Planning and Optimization
F3. Policy Iteration

Malte Helmert and Gabriele Roger

Universitat Basel

Content of this Course

Foundations |

Logic |

—| Classical I—

Heuristics |

LT T 1

Constraints |

|:: Factored MDPs |

Content of this Course: Explicit MDPs

—{ Foundations ‘

Linear
Programing

Policy
Iteration

Value
Iteration

Introduction
®0

Introduction

Introduction
oe

Limitations of LPs in Practice

With the LP we can compute an optimal policy

in polynomial time.

Possible issues in practice:
m LPs often too expensive even for small MDPs
m LP solver usage prohibited

m More expressive model required (e.g. continuous state space)

Introduction Improvement
oe ofe

Limitations of LPs in Practice

With the LP we can compute an optimal policy

in polynomial time.

Possible issues in practice:
m LPs often too expensive even for small MDPs
m LP solver usage prohibited

m More expressive model required (e.g. continuous state space)

Policy Iteration (PI) is a suitable alternative.
It has 2 components:

m Policy Evaluation: Compute V. for a given 7

m Policy Improvement: Determine better policy from V.

Policy Evaluation

©00000000000000000

Policy Evaluation

Introduction Policy Evaluation Policy Improvement 0 Iteration

0O@0000000000000000

Reminder: Value Functions for SSPs

Definition (Value Functions for SSPs)
Let T =(S,A,c, T,s,S.) be an SSP and 7 be a policy for 7.
The state-value Vi (s) of s under 7 is defined as

Va(s) im {o fses.
Qr(s,m(s)) otherwise,

where the action-value Q. (s, a) of s and a under 7 is defined as

Q(s.a) =c@)+ Y T(s,2.5)- Vals).

s’€succ(s,a)

The state-value V;(s) describes the expected cost
of applying 7w in SSP T, starting from s.

Policy Evaluation
00®000000000000000

Policy Evaluation: Implementations

Computing V; for a given policy 7 is called policy evaluation.

There are several algorithms for policy evaluation:
© Linear Program

Intr duction Policy Evaluation ‘u\n,‘ Im;r vement olic eratio Summar

000@00000000000000

Reminder: LP for Expected Cost in SSP

Variables
Non-negative variable ExpCost, for each state s

Objective

Maximize ExpCost

ExpCost, =0 for all goal states s,

ExpCost, < (Z T(s,a,s’) - ExpCost,) + c(a)
s'eS

for all s € S and a € A(s)

Intr duction Policy Evaluation ‘u\n,‘ Im;r vement olic eratio Summar

000@00000000000000

LP for Policy Evaluation in SSP

Variables
Non-negative variable ExpCost, for each state s

Objective

Maximize ExpCost

ExpCost, =0 for all goal states s,
ExpCost, < (Z T(s,m(s),s’) - ExpCosty) + c((s))

s'eS

for all s € S and-a-cA(s)

Introduction Policy Evaluation Improvement
000080000000 000000 [

Policy Evaluation via LP

m is polynomial in |S]
m difference between polynomial in |S| and
polynomial in |S| - |A| is sometimes relevant in practice

m but often this is not the case

m other practical limitations also apply here

~> Require policy evaluation without LP

Policy Evaluation
00000@000000000000

Policy Evaluation: Implementations

Computing V; for a given policy 7 is called policy evaluation.

There are several algorithms for policy evaluation:
©Q Linear Program
@ Backward Induction

Policy Evaluation
000000®00000000000

Example: Backward Induction in Deterministic SSP

Sk

m cost of 3 to move from striped cells (cost is 1 otherwise)

Introduction Policy Evaluation Policy Improvement

Summar
000000800000 000000 [e]e]e]e)

Example: Backward Induction in Deterministic SSP

5|l === S
0.00

m cost of 3 to move from striped cells (cost is 1 otherwise)

Introduction Policy Evaluation Policy Improvement

Summar
000000800000 000000 [e]e]e]e)

Example: Backward Induction in Deterministic SSP

5= == S
1.00 | 0.00

4 | = | 0
3.00

m cost of 3 to move from striped cells (cost is 1 otherwise)

Introduction Policy Evaluation Policy Improvement

Summar
000000800000 000000 [e]e]e]e) 00000

Example: Backward Induction in Deterministic SSP

Sk
2.00 | 1.00 | 0.00

4.00 | 3.00

m cost of 3 to move from striped cells (cost is 1 otherwise)

Introduction Policy Evaluation Policy Improvement

Summar
000000800000 000000 [e]e]e]e) 00000

Example: Backward Induction in Deterministic SSP

Sk
5.00 | 2.00 | 1.00 | 0.00

3.00 | 4.00 | 3.00

m cost of 3 to move from striped cells (cost is 1 otherwise)

Introduction Policy Evaluation Improvement
000000®00000000000

Example: Backward Induction in Deterministic SSP

Sk
5.00 | 2.00 | 1.00 | 0.00

6.00 | 3.00 | 4.00 | 3.00

4.00
2 £ | I N
1130 = 1| <

m cost of 3 to move from striped cells (cost is 1 otherwise)

Introduction Policy Evaluation Improvement
000000®00000000000

Example: Backward Induction in Deterministic SSP

Sk
5.00 | 2.00 | 1.00 | 0.00

6.00 | 3.00 | 4.00 | 3.00

7.00 | 4.00 | 5.00

S0

m cost of 3 to move from striped cells (cost is 1 otherwise)

Introduction Policy Evaluation Improvement
000000®00000000000

Example: Backward Induction in Deterministic SSP

Sk
5.00 | 2.00 | 1.00 | 0.00

6.00 | 3.00 | 4.00 | 3.00

7.00 | 4.00 | 5.00 | 8.00

10.00 | 7.00 | 6.00
S0

m cost of 3 to move from striped cells (cost is 1 otherwise)

Introduction Policy Evaluation Improvement
000000®00000000000

Example: Backward Induction in Deterministic SSP

Sk
5.00 | 2.00 | 1.00 | 0.00

6.00 | 3.00 | 4.00 | 3.00

7.00 | 4.00 | 5.00 | 8.00

10.00 | 7.00 | 6.00 | 9.00
S0

7.00

m cost of 3 to move from striped cells (cost is 1 otherwise)

Introduction Policy Evaluation Improvement
000000®00000000000

Example: Backward Induction in Deterministic SSP

Sk
5.00 | 2.00 | 1.00 | 0.00

6.00 | 3.00 | 4.00 | 3.00

7.00 | 4.00 | 5.00 | 8.00

10.00 | 7.00 | 6.00 | 9.00
S0

8.00 | 7.00 | 10.00

1 2 3 4

m cost of 3 to move from striped cells (cost is 1 otherwise)

Introduction Policy Evaluation Improvement
000000®00000000000

Example: Backward Induction in Deterministic SSP

Sk
5.00 | 2.00 | 1.00 | 0.00

6.00 | 3.00 | 4.00 | 3.00

7.00 | 4.00 | 5.00 | 8.00

10.00 | 7.00 | 6.00 | 9.00
S0

9.00 | 8.00 | 7.00 |10.00

1 2 3 4

m cost of 3 to move from striped cells (cost is 1 otherwise)

Policy Evaluation
0000000@0000000000

Policy Evaluation via Backward Induction

m is linear in |S]

m but restricted to special cases

~> When is policy evaluation via backward induction possible?

In deterministic planning problems?

Ilm duction Policy Evaluation olic v olicy lteratio Summar

0O0000000e000000000

Sk

m cost of 3 to move from striped cells (cost is 1 otherwise)

m probability of 0.4 to "=" in gray cell

Ilm duction Policy Evaluation olic v 0 eratio Summar

0O0000000e000000000

Sk
0.00

m cost of 3 to move from striped cells (cost is 1 otherwise)

m probability of 0.4 to "=" in gray cell

Ilm duction Policy Evaluation olic Im;r vement 0 eratio Summar

0O0000000e000000000

Example Backward Induction in Probabilistic SSP

5= == S
1.00 | 0.00

4 | = 0D
3.00

m cost of 3 to move from striped cells (cost is 1 otherwise)

m probability of 0.4 to "=" in gray cell

Ilm duction Policy Evaluation olic v olic eratio Summar
000000008000000000

Sk
2.00 | 1.00 | 0.00

2.80 | 3.00

m cost of 3 to move from striped cells (cost is 1 otherwise)

m probability of 0.4 to "=" in gray cell

Ilm duction Policy Evaluation Improvement

0O0000000e000000000

Example Backward Induction in Probabilistic SSP

Sk
5.00 | 2.00 | 1.00 | 0.00

6.00 | 3.00 | 2.80 | 3.00

7.00 | 4.00 | 5.00 | 8.00

10.00 | 7.00 | 6.00 | 9.00
S0

9.00 | 8.00 | 7.00 |10.00

1 2 3 4

m cost of 3 to move from striped cells (cost is 1 otherwise)

m probability of 0.4 to "=" in gray cell

Policy Evaluation
000000000e00000000

Policy Evaluation via Backward Induction

~~ When is policy evaluation via backward induction possible?

In deterministic planning problems?
No, policy must be acyclic.

Policy Evaluation
0000000000e0000000

Policy Evaluation: Implementations

Computing V; for a given policy 7 is called policy evaluation.

There are several algorithms for policy evaluation:
© Linear Program

@ Backward Induction for acyclic policies

Introduction Policy Evaluation Policy Improvement
00000000000e000000

Backward Induction: Algorithm

Backward Induction for SSP (S, A, c, T, sp, Sx)

and complete policy 7

initialize V(s) := none for all s € S
Vi(s) :=0 for all s € S,
while there is a s € S with V(s) = none:
pick s € S with V;(s) = none and
V(s') # none for all s" € succ(s, 7(s))
set Vi(s) := c(n(s)) + > oecs T(s,m(s),s") - V(')
return V,

Policy Evaluation
000000000000e00000

Policy Evaluation: Implementations

Computing V; for a given policy 7 is called policy evaluation.

There are several algorithms for policy evaluation:
© Linear Program
@ Backward Induction for acyclic policies

© lterative Policy Evaluation

Ilm duction Policy Evaluation Improvement

0000000000000 e0000

Iterative Policy Evaluation: Ildea

m impossible to compute state-values
in one sweep over the state space in presence of cycles

m start with arbitrary state-value function \77?
m treat state-value function as update rule
Va(s) =)+ Y T(s,m(s),s')- Vi H(s)
s’eS
m apply update rule iteratively

m until state-values have converged

Introduction Policy Evaluation

000000000000 00e000

/ Improvement

teration

Iterative Policy Evaluation for SSPs: Example

51l === Sk
0.00 | 0.00 | 0.00 | 0.00
4 | = | 10 f
0.00 | 0.00 | 0.00 | 0.00
3 = M ~ =
0.00 | 0.00 | 0.00 | 0.00
2 | =
0.00 | 0.00 | 0.00 | 0.00
1130 = 1| <€
0.00 | 0.00 | 0.00 | 0.00
1 2 3 4

m cost of 3 to move from striped cells (cost is 1 otherwise)

m moving from gray cells unsuccessful with probability 0.6

Introduction Policy Evaluation

Iterative Policy Evaluation for SSPs: Example

000000000000 00e000

/ Improvement

5l === Sk
1.00 | 1.00 | 1.00 | 0.00

4 | = | 10 f
1.00 | 1.00 | 3.00 | 1.00

3 = M ~ =
1.00 | 1.00 | 1.00 | 1.00

2 T =
1.00 | 1.00 | 1.00 | 1.00

1130 = 1| <€
1.00 | 1.00 | 1.00 | 1.00

1 2 3 4

teration

>

A=

m cost of 3 to move from striped cells (cost is 1 otherwise)

m moving from gray cells unsuccessful with probability 0.6

Introduction Policy Evaluation

000000000000 00e000

/ Improvement

teration

Iterative Policy Evaluation for SSPs: Example

5l === Sk
2.00 | 2.00 | 1.00 | 0.00

4 | = | 10 f
2.00 | 2.00 | 5.20 | 1.60

3 = M ~ =
2.00 | 2.00 | 2.00 | 2.00

2 T =
2.00 | 2.00 | 2.00 | 2.00

1130 = 1| <€
2.00 | 2.00 | 2.00 | 2.00

1 2 3 4

>
AN

m cost of 3 to move from striped cells (cost is 1 otherwise)

m moving from gray cells unsuccessful with probability 0.6

Introduction Policy Evaluation

000000000000 00e000

/ Improvement

teration

Iterative Policy Evaluation for SSPs: Example

5|1l === Sk
3.96 | 2.00 | 1.00 | 0.00
4.60 | 3.00 | 7.79 | 2.31

3 = M ~ =
5.00 | 4.00 | 5.00 | 5.00

2 T =
5.00 | 5.00 | 5.00 | 5.00

1130 = 1| <€
5.00 | 5.00 | 5.00 | 5.00

1 2 3 4

m cost of 3 to move from striped cells (cost is 1 otherwise)

m moving from gray cells unsuccessful with probability 0.6

Introduction Policy Evaluation / Improvement 2 teration

000000000000 00e000

Iterative Policy Evaluation for SSPs: Example

Sk
4.46 | 2.00 | 1.00 | 0.00

5.43 | 3.00 | 8.44 | 2.50

3 = <~ <~ \710
6.38 | 4.00 | 5.00 | 7.31 m
2 T =

8.30 | 6.38 | 6.00 | 8.18

9.00 | 8.00 | 7.00 | 8.96

1 2 3 4

m cost of 3 to move from striped cells (cost is 1 otherwise)

m moving from gray cells unsuccessful with probability 0.6

Introduction Policy Evaluation / Improvement 2 teration

000000000000 00e000

Iterative Policy Evaluation for SSPs: Example

Sk
4,50 | 2.00 | 1.00 | 0.00

5.50 | 3.00 | 8.50 | 2.50

3 = <~ <~ \729
6.50 | 4.00 | 5.00 | 7.50 ™
2 T =

9.00 | 6.50 | 6.00 | 8.50

9.00 | 8.00 | 7.00 | 9.50

1 2 3 4

m cost of 3 to move from striped cells (cost is 1 otherwise)

m moving from gray cells unsuccessful with probability 0.6

Introduction Policy Evaluation Policy Improvement Summar
000000000000000800 00000

Iterative Policy Evaluation: Algorithm

Iterative Policy Evaluation for SSP (S, A, ¢, T, so, Ss),

complete policy m and € > 0

initialize V° to 0 for goal states, otherwise arbitarily
for i=1,2...:
for all states s € S\ S,:
Vi(s) = c(n(s)) + Yges T(sm(s),s') - ViTH(s)
if maxses |Vi(s)— Vi~1(s)| < e
return V!

Introduction Policy Evaluation Improvement
(e]e] 000000000000 0000e0

Iterative Policy Evaluation: Properties

Theorem (Convergence of lterative Policy Evaluation)

Let T =(S,A, c, T,s,S.) be an SSP, be a proper policy for T
and VO(s) € R arbitrarily for all s\ S,.

Iterative policy evaluation converges to the true state-values, i.e.,

lim Vi(s) = Vy(s) foralls € S.
1—00

Proof omitted.

In practice, iterative policy evaluation converges to
true state-values if ¢ is small enough.

Intr >duction Policy Evaluation Improvement

0000000000000 0000e

Pollcy Evaluation: MDPs

What about policy evaluation for MDPs?

m MDPs (with finite state set) are always cyclic
= backward induction not applicable

m but goal state not required for iterative policy evaluation
m albeit traces are infinite, iterative policy evaluation converges

m convergence theorem also holds for MDPs

Policy Improvement

Introduction Policy Improvement 2 teration
00 0®00 s

Example: Greedy Action

5 | = | = | = S
450 | 2.00 | 1.00 | 0.00

4 | = o

5.50 | 3.00 | 8.50 | 2.50

3= ||«
6.50 | 4.00 | 5.00 | 7.50

> It =
9.00 | 6.50 | 6.00 | 8.50

1 1= => | | €
9.0 | 8.00 | 7.00 | 9.50

1 2 3 4

m Can we learn more from this than the state-values of a policy?

Introduction Policy Improvement 2 teration
00 0®00 s

Example: Greedy Action

s | = | = | = S
450 | 2.00 | 1.00 | 0.00

4 = A
5.50 | 3.00 | 8.50 | 2.50

3 |l = | 0t |=11
6.50 | 4.00 | 5.00 | 7.50

9.00 | 6.50 | 6.00 | 8.50

9.0 | 8.00 | 7.00 | 9.50

1 2 3 4

m Can we learn more from this than the state-values of a policy?

m Yes! By evaluating all actions in each state,
we can derive a better policy

Intr bduction >olicy Evaluatio olic eratio Summary

Greedy Actions and Policies for SSPs

Definition (Greedy Action)

Let s be a state of an SSP 7 = (S, A, ¢, T, s, Sx) and
V be a state-value function for 7.
The set of greedy actions in s with respect to V is

Ay (s) :=arg mAln (c(a Z T(s,a,s) V(s/)> .

s'eS

A policy my with my(s) € Ay(s) is a greedy policy.

Determining a greedy policy of a given state-value function
is called policy improvement.

Introduction Policy Improvement olicy Iteratio Summary

YO0O00000 [e]e]e])

nd Policies for MDPs

Greedy Actions a

Definition (Greedy Action)

Let s be a state of a (discounted-reward) MDP
T =(5A R, T,s,v) and V be a state-value function for 7.
The set of greedy actions in s with respect to V is

Ay (s) = arg argj();) (R(s, a)+v Z T(s,a,s')- V(s/)> .

s'eS

A policy my with my(s) € Ay(s) is a greedy policy.

Determining a greedy policy of a given state-value function
is called policy improvement.

Policy lteration

Introduction Improvement Policy Iteration

0O@000

Policy Iteration

Policy Iteration (PI) was first proposed by Howard in 1960

based on the observation that the greedy actions
describe a better policy

starts with arbitrary policy g

alternates policy evaluation and policy improvement

as long as policy changes

Introduction

Example: Policy lteration

/ Improvement

s |l === S
4.50 | 2.00 | 1.00 | 0.00

a | = 0N
5.50 | 3.00 | 8.50 | 2.50

3 | = = | =
6.50 | 4.00 | 5.00 | 7.50

2 TPt | | =
9.00 | 6.50 | 6.00 | 8.50
112> =1 1|«
9.00 | 8.00 | 7.00 | 9.50

1 2 3 4

Policy Iteration

[e]e] le]e}

o

Introduction

Example: Policy lteration

Improvement

s |l === S
4.50 | 2.00 | 1.00 | 0.00
a | = 0N
5.50 | 3.00 | 8.50 | 2.50
3 1= | 0|«
6.50 | 4.00 | 5.00 | 5.00
2 TPt | | =
9.00 | 6.50 | 6.00 | 8.50
1 =" 1| =
8.50 | 7.50 | 7.00 | 9.50
1 2 3 4

Policy Iteration

[e]e] le]e}

T

Introduction

Example: Policy lteration

/ Improvement

5 | = | = | = Sx
4.50 | 2.00 | 1.00 | 0.00
a | = 0N
5.50 | 3.00 | 8.50 | 2.50
3 = T =
6.50 | 4.00 | 5.00 | 5.00
S Y | I
9.00 | 6.50 | 6.00 | 7.50
112> | =
8.50 | 7.50 | 7.00 | 9.50
1 2 3 4

Policy Iteration

[e]e] le]e}

Ty = T3

Introduction Polic aluatiof olicy Improvement Policy Iteration Summar
00000 0000 00000

Policy lteration: Algorithm

initialize 7y to any policy (for SSP: proper)
for i=0,1,...:
compute Vp,
let i1 be a greedy policy w.r.t V.
if mi =i
return 7;

Note: if m;(s) € Ay, (s) then use 7;11(s) := mi(s)
(only update the policy where necessary).

Policy Iteration
ooooe

Properties

m Pl computes optimal policy if policy evaluation is exact
m In practice, Pl often requires very few iterations ...

m ... and is much faster than solving an LP

[Je]

Summary

Introduction Improvement atio Summary

oe

Summary

m Policy evaluation for an acyclic policy is possible in one sweep
over the state space with backward induction

m lterative policy evaluation applies state-value function
iteratively and converges to true state-values

m Greedy actions in evaluated policy allow to improve policy

m Policy iteration alternates policy evaluation and policy
improvement

m Policy iteration computes an optimal policy
(if policy evaluation is exact)

	Introduction
	

	Policy Evaluation
	

	Policy Improvement
	

	Policy Iteration
	

	Summary
	

