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F4. Value Iteration

F4.1 Introduction
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Introduction

F4. Value Iteration

From Policy lteration to Value lteration

» Policy lteration:

» search over policies
» by evaluating their state-values

» Value lteration:

» search directly over state-values
» optimal policy induced by final state-values
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F4. Value Iteration

F4.2 Value lteration
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Value Iteration

F4. Value Iteration

Value lteration: ldea

> Value Iteration (VI) was first proposed by Bellman in 1957

Value lteration

P> computes estimates \70, \71, ... of V in an iterative process

> starts with arbitrary Vo

> bases estimate V'*1 on values of estimate V' by treating

Bellman equation as update rule on all states:

Vitl(s) ;= min [ c(a)+ Z T(s,a,s')- Vi(s)

acA(s) cs

(for SSPs; for MDPs accordingly)

> converges to state-values of optimal policy

» terminates when difference of estimates is small
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F4. Value Iteration Value Iteration

Example: Value lteration

5 Si

0.00 | 0.00 | 0.00 | 0.00
4 7

0.00 | 0.00 | 0.00 | 0.00

0

3 0.00 | 0.00 | 0.00 | 0.00 14
2

0.00 | 0.00 | 0.00 | 0.00
1 >

0.00 | 0.00 | 0.00 | 0.00

» cost of 3 to move from striped cells (cost is 1 otherwise)

» moving from gray cells unsuccessful with probability 0.6
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F4. Value Iteration Value Iteration

Example: Value lteration

5 Sk

1.00 | 1.00 | 1.00 | 0.00
4 o

1.00 | 1.00 | 3.00 | 1.00

71

3 1.00 | 1.00 | 1.00 | 1.00 4
2

1.00 | 1.00 | 1.00 | 1.00

%0

1

1.00 | 1.00 | 1.00 | 1.00

> cost of 3 to move from striped cells (cost is 1 otherwise)

» moving from gray cells unsuccessful with probability 0.6
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F4. Value Iteration Value Iteration

Example: Value lteration

5 Si

2.00 | 2.00 | 1.00 | 0.00
A -

2.00 | 2.00 | 5.20 | 1.60

2

3 2.00 | 2.00 | 2.00 | 2.00 14
2

2.00 | 2.00 | 2.00 | 2.00
1 >

2.00 | 2.00 | 2.00 | 2.00

> cost of 3 to move from striped cells (cost is 1 otherwise)

» moving from gray cells unsuccessful with probability 0.6
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F4. Value Iteration Value Iteration

Example: Value lteration

5 Si

3.96 | 2.00 | 1.00 | 0.00
4 -

4.60 | 3.00 | 7.79 | 2.31

/5

3 5.00 | 4.00 | 4.49 | 3.96 v
2

5.00 | 5.00 | 4.84 | 4.76
1 *

5.00 | 5.00 | 5.00 | 4.97

» cost of 3 to move from striped cells (cost is 1 otherwise)

» moving from gray cells unsuccessful with probability 0.6
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F4. Value Iteration Value Iteration

Example: Value lteration

5 Si

446 | 2.00 | 1.00 | 0.00
4 7

543 | 3.00 | 8.44 | 2.48

710

3 6.38 | 4.00 | 5.00 | 4.87 v
2

8.30 | 6.38 | 6.00 | 6.95
1 >

8.18 | 7.31 | 7.00 | 8.50

» cost of 3 to move from striped cells (cost is 1 otherwise)

» moving from gray cells unsuccessful with probability 0.6
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F4. Value Iteration Value Iteration

Example: Value lteration

5 Sk

4.50 | 2.00 | 1.00 | 0.00
4 v

5.50 | 3.00 | 8.50 | 2.50

20

3 6.50 | 4.00 | 5.00 | 5.00 4
2

8.99 | 6.50 | 6.00 | 7.49

S0

1

8.50 | 7.50 | 7.00 | 9.49

> cost of 3 to move from striped cells (cost is 1 otherwise)

» moving from gray cells unsuccessful with probability 0.6
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F4. Value Iteration Value Iteration

Example: Value lteration

5 Sk

450 | 2.00 | 1.00 | 0.00
4 o

5.50 | 3.00 | 8.50 | 2.50

29

3 6.50 | 4.00 | 5.00 | 5.00 14
2

9.00 | 6.50 | 6.00 | 7.50
1 >

8.50 | 7.50 | 7.00 | 9.50

> cost of 3 to move from striped cells (cost is 1 otherwise)

» moving from gray cells unsuccessful with probability 0.6
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F4. Value Iteration Value Iteration

Example: Value lteration

4.50 | 2.00 | 1.00 | 0.00

5.50 | 3.00 | 8.50 | 2.50

6.50 | 4.00 | 5.00 | 5.00

9.00 | 6.50 | 6.00 | 7.50

1= 1| =
8.50 | 7.50 | 7.00 | 9.50

» cost of 3 to move from striped cells (cost is 1 otherwise)

» moving from gray cells unsuccessful with probability 0.6
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F4. Value Iteration

Value lteration for SSPs

Value lteration for SSP T = (5, A, ¢, T, s, Sx) and € > 0

initialize V9 for 0 for goal states, otherwise arbitrarily
for i=1,2,...:
for all states s € S\ S,
\7i+1(s) = Min,ea(s) (c(a) + Y ges T(s,a,9) - \7’(5’))
if maxses |VT(s) — Vi(s)| < e
return a greedy policy i,
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Value Iteration
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F4. Value Iteration Value Iteration

Value Iteration for MDPs

Value Iteration for MDP T = (5, A, R, T, s0,7) and € > 0
initialize VO arbitrarily
for i=1,2,...:
for all states s € S:
Vit1(s) 1= maxsears) (R(s) + 7 Lyes T(s,2.8) - Vi(s)))

A~

if maxses |ViT(s) — Vi(s)| < e
return 71'\7,-+1
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F4. Value Iteration

F4.3 Asynchronous VI
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Asynchronous VI
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F4. Value Iteration Asynchronous VI

Asynchronous Value lteration

» Updating all states simultaneously is called
synchronous backup

» Asynchronous VI performs backups for individual states

» Different approaches lead to different backup orders

» Can significantly reduce computation

» Guaranteed to converge if all states are selected repeatedly

= Optimal VI with asynchronous backups possible
= No obvious termination criterion
= often used in any-time setting (run until you need the result)
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F4. Value lteration Asynchronous VI

In-place Value lteration

» Synchronous value iteration creates new copy of value
function (two are required simultaneously)

Vitl(s):= min | c(a) + T(s,a,s")- V(s
)= g, [0+ X Tls0) 719)

» In-place value iteration only requires a single copy of value
function

V(s) == mi T V(s
(s):= min, C(a)+s§$ (s,a,8) - V(s)

» In-place VI is asynchronous because some backups are based
on “old” values, some on “new” values
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F4. Value Iteration

F4.4 Summary

Summary

F4. Value lteration Summary

Linear Programming, Policy Iteration, or Value Iteration?

» Linear Programming is the only technique where the solution
is guaranteed to be optimal (independent from ¢)
» Pl and VI are often faster than LP
» Policy evaluation is slighly cheaper than a VI iteration
» PI faster than VI if few iterations required
» VI faster than Pl if number of Pl iterations outweighs
difference of policy evaluation compared to VI
» Asynchronous VI is basis of more sophisticated algorithm
that can be applied in large MDPs and SSPs
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F4. Value Iteration Summary
Summary

» Value lteration searches in the space of state-values

» VI applies Bellman equation as update rule iteratively

» VI converges to optimal state-values

» VI remains optimal with asynchronous backups

as long as all states are selected repeatedly
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