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Limitations of LPs in Practice

With the LP we can compute an optimal policy

in polynomial time.

Possible issues in practice:
m LPs often too expensive even for small MDPs
m LP solver usage prohibited

m More expressive model required (e.g. continuous state space)
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Limitations of LPs in Practice

With the LP we can compute an optimal policy

in polynomial time.

Possible issues in practice:
m LPs often too expensive even for small MDPs
m LP solver usage prohibited

m More expressive model required (e.g. continuous state space)

Policy Iteration (PI) is a suitable alternative.
It has 2 components:

m Policy Evaluation: Compute V. for a given 7

m Policy Improvement: Determine better policy from V.
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Reminder: Value Functions for SSPs

Definition (Value Functions for SSPs)
Let T =(S,A,c, T,s,S.) be an SSP and 7 be a policy for 7.
The state-value Vi (s) of s under 7 is defined as

Va(s) im {o fses.
Qr(s,m(s)) otherwise,

where the action-value Q. (s, a) of s and a under 7 is defined as

Q(s.a) =c@)+ Y T(s,2.5)- Vals).

s’€succ(s,a)

The state-value V;(s) describes the expected cost
of applying 7w in SSP T, starting from s.
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Policy Evaluation: Implementations

Computing V; for a given policy 7 is called policy evaluation.

There are several algorithms for policy evaluation:
© Linear Program
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Reminder: LP for Expected Cost in SSP

Variables
Non-negative variable ExpCost, for each state s

Objective

Maximize ExpCost

ExpCost, =0  for all goal states s,

ExpCost, < (Z T(s,a,s’) - ExpCost, ) + c(a)
s'eS

for all s € S and a € A(s)
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LP for Policy Evaluation in SSP

Variables
Non-negative variable ExpCost, for each state s

Objective

Maximize ExpCost

ExpCost, =0 for all goal states s,
ExpCost, < (Z T(s,m(s),s’) - ExpCosty) + c((s))

s'eS

for all s € S and-a-cA(s)
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Policy Evaluation via LP

m is polynomial in |S]
m difference between polynomial in |S| and
polynomial in |S| - |A| is sometimes relevant in practice

m but often this is not the case

m other practical limitations also apply here

~> Require policy evaluation without LP
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Policy Evaluation: Implementations

Computing V; for a given policy 7 is called policy evaluation.

There are several algorithms for policy evaluation:
©Q Linear Program
@ Backward Induction
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Example: Backward Induction in Deterministic SSP

Sk

m cost of 3 to move from striped cells (cost is 1 otherwise)
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Example: Backward Induction in Deterministic SSP

5|l === S
0.00

m cost of 3 to move from striped cells (cost is 1 otherwise)
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Example: Backward Induction in Deterministic SSP

5= == S
1.00 | 0.00

4 | = | 0
3.00

m cost of 3 to move from striped cells (cost is 1 otherwise)
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Example: Backward Induction in Deterministic SSP

Sk
2.00 | 1.00 | 0.00

4.00 | 3.00

m cost of 3 to move from striped cells (cost is 1 otherwise)
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Example: Backward Induction in Deterministic SSP

Sk
5.00 | 2.00 | 1.00 | 0.00

3.00 | 4.00 | 3.00

m cost of 3 to move from striped cells (cost is 1 otherwise)
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Example: Backward Induction in Deterministic SSP

Sk
5.00 | 2.00 | 1.00 | 0.00

6.00 | 3.00 | 4.00 | 3.00

4.00
2 £ | I N
1130 = 1| <

m cost of 3 to move from striped cells (cost is 1 otherwise)
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Example: Backward Induction in Deterministic SSP

Sk
5.00 | 2.00 | 1.00 | 0.00

6.00 | 3.00 | 4.00 | 3.00

7.00 | 4.00 | 5.00

S0

m cost of 3 to move from striped cells (cost is 1 otherwise)
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Example: Backward Induction in Deterministic SSP

Sk
5.00 | 2.00 | 1.00 | 0.00

6.00 | 3.00 | 4.00 | 3.00

7.00 | 4.00 | 5.00 | 8.00

10.00 | 7.00 | 6.00
S0

m cost of 3 to move from striped cells (cost is 1 otherwise)
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Example: Backward Induction in Deterministic SSP

Sk
5.00 | 2.00 | 1.00 | 0.00

6.00 | 3.00 | 4.00 | 3.00

7.00 | 4.00 | 5.00 | 8.00

10.00 | 7.00 | 6.00 | 9.00
S0

7.00

m cost of 3 to move from striped cells (cost is 1 otherwise)
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Example: Backward Induction in Deterministic SSP

Sk
5.00 | 2.00 | 1.00 | 0.00

6.00 | 3.00 | 4.00 | 3.00

7.00 | 4.00 | 5.00 | 8.00

10.00 | 7.00 | 6.00 | 9.00
S0

8.00 | 7.00 | 10.00

1 2 3 4

m cost of 3 to move from striped cells (cost is 1 otherwise)
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Example: Backward Induction in Deterministic SSP

Sk
5.00 | 2.00 | 1.00 | 0.00

6.00 | 3.00 | 4.00 | 3.00

7.00 | 4.00 | 5.00 | 8.00

10.00 | 7.00 | 6.00 | 9.00
S0

9.00 | 8.00 | 7.00 |10.00

1 2 3 4

m cost of 3 to move from striped cells (cost is 1 otherwise)
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Policy Evaluation via Backward Induction

m is linear in |S]

m but restricted to special cases

~> When is policy evaluation via backward induction possible?

In deterministic planning problems?
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Sk

m cost of 3 to move from striped cells (cost is 1 otherwise)

m probability of 0.4 to "=" in gray cell
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Sk
0.00

m cost of 3 to move from striped cells (cost is 1 otherwise)

m probability of 0.4 to "=" in gray cell
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Example Backward Induction in Probabilistic SSP

5= == S
1.00 | 0.00

4 | = 0D
3.00

m cost of 3 to move from striped cells (cost is 1 otherwise)

m probability of 0.4 to "=" in gray cell
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Sk
2.00 | 1.00 | 0.00

2.80 | 3.00

m cost of 3 to move from striped cells (cost is 1 otherwise)

m probability of 0.4 to "=" in gray cell
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Example Backward Induction in Probabilistic SSP

Sk
5.00 | 2.00 | 1.00 | 0.00

6.00 | 3.00 | 2.80 | 3.00

7.00 | 4.00 | 5.00 | 8.00

10.00 | 7.00 | 6.00 | 9.00
S0

9.00 | 8.00 | 7.00 |10.00

1 2 3 4

m cost of 3 to move from striped cells (cost is 1 otherwise)

m probability of 0.4 to "=" in gray cell
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Policy Evaluation via Backward Induction

~~ When is policy evaluation via backward induction possible?

In deterministic planning problems?
No, policy must be acyclic.
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Policy Evaluation: Implementations

Computing V; for a given policy 7 is called policy evaluation.

There are several algorithms for policy evaluation:
© Linear Program

@ Backward Induction for acyclic policies
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Backward Induction: Algorithm

Backward Induction for SSP (S, A, c, T, sp, Sx)

and complete policy 7

initialize V(s) := none for all s € S
Vi(s) :=0 for all s € S,
while there is a s € S with V(s) = none:
pick s € S with V;(s) = none and
V(s') # none for all s" € succ(s, 7(s))
set Vi(s) := c(n(s)) + > oecs T(s,m(s),s") - V(')
return V,
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Policy Evaluation: Implementations

Computing V; for a given policy 7 is called policy evaluation.

There are several algorithms for policy evaluation:
© Linear Program
@ Backward Induction for acyclic policies

© lterative Policy Evaluation
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Iterative Policy Evaluation: Ildea

m impossible to compute state-values
in one sweep over the state space in presence of cycles

m start with arbitrary state-value function \77?
m treat state-value function as update rule
Va(s) = )+ Y T(s,m(s),s')- Vi H(s)
s’eS
m apply update rule iteratively

m until state-values have converged
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Iterative Policy Evaluation for SSPs: Example

51l === Sk
0.00 | 0.00 | 0.00 | 0.00
4 | = | 10 f
0.00 | 0.00 | 0.00 | 0.00
3 = M ~ =
0.00 | 0.00 | 0.00 | 0.00
2 | =
0.00 | 0.00 | 0.00 | 0.00
1130 = 1| <€
0.00 | 0.00 | 0.00 | 0.00
1 2 3 4

m cost of 3 to move from striped cells (cost is 1 otherwise)

m moving from gray cells unsuccessful with probability 0.6



Introduction Policy Evaluation

Iterative Policy Evaluation for SSPs: Example

000000000000 00e000

/ Improvement

5l === Sk
1.00 | 1.00 | 1.00 | 0.00

4 | = | 10 f
1.00 | 1.00 | 3.00 | 1.00

3 = M ~ =
1.00 | 1.00 | 1.00 | 1.00

2 T =
1.00 | 1.00 | 1.00 | 1.00

1130 = 1| <€
1.00 | 1.00 | 1.00 | 1.00

1 2 3 4

teration

>

A=

m cost of 3 to move from striped cells (cost is 1 otherwise)

m moving from gray cells unsuccessful with probability 0.6
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Iterative Policy Evaluation for SSPs: Example

5l === Sk
2.00 | 2.00 | 1.00 | 0.00

4 | = | 10 f
2.00 | 2.00 | 5.20 | 1.60

3 = M ~ =
2.00 | 2.00 | 2.00 | 2.00

2 T =
2.00 | 2.00 | 2.00 | 2.00

1130 = 1| <€
2.00 | 2.00 | 2.00 | 2.00

1 2 3 4

>
AN

m cost of 3 to move from striped cells (cost is 1 otherwise)

m moving from gray cells unsuccessful with probability 0.6
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Iterative Policy Evaluation for SSPs: Example

5|1l === Sk
3.96 | 2.00 | 1.00 | 0.00
4.60 | 3.00 | 7.79 | 2.31

3 = M ~ =
5.00 | 4.00 | 5.00 | 5.00

2 T =
5.00 | 5.00 | 5.00 | 5.00

1130 = 1| <€
5.00 | 5.00 | 5.00 | 5.00

1 2 3 4

m cost of 3 to move from striped cells (cost is 1 otherwise)

m moving from gray cells unsuccessful with probability 0.6
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Iterative Policy Evaluation for SSPs: Example

Sk
4.46 | 2.00 | 1.00 | 0.00

5.43 | 3.00 | 8.44 | 2.50

3 = <~ <~ \710
6.38 | 4.00 | 5.00 | 7.31 m
2 T =

8.30 | 6.38 | 6.00 | 8.18

9.00 | 8.00 | 7.00 | 8.96

1 2 3 4

m cost of 3 to move from striped cells (cost is 1 otherwise)

m moving from gray cells unsuccessful with probability 0.6
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Iterative Policy Evaluation for SSPs: Example

Sk
4,50 | 2.00 | 1.00 | 0.00

5.50 | 3.00 | 8.50 | 2.50

3 = <~ <~ \729
6.50 | 4.00 | 5.00 | 7.50 ™
2 T =

9.00 | 6.50 | 6.00 | 8.50

9.00 | 8.00 | 7.00 | 9.50

1 2 3 4

m cost of 3 to move from striped cells (cost is 1 otherwise)

m moving from gray cells unsuccessful with probability 0.6



Introduction Policy Evaluation Policy Improvement Summar
000000000000000800 00000

Iterative Policy Evaluation: Algorithm

Iterative Policy Evaluation for SSP (S, A, ¢, T, so, Ss),

complete policy m and € > 0

initialize V° to 0 for goal states, otherwise arbitarily
for i=1,2...:
for all states s € S\ S,:
Vi(s) = c(n(s)) + Yges T(sm(s),s') - ViTH(s)
if maxses |Vi(s)— Vi~1(s)| < e
return V!
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Iterative Policy Evaluation: Properties

Theorem (Convergence of lterative Policy Evaluation)

Let T =(S,A, c, T,s,S.) be an SSP,  be a proper policy for T
and VO(s) € R arbitrarily for all s\ S,.

Iterative policy evaluation converges to the true state-values, i.e.,

lim Vi(s) = Vy(s) foralls € S.
1—00

Proof omitted.

In practice, iterative policy evaluation converges to
true state-values if ¢ is small enough.
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Pollcy Evaluation: MDPs

What about policy evaluation for MDPs?

m MDPs (with finite state set) are always cyclic
= backward induction not applicable

m but goal state not required for iterative policy evaluation
m albeit traces are infinite, iterative policy evaluation converges

m convergence theorem also holds for MDPs
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Example: Greedy Action

5 | = | = | = S
450 | 2.00 | 1.00 | 0.00

4 | = o

5.50 | 3.00 | 8.50 | 2.50

3= ||«
6.50 | 4.00 | 5.00 | 7.50

> It =
9.00 | 6.50 | 6.00 | 8.50

1 1= => | | €
9.0 | 8.00 | 7.00 | 9.50

1 2 3 4

m Can we learn more from this than the state-values of a policy?
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Example: Greedy Action

s | = | = | = S
450 | 2.00 | 1.00 | 0.00

4 = A
5.50 | 3.00 | 8.50 | 2.50

3 |l = | 0t |=11
6.50 | 4.00 | 5.00 | 7.50

9.00 | 6.50 | 6.00 | 8.50

9.0 | 8.00 | 7.00 | 9.50

1 2 3 4

m Can we learn more from this than the state-values of a policy?

m Yes! By evaluating all actions in each state,
we can derive a better policy
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Greedy Actions and Policies for SSPs

Definition (Greedy Action)

Let s be a state of an SSP 7 = (S, A, ¢, T, s, Sx) and
V be a state-value function for 7.
The set of greedy actions in s with respect to V is

Ay (s) :=arg mAln (c(a Z T(s,a,s) V(s/)> .

s'eS

A policy my with my(s) € Ay(s) is a greedy policy.

Determining a greedy policy of a given state-value function
is called policy improvement.



Introduction Policy Improvement olicy Iteratio Summary

YO0O00000 [e]e]e] )

nd Policies for MDPs

Greedy Actions a

Definition (Greedy Action)

Let s be a state of a (discounted-reward) MDP
T =(5A R, T,s,v) and V be a state-value function for 7.
The set of greedy actions in s with respect to V is

Ay (s) = arg argj();) (R(s, a)+v Z T(s,a,s')- V(s/)> .

s'eS

A policy my with my(s) € Ay(s) is a greedy policy.

Determining a greedy policy of a given state-value function
is called policy improvement.
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Policy Iteration

Policy Iteration (PI) was first proposed by Howard in 1960

based on the observation that the greedy actions
describe a better policy

starts with arbitrary policy g

alternates policy evaluation and policy improvement

as long as policy changes
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Example: Policy lteration

/ Improvement

s |l === S
4.50 | 2.00 | 1.00 | 0.00

a | = 0N
5.50 | 3.00 | 8.50 | 2.50

3 | = = | =
6.50 | 4.00 | 5.00 | 7.50

2 TPt | | =
9.00 | 6.50 | 6.00 | 8.50
112> =1 1|«
9.00 | 8.00 | 7.00 | 9.50

1 2 3 4

Policy Iteration

[e]e] le]e}

o
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Example: Policy lteration

Improvement

s |l === S
4.50 | 2.00 | 1.00 | 0.00
a | = 0N
5.50 | 3.00 | 8.50 | 2.50
3 1= | 0|«
6.50 | 4.00 | 5.00 | 5.00
2 TPt | | =
9.00 | 6.50 | 6.00 | 8.50
1 =" 1| =
8.50 | 7.50 | 7.00 | 9.50
1 2 3 4

Policy Iteration

[e]e] le]e}

T
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Example: Policy lteration

/ Improvement

5 | = | = | = Sx
4.50 | 2.00 | 1.00 | 0.00
a | = 0N
5.50 | 3.00 | 8.50 | 2.50
3 = T =
6.50 | 4.00 | 5.00 | 5.00
S Y | I
9.00 | 6.50 | 6.00 | 7.50
112> | =
8.50 | 7.50 | 7.00 | 9.50
1 2 3 4

Policy Iteration

[e]e] le]e}

Ty = T3
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Policy lteration: Algorithm

initialize 7y to any policy (for SSP: proper)
for i=0,1,...:
compute Vp,
let i1 be a greedy policy w.r.t V.
if mi =i
return 7;

Note: if m;(s) € Ay, (s) then use 7;11(s) := mi(s)
(only update the policy where necessary).
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Properties

m Pl computes optimal policy if policy evaluation is exact
m In practice, Pl often requires very few iterations ...

m ... and is much faster than solving an LP
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Summary

m Policy evaluation for an acyclic policy is possible in one sweep
over the state space with backward induction

m lterative policy evaluation applies state-value function
iteratively and converges to true state-values

m Greedy actions in evaluated policy allow to improve policy

m Policy iteration alternates policy evaluation and policy
improvement

m Policy iteration computes an optimal policy
(if policy evaluation is exact)
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