00
1 *

2.00 | 2.00 | 2.00 | 2.00

1 2 3 a4

m cost of 3 to move from striped cells (cost is 1 otherwise)

m moving from gray cells unsuccessful with probability 0.6



[e]e] le]e}

Introduction Value Iteration

Example: Value lteration

Asynchronous VI

5 >

3.96 | 2.00 | 1.00 | 0.00
4

460 | 3.00 | 7.79 | 2.31
3

5.00 | 4.00 | 4.49 | 3.96
2

5.00 | 5.00 | 4.84 | 4.76

So

1

5.00 | 5.00 | 5.00 | 4.97

1 2 3 4

m cost of 3 to move from striped cells (cost is 1 otherwise)

m moving from gray cells unsuccessful with probability 0.6



[e]e] le]e}

Introduction Value Iteration

Example: Value lteration

Asynchronous VI

5 N

446 | 2.00 | 1.00 | 0.00
4

5.43 | 3.00 | 8.44 | 2.48
3

6.38 | 4.00 | 5.00 | 4.87
2

8.30 | 6.38 | 6.00 | 6.95

So

1

8.18 | 7.31 | 7.00 | 8.50

1 2 3 4

m cost of 3 to move from striped cells (cost is 1 otherwise)

m moving from gray cells unsuccessful with probability 0.6
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Introduction Value Iteration

Example: Value lteration

Asynchronous VI

5 N

450 | 2.00 | 1.00 | 0.00
4

5.50 | 3.00 | 8.50 | 2.50
3

6.50 | 4.00 | 5.00 | 5.00
2

8.99 | 6.50 | 6.00 | 7.49

So

1

8.50 | 7.50 | 7.00 | 9.49

1 2 3 4

A

m cost of 3 to move from striped cells (cost is 1 otherwise)

m moving from gray cells unsuccessful with probability 0.6



[e]e] le]e}

Introduction Value Iteration

Example: Value lteration

Asynchronous VI

5 N

450 | 2.00 | 1.00 | 0.00
4

5.50 | 3.00 | 8.50 | 2.50
3

6.50 | 4.00 | 5.00 | 5.00
2

9.00 | 6.50 | 6.00 | 7.50

So

1

8.50 | 7.50 | 7.00 | 9.50

1 2 3 4

A

m cost of 3 to move from striped cells (cost is 1 otherwise)

m moving from gray cells unsuccessful with probability 0.6
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Introduction Value Iteration

Example: Value lteration

Asynchronous VI

sl === S
450 | 2.00 | 1.00 | 0.00
4 | = | 10 f
5.50 | 3.00 | 8.50 | 2.50
3 = M ~
6.50 | 4.00 | 5.00 | 5.00
2 o T )
9.00 | 6.50 | 6.00 | 7.50
1 =71 1| &=
8.50 | 7.50 | 7.00 | 9.50
1 2 3 4

Tx

m cost of 3 to move from striped cells (cost is 1 otherwise)

m moving from gray cells unsuccessful with probability 0.6
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Value lteration for SSPs

Value Iteration for SSP T = (S, A,c, T, s, Sx) and € > 0

initialize V° for 0 for goal states, otherwise arbitrarily
for i=1,2,...:
for all states s € S\ S,
\A/i+1(s) 1= Min,c(s) <c(a) + > ves T(s,a,8)- Vi(s’))
if maxses |Vit1(s) — Vi(s)| < e
return a greedy policy i,
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Value lteration for MDPs

Value Iteration for MDP T = (S, A,R, T, sp,7) and € > 0

initialize V/° arbitrarily
for i=1,2,...:
for all states s € S:
V4 (s) i= maxacae) (R(S) + 7+ Lyes T(s,3,8) - Vi(s"))
if maxses |V/T1(s) — Vi(s)| < e
return it




Asynchronous VI
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Asynchronous Value lteration

Updating all states simultaneously is called
synchronous backup

m Asynchronous VI performs backups for individual states

m Different approaches lead to different backup orders

m Can significantly reduce computation

m Guaranteed to converge if all states are selected repeatedly

= Optimal VI with asynchronous backups possible
=> No obvious termination criterion
= often used in any-time setting (run until you need the result)
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In-place Value Iteration

m Synchronous value iteration creates new copy of value
function (two are required simultaneously)

Vitl(s) := aren/{?s ( a)—l—z s,a,s) Vi(s’))
s'eS

m In-place value iteration only requires a single copy of value
function

V(s) := min <c(a) + Z T(s,a,s)- V(s ))

2€A(s) s'eS

m In-place VI is asynchronous because some backups are based
on “old” values, some on “new” values
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Introduction Value Iteration Asynchronous VI Summary

Linear Programming, Policy lteration, or Value Iteration?

Linear Programming is the only technique where the solution
is guaranteed to be optimal (independent from )

Pl and VI are often faster than LP

Policy evaluation is slighly cheaper than a VI iteration

m Pl faster than VI if few iterations required
m VI faster than Pl if number of Pl iterations outweighs
difference of policy evaluation compared to VI

m Asynchronous VI is basis of more sophisticated algorithm
that can be applied in large MDPs and SSPs
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Summary

m Value Iteration searches in the space of state-values
m VI applies Bellman equation as update rule iteratively
m VI converges to optimal state-values

m VI remains optimal with asynchronous backups
as long as all states are selected repeatedly
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