

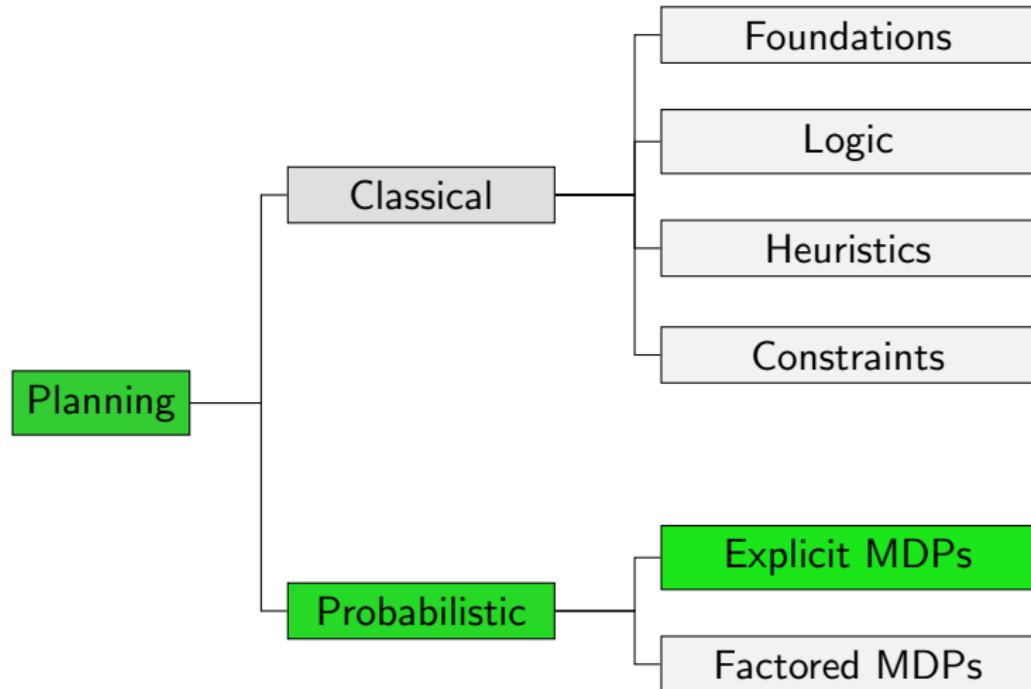
Planning and Optimization

F3. Policy Iteration

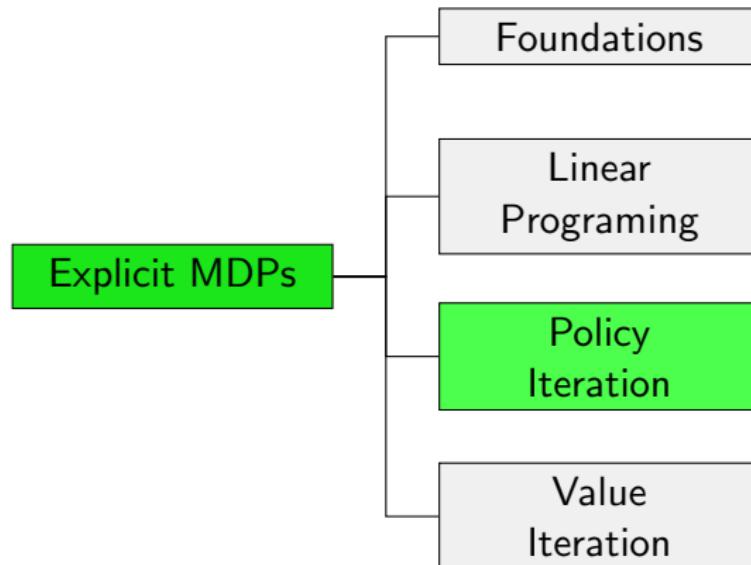
Malte Helmert and Gabriele Röger

Universität Basel

Content of this Course



Content of this Course: Explicit MDPs



Introduction

●○

Policy Evaluation

oooooooooooooooooooo

Policy Improvement

oooo

Policy Iteration

oooo

Summary

○○

Introduction

Limitations of LPs in Practice

With the LP we can compute an optimal policy in polynomial time.

Possible issues in practice:

- LPs often too expensive even for small MDPs
- LP solver usage prohibited
- More expressive model required (e.g. continuous state space)

Limitations of LPs in Practice

With the LP we can compute an optimal policy in polynomial time.

Possible issues in practice:

- LPs often too expensive even for small MDPs
- LP solver usage prohibited
- More expressive model required (e.g. continuous state space)

Policy Iteration (PI) is a suitable alternative.

It has 2 components:

- Policy Evaluation: Compute V_π for a given π
- Policy Improvement: Determine better policy from V_π

Introduction
oo

Policy Evaluation
●oooooooooooooooooooo

Policy Improvement
oooo

Policy Iteration
oooo

Summary
oo

Policy Evaluation

Reminder: Value Functions for SSPs

Definition (Value Functions for SSPs)

Let $\mathcal{T} = \langle S, A, c, T, s_0, S_* \rangle$ be an SSP and π be a policy for \mathcal{T} .

The **state-value** $V_\pi(s)$ of s under π is defined as

$$V_\pi(s) := \begin{cases} 0 & \text{if } s \in S_* \\ Q_\pi(s, \pi(s)) & \text{otherwise,} \end{cases}$$

where the **action-value** $Q_\pi(s, a)$ of s and a under π is defined as

$$Q_\pi(s, a) := c(a) + \sum_{s' \in \text{succ}(s, a)} T(s, a, s') \cdot V_\pi(s').$$

The state-value $V_\pi(s)$ describes the **expected cost** of applying π in SSP \mathcal{T} , starting from s .

Policy Evaluation: Implementations

Computing V_π for a given policy π is called **policy evaluation**.

There are several algorithms for policy evaluation:

- ① Linear Program

Reminder: LP for Expected Cost in SSP

Variables

Non-negative variable ExpCost_s for each state s

Objective

Maximize ExpCost_{s_0}

Subject to

$$\text{ExpCost}_{s_*} = 0 \quad \text{for all goal states } s_*$$

$$\text{ExpCost}_s \leq \left(\sum_{s' \in S} T(s, a, s') \cdot \text{ExpCost}_{s'} \right) + c(a)$$

for all $s \in S$ and $a \in A(s)$

LP for Policy Evaluation in SSP

Variables

Non-negative variable ExpCost_s for each state s

Objective

Maximize ExpCost_{s_0}

Subject to

$$\text{ExpCost}_{s_*} = 0 \quad \text{for all goal states } s_*$$

$$\text{ExpCost}_s \leq \left(\sum_{s' \in S} T(s, \pi(s), s') \cdot \text{ExpCost}_{s'} \right) + c(\pi(s))$$

for all $s \in S$ ~~and $a \in A(s)$~~

Policy Evaluation via LP

- is polynomial in $|S|$
- difference between polynomial in $|S|$ and polynomial in $|S| \cdot |A|$ is sometimes relevant in practice
- but often this is not the case
- other practical limitations also apply here

~~> Require policy evaluation without LP

Policy Evaluation: Implementations

Computing V_π for a given policy π is called **policy evaluation**.

There are several algorithms for policy evaluation:

- ① Linear Program
- ② Backward Induction

Example: Backward Induction in Deterministic SSP

	\Rightarrow	\Rightarrow	\Rightarrow	s_*
5				
4	\Rightarrow	\uparrow	\uparrow	\uparrow
3	\Rightarrow	\uparrow	\Leftarrow	\Leftarrow
2	\uparrow	\uparrow	\uparrow	\Leftarrow
1	\Rightarrow^{s_0}	\Rightarrow	\uparrow	\Leftarrow
	1	2	3	4

- cost of 3 to move from striped cells (cost is 1 otherwise)

Example: Backward Induction in Deterministic SSP

	⇒	⇒	⇒	s_* 0.00
5				
4	⇒	↑↑	↑↑	↑↑
3	⇒	↑↑	↔	↔
2	↑↑	↑↑	↑↑	↔
1	\Rightarrow^{s_0}	⇒	↑↑	↔
	1	2	3	4

- cost of 3 to move from striped cells (cost is 1 otherwise)

Example: Backward Induction in Deterministic SSP

	⇒	⇒	⇒ 1.00	s_* 0.00
5				
4	⇒	↑↑	↑↑	↑↑ 3.00
3	⇒	↑↑	⇐	⇐
2	↑↑	↑↑	↑↑	⇐
1	⇒ s_0	⇒	↑↑	⇐
	1	2	3	4

- cost of 3 to move from striped cells (cost is 1 otherwise)

Example: Backward Induction in Deterministic SSP

	⇒	⇒	⇒	s_*
5		2.00	1.00	0.00
4	⇒	↑↑	↑↑	↑↑
3	⇒	↑↑	↔	↔
2	↑↑	↑↑	↑↑	↔
1	$\Rightarrow s_0$	⇒	↑↑	↔
	1	2	3	4

- cost of 3 to move from striped cells (cost is 1 otherwise)

Example: Backward Induction in Deterministic SSP

5	\Rightarrow 5.00	\Rightarrow 2.00	\Rightarrow 1.00	s_* 0.00
4	\Rightarrow	\uparrow 3.00	\uparrow 4.00	\uparrow 3.00
3	\Rightarrow	\uparrow	\Leftarrow	\Leftarrow
2	\uparrow	\uparrow	\uparrow	\Leftarrow
1	\Rightarrow^{s_0}	\Rightarrow	\uparrow	\Leftarrow

- cost of 3 to move from striped cells (cost is 1 otherwise)

Example: Backward Induction in Deterministic SSP

5	\Rightarrow 5.00	\Rightarrow 2.00	\Rightarrow 1.00	s_* 0.00
4	\Rightarrow 6.00	\uparrow 3.00	\uparrow 4.00	\uparrow 3.00
3	\Rightarrow	\uparrow 4.00	\Leftarrow	\Leftarrow
2	\uparrow	\uparrow	\uparrow	\Leftarrow
1	\Rightarrow^{s_0}	\Rightarrow	\uparrow	\Leftarrow

- cost of 3 to move from striped cells (cost is 1 otherwise)

Example: Backward Induction in Deterministic SSP

5	\Rightarrow 5.00	\Rightarrow 2.00	\Rightarrow 1.00	s_* 0.00
4	\Rightarrow 6.00	\uparrow 3.00	\uparrow 4.00	\uparrow 3.00
3	\Rightarrow 7.00	\uparrow 4.00	\Leftarrow 5.00	\Leftarrow
2	\uparrow	\uparrow 7.00	\uparrow	\Leftarrow
1	\Rightarrow^{s_0}	\Rightarrow	\uparrow	\Leftarrow

- cost of 3 to move from striped cells (cost is 1 otherwise)

Example: Backward Induction in Deterministic SSP

5	\Rightarrow 5.00	\Rightarrow 2.00	\Rightarrow 1.00	s_* 0.00
4	\Rightarrow 6.00	\uparrow 3.00	\uparrow 4.00	\uparrow 3.00
3	\Rightarrow 7.00	\uparrow 4.00	\Leftarrow 5.00	\Leftarrow 8.00
2	\uparrow 10.00	\uparrow 7.00	\uparrow 6.00	\Leftarrow
1	\Rightarrow^{s_0}	\Rightarrow	\uparrow	\Leftarrow

- cost of 3 to move from striped cells (cost is 1 otherwise)

Example: Backward Induction in Deterministic SSP

5	\Rightarrow 5.00	\Rightarrow 2.00	\Rightarrow 1.00	s_* 0.00
4	\Rightarrow 6.00	\uparrow 3.00	\uparrow 4.00	\uparrow 3.00
3	\Rightarrow 7.00	\uparrow 4.00	\Leftarrow 5.00	\Leftarrow 8.00
2	\uparrow 10.00	\uparrow 7.00	\uparrow 6.00	\Leftarrow 9.00
1	\Rightarrow^{s_0}	\Rightarrow	\uparrow 7.00	\Leftarrow

- cost of 3 to move from striped cells (cost is 1 otherwise)

Example: Backward Induction in Deterministic SSP

5	\Rightarrow 5.00	\Rightarrow 2.00	\Rightarrow 1.00	s_* 0.00
4	\Rightarrow 6.00	\uparrow 3.00	\uparrow 4.00	\uparrow 3.00
3	\Rightarrow 7.00	\uparrow 4.00	\Leftarrow 5.00	\Leftarrow 8.00
2	\uparrow 10.00	\uparrow 7.00	\uparrow 6.00	\Leftarrow 9.00
1	\Rightarrow^{s_0}	\Rightarrow 8.00	\uparrow 7.00	\Leftarrow 10.00

1 2 3 4

- cost of 3 to move from striped cells (cost is 1 otherwise)

Example: Backward Induction in Deterministic SSP

5	\Rightarrow 5.00	\Rightarrow 2.00	\Rightarrow 1.00	s_* 0.00
4	\Rightarrow 6.00	\uparrow 3.00	\uparrow 4.00	\uparrow 3.00
3	\Rightarrow 7.00	\uparrow 4.00	\Leftarrow 5.00	\Leftarrow 8.00
2	\uparrow 10.00	\uparrow 7.00	\uparrow 6.00	\Leftarrow 9.00
1	\Rightarrow^{s_0} 9.00	\Rightarrow 8.00	\uparrow 7.00	\Leftarrow 10.00

1 2 3 4

- cost of 3 to move from striped cells (cost is 1 otherwise)

Policy Evaluation via Backward Induction

- is linear in $|S|$
- but restricted to special cases

~~> When is policy evaluation via backward induction possible?

In deterministic planning problems?

Example: Backward Induction in Probabilistic SSP

	⇒	⇒	⇒	s_*
5				
4	⇒	↑↑	↑↑	↑↑
3	⇒	↑↑	↔	↔
2	↑↑	↑↑	↑↑	↔
1	$\Rightarrow s_0$	⇒	↑↑	↔
	1	2	3	4

- cost of 3 to move from striped cells (cost is 1 otherwise)
- probability of 0.4 to “⇒” in gray cell

Example: Backward Induction in Probabilistic SSP

	⇒	⇒	⇒	s_* 0.00
5				
4	⇒	↑↑	↑↑	↑↑
3	⇒	↑↑	↔	↔
2	↑↑	↑↑	↑↑	↔
1	\Rightarrow^{s_0}	⇒	↑↑	↔
	1	2	3	4

- cost of 3 to move from striped cells (cost is 1 otherwise)
- probability of 0.4 to “⇒” in gray cell

Example: Backward Induction in Probabilistic SSP

				s_*
5	\Rightarrow	\Rightarrow	\Rightarrow 1.00	0.00
4	\Rightarrow	\uparrow	\uparrow	\uparrow 3.00
3	\Rightarrow	\uparrow	\Leftarrow	\Leftarrow
2	\uparrow	\uparrow	\uparrow	\Leftarrow
1	\Rightarrow^{s_0}	\Rightarrow	\uparrow	\Leftarrow
	1	2	3	4

- cost of 3 to move from striped cells (cost is 1 otherwise)
- probability of 0.4 to “ \Rightarrow ” in gray cell

Example: Backward Induction in Probabilistic SSP

	\Rightarrow	\Rightarrow	\Rightarrow	s_*
5	\Rightarrow	2.00	1.00	0.00
4	\Rightarrow	\uparrow	\uparrow	\uparrow
3	\Rightarrow	\uparrow	\Leftarrow	\Leftarrow
2	\uparrow	\uparrow	\uparrow	\Leftarrow
1	\Rightarrow^{s_0}	\Rightarrow	\uparrow	\Leftarrow

- cost of 3 to move from striped cells (cost is 1 otherwise)
- probability of 0.4 to “ \Rightarrow ” in gray cell

Example: Backward Induction in Probabilistic SSP

				s_*
5	\Rightarrow 5.00	\Rightarrow 2.00	\Rightarrow 1.00	0.00
4	\Rightarrow 6.00	\uparrow 3.00	\uparrow 2.80	\uparrow 3.00
3	\Rightarrow 7.00	\uparrow 4.00	\Leftarrow 5.00	\Leftarrow 8.00
2	\uparrow 10.00	\uparrow 7.00	\uparrow 6.00	\Leftarrow 9.00
1	\Rightarrow^{s_0} 9.00	\Rightarrow 8.00	\uparrow 7.00	\Leftarrow 10.00
	1	2	3	4

- cost of 3 to move from striped cells (cost is 1 otherwise)
- probability of 0.4 to “ \Rightarrow ” in gray cell

Policy Evaluation via Backward Induction

~~> When is policy evaluation via backward induction possible?

In deterministic planning problems?

No, policy must be **acyclic**.

Policy Evaluation: Implementations

Computing V_π for a given policy π is called **policy evaluation**.

There are several algorithms for policy evaluation:

- ① **Linear Program**
- ② **Backward Induction** for acyclic policies

Backward Induction: Algorithm

Backward Induction for SSP $\langle S, A, c, T, s_0, S_* \rangle$
and complete policy π

initialize $V_\pi(s) := \text{none}$ for all $s \in S$

$V_\pi(s) := 0$ for all $s \in S_*$

while there is a $s \in S$ with $V_\pi(s) = \text{none}$:

 pick $s \in S$ with $V_\pi(s) = \text{none}$ and

$V_\pi(s') \neq \text{none}$ for all $s' \in \text{succ}(s, \pi(s))$

 set $V_\pi(s) := c(\pi(s)) + \sum_{s' \in S} T(s, \pi(s), s') \cdot V_\pi(s')$

return V_π

Policy Evaluation: Implementations

Computing V_π for a given policy π is called **policy evaluation**.

There are several algorithms for policy evaluation:

- ① Linear Program
- ② Backward Induction for acyclic policies
- ③ Iterative Policy Evaluation

Iterative Policy Evaluation: Idea

- impossible to compute state-values
in one sweep over the state space in presence of cycles
- start with arbitrary state-value function \hat{V}_π^0
- treat state-value function as update rule

$$\hat{V}_\pi^i(s) = c(\pi(s)) + \sum_{s' \in S} T(s, \pi(s), s') \cdot \hat{V}_\pi^{i-1}(s')$$

- apply update rule iteratively
- until state-values have converged

Iterative Policy Evaluation for SSPs: Example

5	\Rightarrow 0.00	\Rightarrow 0.00	\Rightarrow 0.00	s_* 0.00
4	\Rightarrow 0.00	\uparrow 0.00	\uparrow 0.00	\uparrow 0.00
3	\Rightarrow 0.00	\uparrow 0.00	\Leftarrow 0.00	\Leftarrow 0.00
2	\uparrow 0.00	\uparrow 0.00	\uparrow 0.00	\Leftarrow 0.00
1	$\Rightarrow s_0$ 0.00	\Rightarrow 0.00	\uparrow 0.00	\Leftarrow 0.00

1 2 3 4

\hat{V}_π^0

- cost of 3 to move from striped cells (cost is 1 otherwise)
- moving from gray cells **unsuccessful** with probability 0.6

Iterative Policy Evaluation for SSPs: Example

5	\Rightarrow 1.00	\Rightarrow 1.00	\Rightarrow 1.00	s_* 0.00
4	\Rightarrow 1.00	\uparrow 1.00	\uparrow 3.00	\uparrow 1.00
3	\Rightarrow 1.00	\uparrow 1.00	\Leftarrow 1.00	\Leftarrow 1.00
2	\uparrow 1.00	\uparrow 1.00	\uparrow 1.00	\Leftarrow 1.00
1	\Rightarrow^{s_0} 1.00	\Rightarrow 1.00	\uparrow 1.00	\Leftarrow 1.00

1 2 3 4

\hat{V}_π^1

- cost of 3 to move from striped cells (cost is 1 otherwise)
- moving from gray cells **unsuccessful** with probability 0.6

Iterative Policy Evaluation for SSPs: Example

	⇒ 2.00	⇒ 2.00	⇒ 1.00	s_* 0.00
5				
4	⇒ 2.00	↑ 2.00	↑ 5.20	↑ 1.60
3	⇒ 2.00	↑ 2.00	⇐ 2.00	⇐ 2.00
2	↑ 2.00	↑ 2.00	↑ 2.00	⇐ 2.00
1	⇒ s_0 2.00	⇒ 2.00	↑ 2.00	⇐ 2.00
	1	2	3	4

 \hat{V}_π^2

- cost of 3 to move from striped cells (cost is 1 otherwise)
- moving from gray cells **unsuccessful** with probability 0.6

Iterative Policy Evaluation for SSPs: Example

	⇒ 3.96	⇒ 2.00	⇒ 1.00	s_* 0.00
5				
4	⇒ 4.60	↑ 3.00	↑ 7.79	↑ 2.31
3	⇒ 5.00	↑ 4.00	⇐ 5.00	⇐ 5.00
2	↑ 5.00	↑ 5.00	↑ 5.00	⇐ 5.00
1	⇒ s_0 5.00	⇒ 5.00	↑ 5.00	⇐ 5.00
	1	2	3	4

 \hat{V}_π^5

- cost of 3 to move from striped cells (cost is 1 otherwise)
- moving from gray cells **unsuccessful** with probability 0.6

Iterative Policy Evaluation for SSPs: Example

	⇒ 4.46	⇒ 2.00	⇒ 1.00	s_* 0.00
5				
4	⇒ 5.43	↑ 3.00	↑ 8.44	↑ 2.50
3	⇒ 6.38	↑ 4.00	⇐ 5.00	⇐ 7.31
2	↑ 8.30	↑ 6.38	↑ 6.00	⇐ 8.18
1	⇒ s_0 9.00	⇒ 8.00	↑ 7.00	⇐ 8.96
	1	2	3	\hat{V}_π^{10}

- cost of 3 to move from striped cells (cost is 1 otherwise)
- moving from gray cells **unsuccessful** with probability 0.6

Iterative Policy Evaluation for SSPs: Example

	⇒ 4.50	⇒ 2.00	⇒ 1.00	s_* 0.00
5				
4	⇒ 5.50	↑ 3.00	↑ 8.50	↑ 2.50
3	⇒ 6.50	↑ 4.00	⇐ 5.00	⇐ 7.50
2	↑ 9.00	↑ 6.50	↑ 6.00	⇐ 8.50
1	⇒ ^{s_0} 9.00	⇒ 8.00	↑ 7.00	⇐ 9.50
	1	2	3	4

 \hat{V}_π^{29}

- cost of 3 to move from striped cells (cost is 1 otherwise)
- moving from gray cells **unsuccessful** with probability 0.6

Iterative Policy Evaluation: Algorithm

Iterative Policy Evaluation for SSP $\langle S, A, c, T, s_0, S_\star \rangle$,
complete policy π and $\epsilon > 0$

initialize \hat{V}^0 to 0 for goal states, otherwise arbitrarily

for $i = 1, 2, \dots$:

for all states $s \in S \setminus S_\star$:

$$\hat{V}_\pi^i(s) := c(\pi(s)) + \sum_{s' \in S} T(s, \pi(s), s') \cdot \hat{V}_\pi^{i-1}(s')$$

if $\max_{s \in S} |\hat{V}_\pi^i(s) - \hat{V}_\pi^{i-1}(s)| < \epsilon$:

return \hat{V}_π^i

Iterative Policy Evaluation: Properties

Theorem (Convergence of Iterative Policy Evaluation)

Let $\mathcal{T} = \langle S, A, c, T, s_0, S_* \rangle$ be an SSP, π be a proper policy for \mathcal{T} and $\hat{V}_\pi^0(s) \in \mathbb{R}$ arbitrarily for all $s \setminus S_*$.

Iterative policy evaluation *converges* to the *true state-values*, i.e.,

$$\lim_{i \rightarrow \infty} \hat{V}_\pi^i(s) = V_\pi(s) \text{ for all } s \in S.$$

Proof omitted.

In practice, iterative policy evaluation converges to true state-values if ϵ is small enough.

Policy Evaluation: MDPs

What about policy evaluation for MDPs?

- MDPs (with finite state set) are *always cyclic*
 ⇒ backward induction not applicable
- but goal state *not required* for iterative policy evaluation
- albeit traces are infinite, iterative policy evaluation *converges*
- convergence theorem also holds for MDPs

Introduction
oo

Policy Evaluation
oooooooooooooooooooo

Policy Improvement
●ooo

Policy Iteration
oooo

Summary
oo

Policy Improvement

Example: Greedy Action

				s_*
5	\Rightarrow 4.50	\Rightarrow 2.00	\Rightarrow 1.00	0.00
4	\Rightarrow 5.50	\uparrow 3.00	\uparrow 8.50	\uparrow 2.50
3	\Rightarrow 6.50	\uparrow 4.00	\Leftarrow 5.00	\Leftarrow 7.50
2	\uparrow 9.00	\uparrow 6.50	\uparrow 6.00	\Leftarrow 8.50
1	\Rightarrow^{s_0} 9.0	\Rightarrow 8.00	\uparrow 7.00	\Leftarrow 9.50
	1	2	3	4

- Can we learn more from this than the state-values of a policy?

Example: Greedy Action

5	\Rightarrow 4.50	\Rightarrow 2.00	\Rightarrow 1.00	s_* 0.00
4	\Rightarrow 5.50	\uparrow 3.00	\uparrow 8.50	\uparrow 2.50
3	\Rightarrow 6.50	\uparrow 4.00	\Leftarrow 5.00	\uparrow 7.50
2	\uparrow 9.00	\uparrow 6.50	\uparrow 6.00	\Leftarrow 8.50
1	\Rightarrow^{s_0} 9.0	\uparrow 8.00	\uparrow 7.00	\Leftarrow 9.50

1 2 3 4

- Can we learn more from this than the state-values of a policy?
- Yes! By evaluating all actions in each state,
we can derive a better policy

Greedy Actions and Policies for SSPs

Definition (Greedy Action)

Let s be a state of an SSP $\mathcal{T} = \langle S, A, c, T, s_0, S_* \rangle$ and V be a state-value function for \mathcal{T} .

The set of **greedy actions** in s with respect to V is

$$A_V(s) := \arg \min_{a \in A(s)} \left(c(a) + \sum_{s' \in S} T(s, a, s') \cdot V(s') \right).$$

A policy π_V with $\pi_V(s) \in A_V(s)$ is a **greedy policy**.

Determining a greedy policy of a given state-value function is called **policy improvement**.

Greedy Actions and Policies for MDPs

Definition (Greedy Action)

Let s be a state of a (discounted-reward) MDP

$\mathcal{T} = \langle S, A, R, T, s_0, \gamma \rangle$ and V be a state-value function for \mathcal{T} .

The set of **greedy actions** in s with respect to V is

$$A_V(s) := \arg \max_{a \in A(s)} \left(R(s, a) + \gamma \sum_{s' \in S} T(s, a, s') \cdot V(s') \right).$$

A policy π_V with $\pi_V(s) \in A_V(s)$ is a **greedy policy**.

Determining a greedy policy of a given state-value function is called **policy improvement**.

Introduction
oo

Policy Evaluation
oooooooooooooooooooo

Policy Improvement
oooo

Policy Iteration
●oooo

Summary
oo

Policy Iteration

Policy Iteration

- Policy Iteration (PI) was first proposed by Howard in 1960
- based on the observation that the greedy actions describe a **better** policy
- starts with arbitrary **policy** π_0
- alternates **policy evaluation** and **policy improvement**
- as long as **policy changes**

Example: Policy Iteration

	1	2	3	4
5	\Rightarrow 4.50	\Rightarrow 2.00	\Rightarrow 1.00	s_* 0.00
4	\Rightarrow 5.50	\uparrow 3.00	\uparrow 8.50	\uparrow 2.50
3	\Rightarrow 6.50	\uparrow 4.00	\Leftarrow 5.00	\Leftarrow 7.50
2	\uparrow 9.00	\uparrow 6.50	\uparrow 6.00	\Leftarrow 8.50
1	\Rightarrow^{s_0} 9.00	\Rightarrow 8.00	\uparrow 7.00	\Leftarrow 9.50

 π_0

Example: Policy Iteration

	1	2	3	4
5	⇒ 4.50	⇒ 2.00	⇒ 1.00	s_* 0.00
4	⇒ 5.50	↑ 3.00	↑ 8.50	↑ 2.50
3	⇒ 6.50	↑ 4.00	⇐ 5.00	↑ 5.00
2	↑ 9.00	↑ 6.50	↑ 6.00	⇐ 8.50
1	⇒ ^{s_0} 8.50	↑ 7.50	↑ 7.00	⇐ 9.50

π_1

Example: Policy Iteration

	1	2	3	4
5	\Rightarrow 4.50	\Rightarrow 2.00	\Rightarrow 1.00	s_* 0.00
4	\Rightarrow 5.50	\uparrow 3.00	\uparrow 8.50	\uparrow 2.50
3	\Rightarrow 6.50	\uparrow 4.00	\Leftarrow 5.00	\uparrow 5.00
2	\uparrow 9.00	\uparrow 6.50	\uparrow 6.00	\uparrow 7.50
1	\Rightarrow^{s_0} 8.50	\uparrow 7.50	\uparrow 7.00	\Leftarrow 9.50

$\pi_2 = \pi_3$

Policy Iteration: Algorithm

Policy Iteration for SSP or MDP \mathcal{T}

initialize π_0 to any policy (for SSP: proper)

for $i = 0, 1, \dots$:

 compute V_{π_i}

 let π_{i+1} be a greedy policy w.r.t V_{π_i}

if $\pi_i = \pi_{i+1}$:

return π_i

Note: if $\pi_i(s) \in A_{V_{\pi_i}(s)}$ then use $\pi_{i+1}(s) := \pi_i(s)$
(only update the policy where necessary).

Properties

- PI computes **optimal policy** if policy evaluation is exact
- In practice, PI often requires **very few iterations** ...
- ... and is **much faster** than solving an LP

Introduction
oo

Policy Evaluation
oooooooooooooooooooo

Policy Improvement
oooo

Policy Iteration
oooo

Summary
●○

Summary

Summary

- Policy evaluation for an **acyclic policy** is possible in **one sweep** over the state space with **backward induction**
- **Iterative policy evaluation** applies state-value function iteratively and converges to true state-values
- Greedy actions in evaluated policy allow to **improve policy**
- Policy iteration alternates **policy evaluation** and **policy improvement**
- Policy iteration computes an **optimal policy** (if policy evaluation is exact)