
Planning and Optimization
F3. Policy Iteration

Malte Helmert and Gabriele Röger

Universität Basel

Introduction Policy Evaluation Policy Improvement Policy Iteration Summary

Content of this Course

Planning

Classical

Foundations

Logic

Heuristics

Constraints

Probabilistic

Explicit MDPs

Factored MDPs

Introduction Policy Evaluation Policy Improvement Policy Iteration Summary

Content of this Course: Explicit MDPs

Explicit MDPs

Foundations

Linear
Programing

Policy
Iteration

Value
Iteration

Introduction Policy Evaluation Policy Improvement Policy Iteration Summary

Introduction

Introduction Policy Evaluation Policy Improvement Policy Iteration Summary

Limitations of LPs in Practice

With the LP we can compute an optimal policy
in polynomial time.

Possible issues in practice:

LPs often too expensive even for small MDPs

LP solver usage prohibited

More expressive model required (e.g. continuous state space)

Policy Iteration (PI) is a suitable alternative.
It has 2 components:

Policy Evaluation: Compute Vπ for a given π

Policy Improvement: Determine better policy from Vπ

Introduction Policy Evaluation Policy Improvement Policy Iteration Summary

Limitations of LPs in Practice

With the LP we can compute an optimal policy
in polynomial time.

Possible issues in practice:

LPs often too expensive even for small MDPs

LP solver usage prohibited

More expressive model required (e.g. continuous state space)

Policy Iteration (PI) is a suitable alternative.
It has 2 components:

Policy Evaluation: Compute Vπ for a given π

Policy Improvement: Determine better policy from Vπ

Introduction Policy Evaluation Policy Improvement Policy Iteration Summary

Policy Evaluation

Introduction Policy Evaluation Policy Improvement Policy Iteration Summary

Reminder: Value Functions for SSPs

Definition (Value Functions for SSPs)

Let T = 〈S ,A, c ,T , s0, S?〉 be an SSP and π be a policy for T .

The state-value Vπ(s) of s under π is defined as

Vπ(s) :=

{
0 if s ∈ S?

Qπ(s, π(s)) otherwise,

where the action-value Qπ(s, a) of s and a under π is defined as

Qπ(s, a) := c(a) +
∑

s′∈succ(s,a)

T (s, a, s ′) · Vπ(s ′).

The state-value Vπ(s) describes the expected cost
of applying π in SSP T , starting from s.

Introduction Policy Evaluation Policy Improvement Policy Iteration Summary

Policy Evaluation: Implementations

Computing Vπ for a given policy π is called policy evaluation.

There are several algorithms for policy evaluation:

1 Linear Program

2 Backward Induction

3 Iterative Policy Evaluation

Introduction Policy Evaluation Policy Improvement Policy Iteration Summary

Reminder: LP for Expected Cost in SSP

Variables

Non-negative variable ExpCosts for each state s

Objective

Maximize ExpCosts0

Subject to

ExpCosts? = 0 for all goal states s?

ExpCosts ≤ (
∑
s′∈S

T (s, a, s ′) · ExpCosts′) + c(a)

for all s ∈ S and a ∈ A(s)

Introduction Policy Evaluation Policy Improvement Policy Iteration Summary

LP for Policy Evaluation in SSP

Variables

Non-negative variable ExpCosts for each state s

Objective

Maximize ExpCosts0

Subject to

ExpCosts? = 0 for all goal states s?

ExpCosts ≤ (
∑
s′∈S

T (s, π(s), s ′) · ExpCosts′) + c(π(s))

for all s ∈ S and a ∈ A(s)

Introduction Policy Evaluation Policy Improvement Policy Iteration Summary

Policy Evaluation via LP

is polynomial in |S |
difference between polynomial in |S | and
polynomial in |S | · |A| is sometimes relevant in practice

but often this is not the case

other practical limitations also apply here

 Require policy evaluation without LP

Introduction Policy Evaluation Policy Improvement Policy Iteration Summary

Policy Evaluation: Implementations

Computing Vπ for a given policy π is called policy evaluation.

There are several algorithms for policy evaluation:

1 Linear Program

2 Backward Induction

3 Iterative Policy Evaluation

Introduction Policy Evaluation Policy Improvement Policy Iteration Summary

Example: Backward Induction in Deterministic SSP

1 2 3 4

1

2

3

4

5

s0⇒ ⇒ ⇑ ⇐

⇑ ⇑ ⇑ ⇐

⇒ ⇑ ⇐ ⇐

⇒ ⇑ ⇑ ⇑

⇒ ⇒ ⇒ s?

cost of 3 to move from striped cells (cost is 1 otherwise)

Dummy

Introduction Policy Evaluation Policy Improvement Policy Iteration Summary

Example: Backward Induction in Deterministic SSP

1 2 3 4

1

2

3

4

5

s0⇒ ⇒ ⇑ ⇐

⇑ ⇑ ⇑ ⇐

⇒ ⇑ ⇐ ⇐

⇒ ⇑ ⇑ ⇑

⇒ ⇒ ⇒
0.00

s?

cost of 3 to move from striped cells (cost is 1 otherwise)

Dummy

Introduction Policy Evaluation Policy Improvement Policy Iteration Summary

Example: Backward Induction in Deterministic SSP

1 2 3 4

1

2

3

4

5

s0⇒ ⇒ ⇑ ⇐

⇑ ⇑ ⇑ ⇐

⇒ ⇑ ⇐ ⇐

⇒ ⇑ ⇑ ⇑
3.00

⇒ ⇒ ⇒
1.00 0.00

s?

cost of 3 to move from striped cells (cost is 1 otherwise)

Dummy

Introduction Policy Evaluation Policy Improvement Policy Iteration Summary

Example: Backward Induction in Deterministic SSP

1 2 3 4

1

2

3

4

5

s0⇒ ⇒ ⇑ ⇐

⇑ ⇑ ⇑ ⇐

⇒ ⇑ ⇐ ⇐

⇒ ⇑ ⇑
4.00

⇑
3.00

⇒ ⇒
2.00

⇒
1.00 0.00

s?

cost of 3 to move from striped cells (cost is 1 otherwise)

Dummy

Introduction Policy Evaluation Policy Improvement Policy Iteration Summary

Example: Backward Induction in Deterministic SSP

1 2 3 4

1

2

3

4

5

s0⇒ ⇒ ⇑ ⇐

⇑ ⇑ ⇑ ⇐

⇒ ⇑ ⇐ ⇐

⇒ ⇑
3.00

⇑
4.00

⇑
3.00

⇒
5.00

⇒
2.00

⇒
1.00 0.00

s?

cost of 3 to move from striped cells (cost is 1 otherwise)

Dummy

Introduction Policy Evaluation Policy Improvement Policy Iteration Summary

Example: Backward Induction in Deterministic SSP

1 2 3 4

1

2

3

4

5

s0⇒ ⇒ ⇑ ⇐

⇑ ⇑ ⇑ ⇐

⇒ ⇑
4.00

⇐ ⇐

⇒
6.00

⇑
3.00

⇑
4.00

⇑
3.00

⇒
5.00

⇒
2.00

⇒
1.00 0.00

s?

cost of 3 to move from striped cells (cost is 1 otherwise)

Dummy

Introduction Policy Evaluation Policy Improvement Policy Iteration Summary

Example: Backward Induction in Deterministic SSP

1 2 3 4

1

2

3

4

5

s0⇒ ⇒ ⇑ ⇐

⇑ ⇑
7.00

⇑ ⇐

⇒
7.00

⇑
4.00

⇐
5.00

⇐

⇒
6.00

⇑
3.00

⇑
4.00

⇑
3.00

⇒
5.00

⇒
2.00

⇒
1.00 0.00

s?

cost of 3 to move from striped cells (cost is 1 otherwise)

Dummy

Introduction Policy Evaluation Policy Improvement Policy Iteration Summary

Example: Backward Induction in Deterministic SSP

1 2 3 4

1

2

3

4

5

s0⇒ ⇒ ⇑ ⇐

⇑
10.00

⇑
7.00

⇑
6.00

⇐

⇒
7.00

⇑
4.00

⇐
5.00

⇐
8.00

⇒
6.00

⇑
3.00

⇑
4.00

⇑
3.00

⇒
5.00

⇒
2.00

⇒
1.00 0.00

s?

cost of 3 to move from striped cells (cost is 1 otherwise)

Dummy

Introduction Policy Evaluation Policy Improvement Policy Iteration Summary

Example: Backward Induction in Deterministic SSP

1 2 3 4

1

2

3

4

5

s0⇒ ⇒ ⇑
7.00

⇐

⇑
10.00

⇑
7.00

⇑
6.00

⇐
9.00

⇒
7.00

⇑
4.00

⇐
5.00

⇐
8.00

⇒
6.00

⇑
3.00

⇑
4.00

⇑
3.00

⇒
5.00

⇒
2.00

⇒
1.00 0.00

s?

cost of 3 to move from striped cells (cost is 1 otherwise)

Dummy

Introduction Policy Evaluation Policy Improvement Policy Iteration Summary

Example: Backward Induction in Deterministic SSP

1 2 3 4

1

2

3

4

5

s0⇒ ⇒
8.00

⇑
7.00

⇐
10.00

⇑
10.00

⇑
7.00

⇑
6.00

⇐
9.00

⇒
7.00

⇑
4.00

⇐
5.00

⇐
8.00

⇒
6.00

⇑
3.00

⇑
4.00

⇑
3.00

⇒
5.00

⇒
2.00

⇒
1.00 0.00

s?

cost of 3 to move from striped cells (cost is 1 otherwise)

Dummy

Introduction Policy Evaluation Policy Improvement Policy Iteration Summary

Example: Backward Induction in Deterministic SSP

1 2 3 4

1

2

3

4

5

s0⇒
9.00

⇒
8.00

⇑
7.00

⇐
10.00

⇑
10.00

⇑
7.00

⇑
6.00

⇐
9.00

⇒
7.00

⇑
4.00

⇐
5.00

⇐
8.00

⇒
6.00

⇑
3.00

⇑
4.00

⇑
3.00

⇒
5.00

⇒
2.00

⇒
1.00 0.00

s?

cost of 3 to move from striped cells (cost is 1 otherwise)

Dummy

Introduction Policy Evaluation Policy Improvement Policy Iteration Summary

Policy Evaluation via Backward Induction

is linear in |S |
but restricted to special cases

 When is policy evaluation via backward induction possible?

In deterministic planning problems?

Introduction Policy Evaluation Policy Improvement Policy Iteration Summary

Example: Backward Induction in Probabilistic SSP

1 2 3 4

1

2

3

4

5

s0⇒ ⇒ ⇑ ⇐

⇑ ⇑ ⇑ ⇐

⇒ ⇑ ⇐ ⇐

⇒ ⇑ ⇑ ⇑

⇒ ⇒ ⇒ s?

cost of 3 to move from striped cells (cost is 1 otherwise)

probability of 0.4 to “⇒” in gray cell

Introduction Policy Evaluation Policy Improvement Policy Iteration Summary

Example: Backward Induction in Probabilistic SSP

1 2 3 4

1

2

3

4

5

s0⇒ ⇒ ⇑ ⇐

⇑ ⇑ ⇑ ⇐

⇒ ⇑ ⇐ ⇐

⇒ ⇑ ⇑ ⇑

⇒ ⇒ ⇒
0.00

s?

cost of 3 to move from striped cells (cost is 1 otherwise)

probability of 0.4 to “⇒” in gray cell

Introduction Policy Evaluation Policy Improvement Policy Iteration Summary

Example: Backward Induction in Probabilistic SSP

1 2 3 4

1

2

3

4

5

s0⇒ ⇒ ⇑ ⇐

⇑ ⇑ ⇑ ⇐

⇒ ⇑ ⇐ ⇐

⇒ ⇑ ⇑ ⇑
3.00

⇒ ⇒ ⇒
1.00 0.00

s?

cost of 3 to move from striped cells (cost is 1 otherwise)

probability of 0.4 to “⇒” in gray cell

Introduction Policy Evaluation Policy Improvement Policy Iteration Summary

Example: Backward Induction in Probabilistic SSP

1 2 3 4

1

2

3

4

5

s0⇒ ⇒ ⇑ ⇐

⇑ ⇑ ⇑ ⇐

⇒ ⇑ ⇐ ⇐

⇒ ⇑ ⇑
2.80

⇑
3.00

⇒ ⇒
2.00

⇒
1.00 0.00

s?

cost of 3 to move from striped cells (cost is 1 otherwise)

probability of 0.4 to “⇒” in gray cell

Introduction Policy Evaluation Policy Improvement Policy Iteration Summary

Example: Backward Induction in Probabilistic SSP

1 2 3 4

1

2

3

4

5

s0⇒
9.00

⇒
8.00

⇑
7.00

⇐
10.00

⇑
10.00

⇑
7.00

⇑
6.00

⇐
9.00

⇒
7.00

⇑
4.00

⇐
5.00

⇐
8.00

⇒
6.00

⇑
3.00

⇑
2.80

⇑
3.00

⇒
5.00

⇒
2.00

⇒
1.00 0.00

s?

cost of 3 to move from striped cells (cost is 1 otherwise)

probability of 0.4 to “⇒” in gray cell

Introduction Policy Evaluation Policy Improvement Policy Iteration Summary

Policy Evaluation via Backward Induction

 When is policy evaluation via backward induction possible?

In deterministic planning problems?
No, policy must be acyclic.

Introduction Policy Evaluation Policy Improvement Policy Iteration Summary

Policy Evaluation: Implementations

Computing Vπ for a given policy π is called policy evaluation.

There are several algorithms for policy evaluation:

1 Linear Program

2 Backward Induction for acyclic policies

3 Iterative Policy Evaluation

Introduction Policy Evaluation Policy Improvement Policy Iteration Summary

Backward Induction: Algorithm

Backward Induction for SSP 〈S ,A, c ,T , s0,S?〉
and complete policy π

initialize Vπ(s) := none for all s ∈ S
Vπ(s) := 0 for all s ∈ S?
while there is a s ∈ S with Vπ(s) = none:

pick s ∈ S with Vπ(s) = none and
Vπ(s ′) 6= none for all s ′ ∈ succ(s, π(s))

set Vπ(s) := c(π(s)) +
∑

s′∈S T (s, π(s), s ′) · Vπ(s ′)
return Vπ

Introduction Policy Evaluation Policy Improvement Policy Iteration Summary

Policy Evaluation: Implementations

Computing Vπ for a given policy π is called policy evaluation.

There are several algorithms for policy evaluation:

1 Linear Program

2 Backward Induction for acyclic policies

3 Iterative Policy Evaluation

Introduction Policy Evaluation Policy Improvement Policy Iteration Summary

Iterative Policy Evaluation: Idea

impossible to compute state-values
in one sweep over the state space in presence of cycles

start with arbitrary state-value function V̂ 0
π

treat state-value function as update rule

V̂ i
π(s) = c(π(s)) +

∑
s′∈S

T (s, π(s), s ′) · V̂ i−1
π (s ′)

apply update rule iteratively

until state-values have converged

Introduction Policy Evaluation Policy Improvement Policy Iteration Summary

Iterative Policy Evaluation for SSPs: Example

1 2 3 4

1

2

3

4

5

V̂ 0
π

s0⇒
0.00

⇒
0.00

⇑
0.00

⇐
0.00

⇑
0.00

⇑
0.00

⇑
0.00

⇐
0.00

⇒
0.00

⇑
0.00

⇐
0.00

⇐
0.00

⇒
0.00

⇑
0.00

⇑
0.00

⇑
0.00

⇒
0.00

⇒
0.00

⇒
0.00 0.00

s?

cost of 3 to move from striped cells (cost is 1 otherwise)

moving from gray cells unsuccessful with probability 0.6

Introduction Policy Evaluation Policy Improvement Policy Iteration Summary

Iterative Policy Evaluation for SSPs: Example

1 2 3 4

1

2

3

4

5

V̂ 1
π

s0⇒
1.00

⇒
1.00

⇑
1.00

⇐
1.00

⇑
1.00

⇑
1.00

⇑
1.00

⇐
1.00

⇒
1.00

⇑
1.00

⇐
1.00

⇐
1.00

⇒
1.00

⇑
1.00

⇑
3.00

⇑
1.00

⇒
1.00

⇒
1.00

⇒
1.00 0.00

s?

cost of 3 to move from striped cells (cost is 1 otherwise)

moving from gray cells unsuccessful with probability 0.6

Introduction Policy Evaluation Policy Improvement Policy Iteration Summary

Iterative Policy Evaluation for SSPs: Example

1 2 3 4

1

2

3

4

5

V̂ 2
π

s0⇒
2.00

⇒
2.00

⇑
2.00

⇐
2.00

⇑
2.00

⇑
2.00

⇑
2.00

⇐
2.00

⇒
2.00

⇑
2.00

⇐
2.00

⇐
2.00

⇒
2.00

⇑
2.00

⇑
5.20

⇑
1.60

⇒
2.00

⇒
2.00

⇒
1.00 0.00

s?

cost of 3 to move from striped cells (cost is 1 otherwise)

moving from gray cells unsuccessful with probability 0.6

Introduction Policy Evaluation Policy Improvement Policy Iteration Summary

Iterative Policy Evaluation for SSPs: Example

1 2 3 4

1

2

3

4

5

V̂ 5
π

s0⇒
5.00

⇒
5.00

⇑
5.00

⇐
5.00

⇑
5.00

⇑
5.00

⇑
5.00

⇐
5.00

⇒
5.00

⇑
4.00

⇐
5.00

⇐
5.00

⇒
4.60

⇑
3.00

⇑
7.79

⇑
2.31

⇒
3.96

⇒
2.00

⇒
1.00 0.00

s?

cost of 3 to move from striped cells (cost is 1 otherwise)

moving from gray cells unsuccessful with probability 0.6

Introduction Policy Evaluation Policy Improvement Policy Iteration Summary

Iterative Policy Evaluation for SSPs: Example

1 2 3 4

1

2

3

4

5

V̂ 10
π

s0⇒
9.00

⇒
8.00

⇑
7.00

⇐
8.96

⇑
8.30

⇑
6.38

⇑
6.00

⇐
8.18

⇒
6.38

⇑
4.00

⇐
5.00

⇐
7.31

⇒
5.43

⇑
3.00

⇑
8.44

⇑
2.50

⇒
4.46

⇒
2.00

⇒
1.00 0.00

s?

cost of 3 to move from striped cells (cost is 1 otherwise)

moving from gray cells unsuccessful with probability 0.6

Introduction Policy Evaluation Policy Improvement Policy Iteration Summary

Iterative Policy Evaluation for SSPs: Example

1 2 3 4

1

2

3

4

5

V̂ 29
π

s0⇒
9.00

⇒
8.00

⇑
7.00

⇐
9.50

⇑
9.00

⇑
6.50

⇑
6.00

⇐
8.50

⇒
6.50

⇑
4.00

⇐
5.00

⇐
7.50

⇒
5.50

⇑
3.00

⇑
8.50

⇑
2.50

⇒
4.50

⇒
2.00

⇒
1.00 0.00

s?

cost of 3 to move from striped cells (cost is 1 otherwise)

moving from gray cells unsuccessful with probability 0.6

Introduction Policy Evaluation Policy Improvement Policy Iteration Summary

Iterative Policy Evaluation: Algorithm

Iterative Policy Evaluation for SSP 〈S ,A, c,T , s0,S?〉,
complete policy π and ε > 0

initialize V̂ 0 to 0 for goal states, otherwise arbitarily
for i = 1, 2, . . . :

for all states s ∈ S \ S?:
V̂ i
π(s) := c(π(s)) +

∑
s′∈S T (s, π(s), s ′) · V̂ i−1

π (s ′)

if maxs∈S |V̂ i
π(s)− V̂ i−1

π (s)| < ε:
return V̂ i

π

Introduction Policy Evaluation Policy Improvement Policy Iteration Summary

Iterative Policy Evaluation: Properties

Theorem (Convergence of Iterative Policy Evaluation)

Let T = 〈S ,A, c ,T , s0, S?〉 be an SSP, π be a proper policy for T
and V̂ 0

π (s) ∈ R arbitrarily for all s \ S?.

Iterative policy evaluation converges to the true state-values, i.e.,

lim
i→∞

V̂ i
π(s) = Vπ(s) for all s ∈ S .

Proof omitted.

In practice, iterative policy evaluation converges to
true state-values if ε is small enough.

Introduction Policy Evaluation Policy Improvement Policy Iteration Summary

Policy Evaluation: MDPs

What about policy evaluation for MDPs?

MDPs (with finite state set) are always cyclic
⇒ backward induction not applicable

but goal state not required for iterative policy evaluation

albeit traces are infinite, iterative policy evaluation converges

convergence theorem also holds for MDPs

Introduction Policy Evaluation Policy Improvement Policy Iteration Summary

Policy Improvement

Introduction Policy Evaluation Policy Improvement Policy Iteration Summary

Example: Greedy Action

1 2 3 4

1

2

3

4

5

V̂ 18
π (s)

s0⇒
9.0

⇒
8.00

⇑
7.00

⇐
9.50

⇑
9.00

⇑
6.50

⇑
6.00

⇐
8.50

⇒
6.50

⇑
4.00

⇐
5.00

⇐
7.50

⇒
5.50

⇑
3.00

⇑
8.50

⇑
2.50

⇒
4.50

⇒
2.00

⇒
1.00 0.00

s?

Can we learn more from this than the state-values of a policy?

Yes! By evaluating all actions in each state,
we can derive a better policy

Introduction Policy Evaluation Policy Improvement Policy Iteration Summary

Example: Greedy Action

1 2 3 4

1

2

3

4

5

V̂ 18
π (s)

s0⇒
9.0

⇑
8.00

⇑
7.00

⇐
9.50

⇑
9.00

⇑
6.50

⇑
6.00

⇐
8.50

⇒
6.50

⇑
4.00

⇐
5.00

⇑
7.50

⇒
5.50

⇑
3.00

⇑
8.50

⇑
2.50

⇒
4.50

⇒
2.00

⇒
1.00 0.00

s?

Can we learn more from this than the state-values of a policy?

Yes! By evaluating all actions in each state,
we can derive a better policy

Introduction Policy Evaluation Policy Improvement Policy Iteration Summary

Greedy Actions and Policies for SSPs

Definition (Greedy Action)

Let s be a state of an SSP T = 〈S ,A, c ,T , s0,S?〉 and
V be a state-value function for T .
The set of greedy actions in s with respect to V is

AV (s) := arg min
a∈A(s)

(
c(a) +

∑
s′∈S

T (s, a, s ′) · V (s ′)

)
.

A policy πV with πV (s) ∈ AV (s) is a greedy policy.

Determining a greedy policy of a given state-value function
is called policy improvement.

Introduction Policy Evaluation Policy Improvement Policy Iteration Summary

Greedy Actions and Policies for MDPs

Definition (Greedy Action)

Let s be a state of a (discounted-reward) MDP
T = 〈S ,A,R,T , s0, γ〉 and V be a state-value function for T .
The set of greedy actions in s with respect to V is

AV (s) := arg max
a∈A(s)

(
R(s, a) + γ

∑
s′∈S

T (s, a, s ′) · V (s ′)

)
.

A policy πV with πV (s) ∈ AV (s) is a greedy policy.

Determining a greedy policy of a given state-value function
is called policy improvement.

Introduction Policy Evaluation Policy Improvement Policy Iteration Summary

Policy Iteration

Introduction Policy Evaluation Policy Improvement Policy Iteration Summary

Policy Iteration

Policy Iteration (PI) was first proposed by Howard in 1960

based on the observation that the greedy actions
describe a better policy

starts with arbitrary policy π0

alternates policy evaluation and policy improvement

as long as policy changes

Introduction Policy Evaluation Policy Improvement Policy Iteration Summary

Example: Policy Iteration

1 2 3 4

1

2

3

4

5

π0 = π3

π0

s0⇒
9.00

⇒
8.00

⇑
7.00

⇐
9.50

⇑
9.00

⇑
6.50

⇑
6.00

⇐
8.50

⇒
6.50

⇑
4.00

⇐
5.00

⇐
7.50

⇒
5.50

⇑
3.00

⇑
8.50

⇑
2.50

⇒
4.50

⇒
2.00

⇒
1.00 0.00

s?

Introduction Policy Evaluation Policy Improvement Policy Iteration Summary

Example: Policy Iteration

1 2 3 4

1

2

3

4

5

π0 = π3

π1

s0⇒
8.50

⇑
7.50

⇑
7.00

⇐
9.50

⇑
9.00

⇑
6.50

⇑
6.00

⇐
8.50

⇒
6.50

⇑
4.00

⇐
5.00

⇑
5.00

⇒
5.50

⇑
3.00

⇑
8.50

⇑
2.50

⇒
4.50

⇒
2.00

⇒
1.00 0.00

s?

Introduction Policy Evaluation Policy Improvement Policy Iteration Summary

Example: Policy Iteration

1 2 3 4

1

2

3

4

5

π0 = π3

π2 = π3

s0⇒
8.50

⇑
7.50

⇑
7.00

⇐
9.50

⇑
9.00

⇑
6.50

⇑
6.00

⇑
7.50

⇒
6.50

⇑
4.00

⇐
5.00

⇑
5.00

⇒
5.50

⇑
3.00

⇑
8.50

⇑
2.50

⇒
4.50

⇒
2.00

⇒
1.00 0.00

s?

Introduction Policy Evaluation Policy Improvement Policy Iteration Summary

Policy Iteration: Algorithm

Policy Iteration for SSP or MDP T
initialize π0 to any policy (for SSP: proper)
for i = 0, 1, . . . :

compute Vπi
let πi+1 be a greedy policy w.r.t Vπi
if πi = πi+1:

return πi

Note: if πi (s) ∈ AVπi (s)
then use πi+1(s) := πi (s)

(only update the policy where necessary).

Introduction Policy Evaluation Policy Improvement Policy Iteration Summary

Properties

PI computes optimal policy if policy evaluation is exact

In practice, PI often requires very few iterations . . .

. . . and is much faster than solving an LP

Introduction Policy Evaluation Policy Improvement Policy Iteration Summary

Summary

Introduction Policy Evaluation Policy Improvement Policy Iteration Summary

Summary

Policy evaluation for an acyclic policy is possible in one sweep
over the state space with backward induction

Iterative policy evaluation applies state-value function
iteratively and converges to true state-values

Greedy actions in evaluated policy allow to improve policy

Policy iteration alternates policy evaluation and policy
improvement

Policy iteration computes an optimal policy
(if policy evaluation is exact)

	Introduction
	

	Policy Evaluation
	

	Policy Improvement
	

	Policy Iteration
	

	Summary
	

