
Planning and Optimization
F3. Policy Iteration

Malte Helmert and Gabriele Röger

Universität Basel

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 1 / 44

Planning and Optimization
— F3. Policy Iteration

F3.1 Introduction

F3.2 Policy Evaluation

F3.3 Policy Improvement

F3.4 Policy Iteration

F3.5 Summary

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 2 / 44

Content of this Course

Planning

Classical

Foundations

Logic

Heuristics

Constraints

Probabilistic

Explicit MDPs

Factored MDPs

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 3 / 44

Content of this Course: Explicit MDPs

Explicit MDPs

Foundations

Linear
Programing

Policy
Iteration

Value
Iteration

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 4 / 44

F3. Policy Iteration Introduction

F3.1 Introduction

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 5 / 44

F3. Policy Iteration Introduction

Limitations of LPs in Practice

With the LP we can compute an optimal policy
in polynomial time.

Possible issues in practice:

I LPs often too expensive even for small MDPs

I LP solver usage prohibited

I More expressive model required (e.g. continuous state space)

Policy Iteration (PI) is a suitable alternative.
It has 2 components:

I Policy Evaluation: Compute Vπ for a given π

I Policy Improvement: Determine better policy from Vπ

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 6 / 44

F3. Policy Iteration Policy Evaluation

F3.2 Policy Evaluation

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 7 / 44

F3. Policy Iteration Policy Evaluation

Reminder: Value Functions for SSPs

Definition (Value Functions for SSPs)

Let T = 〈S ,A, c ,T , s0, S?〉 be an SSP and π be a policy for T .

The state-value Vπ(s) of s under π is defined as

Vπ(s) :=

{
0 if s ∈ S?

Qπ(s, π(s)) otherwise,

where the action-value Qπ(s, a) of s and a under π is defined as

Qπ(s, a) := c(a) +
∑

s′∈succ(s,a)

T (s, a, s ′) · Vπ(s ′).

The state-value Vπ(s) describes the expected cost
of applying π in SSP T , starting from s.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 8 / 44

F3. Policy Iteration Policy Evaluation

Policy Evaluation: Implementations

Computing Vπ for a given policy π is called policy evaluation.

There are several algorithms for policy evaluation:

1 Linear Program

2 Backward Induction

3 Iterative Policy Evaluation

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 9 / 44

F3. Policy Iteration Policy Evaluation

Reminder: LP for Expected Cost in SSP

Variables
Non-negative variable ExpCosts for each state s

Objective

Maximize ExpCosts0

Subject to

ExpCosts? = 0 for all goal states s?

ExpCosts ≤ (
∑
s′∈S

T (s, a, s ′) · ExpCosts′) + c(a)

for all s ∈ S and a ∈ A(s)

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 10 / 44

F3. Policy Iteration Policy Evaluation

LP for Policy Evaluation in SSP

Variables
Non-negative variable ExpCosts for each state s

Objective

Maximize ExpCosts0

Subject to

ExpCosts? = 0 for all goal states s?

ExpCosts ≤ (
∑
s′∈S

T (s, π(s), s ′) · ExpCosts′) + c(π(s))

for all s ∈ S and a ∈ A(s)

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 11 / 44

F3. Policy Iteration Policy Evaluation

Policy Evaluation via LP

I is polynomial in |S |
I difference between polynomial in |S | and

polynomial in |S | · |A| is sometimes relevant in practice

I but often this is not the case

I other practical limitations also apply here

 Require policy evaluation without LP

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 12 / 44

F3. Policy Iteration Policy Evaluation

Policy Evaluation: Implementations

Computing Vπ for a given policy π is called policy evaluation.

There are several algorithms for policy evaluation:

1 Linear Program

2 Backward Induction

3 Iterative Policy Evaluation

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 13 / 44

F3. Policy Iteration Policy Evaluation

Example: Backward Induction in Deterministic SSP

1 2 3 4

1

2

3

4

5

s0⇒
9.00

⇒
8.00

⇑
7.00

⇐
10.00

⇑
10.00

⇑
7.00

⇑
6.00

⇐
9.00

⇒
7.00

⇑
4.00

⇐
5.00

⇐
8.00

⇒
6.00

⇑
3.00

⇑
4.00

⇑
3.00

⇒
5.00

⇒
2.00

⇒
1.00 0.00

s?

I cost of 3 to move from striped cells (cost is 1 otherwise)

I Dummy

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 14 / 44

F3. Policy Iteration Policy Evaluation

Policy Evaluation via Backward Induction

I is linear in |S |
I but restricted to special cases

 When is policy evaluation via backward induction possible?

In deterministic planning problems?

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 15 / 44

F3. Policy Iteration Policy Evaluation

Example: Backward Induction in Probabilistic SSP

1 2 3 4

1

2

3

4

5

s0⇒
9.00

⇒
8.00

⇑
7.00

⇐
10.00

⇑
10.00

⇑
7.00

⇑
6.00

⇐
9.00

⇒
7.00

⇑
4.00

⇐
5.00

⇐
8.00

⇒
6.00

⇑
3.00

⇑
2.80

⇑
3.00

⇒
5.00

⇒
2.00

⇒
1.00 0.00

s?

I cost of 3 to move from striped cells (cost is 1 otherwise)

I probability of 0.4 to “⇒” in gray cell

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 16 / 44

F3. Policy Iteration Policy Evaluation

Policy Evaluation via Backward Induction

 When is policy evaluation via backward induction possible?

In deterministic planning problems?
No, policy must be acyclic.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 17 / 44

F3. Policy Iteration Policy Evaluation

Policy Evaluation: Implementations

Computing Vπ for a given policy π is called policy evaluation.

There are several algorithms for policy evaluation:

1 Linear Program

2 Backward Induction for acyclic policies

3 Iterative Policy Evaluation

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 18 / 44

F3. Policy Iteration Policy Evaluation

Backward Induction: Algorithm

Backward Induction for SSP 〈S ,A, c ,T , s0,S?〉
and complete policy π

initialize Vπ(s) := none for all s ∈ S
Vπ(s) := 0 for all s ∈ S?
while there is a s ∈ S with Vπ(s) = none:

pick s ∈ S with Vπ(s) = none and
Vπ(s ′) 6= none for all s ′ ∈ succ(s, π(s))

set Vπ(s) := c(π(s)) +
∑

s′∈S T (s, π(s), s ′) · Vπ(s ′)
return Vπ

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 19 / 44

F3. Policy Iteration Policy Evaluation

Policy Evaluation: Implementations

Computing Vπ for a given policy π is called policy evaluation.

There are several algorithms for policy evaluation:

1 Linear Program

2 Backward Induction for acyclic policies

3 Iterative Policy Evaluation

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 20 / 44

F3. Policy Iteration Policy Evaluation

Iterative Policy Evaluation: Idea

I impossible to compute state-values
in one sweep over the state space in presence of cycles

I start with arbitrary state-value function V̂ 0
π

I treat state-value function as update rule

V̂ i
π(s) = c(π(s)) +

∑
s′∈S

T (s, π(s), s ′) · V̂ i−1
π (s ′)

I apply update rule iteratively

I until state-values have converged

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 21 / 44

F3. Policy Iteration Policy Evaluation

Iterative Policy Evaluation for SSPs: Example

1 2 3 4

1

2

3

4

5

V̂ 0
π

s0⇒
0.00

⇒
0.00

⇑
0.00

⇐
0.00

⇑
0.00

⇑
0.00

⇑
0.00

⇐
0.00

⇒
0.00

⇑
0.00

⇐
0.00

⇐
0.00

⇒
0.00

⇑
0.00

⇑
0.00

⇑
0.00

⇒
0.00

⇒
0.00

⇒
0.00 0.00

s?

I cost of 3 to move from striped cells (cost is 1 otherwise)

I moving from gray cells unsuccessful with probability 0.6

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 22 / 44

F3. Policy Iteration Policy Evaluation

Iterative Policy Evaluation for SSPs: Example

1 2 3 4

1

2

3

4

5

V̂ 1
π

s0⇒
1.00

⇒
1.00

⇑
1.00

⇐
1.00

⇑
1.00

⇑
1.00

⇑
1.00

⇐
1.00

⇒
1.00

⇑
1.00

⇐
1.00

⇐
1.00

⇒
1.00

⇑
1.00

⇑
3.00

⇑
1.00

⇒
1.00

⇒
1.00

⇒
1.00 0.00

s?

I cost of 3 to move from striped cells (cost is 1 otherwise)

I moving from gray cells unsuccessful with probability 0.6

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 23 / 44

F3. Policy Iteration Policy Evaluation

Iterative Policy Evaluation for SSPs: Example

1 2 3 4

1

2

3

4

5

V̂ 2
π

s0⇒
2.00

⇒
2.00

⇑
2.00

⇐
2.00

⇑
2.00

⇑
2.00

⇑
2.00

⇐
2.00

⇒
2.00

⇑
2.00

⇐
2.00

⇐
2.00

⇒
2.00

⇑
2.00

⇑
5.20

⇑
1.60

⇒
2.00

⇒
2.00

⇒
1.00 0.00

s?

I cost of 3 to move from striped cells (cost is 1 otherwise)

I moving from gray cells unsuccessful with probability 0.6

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 24 / 44

F3. Policy Iteration Policy Evaluation

Iterative Policy Evaluation for SSPs: Example

1 2 3 4

1

2

3

4

5

V̂ 5
π

s0⇒
5.00

⇒
5.00

⇑
5.00

⇐
5.00

⇑
5.00

⇑
5.00

⇑
5.00

⇐
5.00

⇒
5.00

⇑
4.00

⇐
5.00

⇐
5.00

⇒
4.60

⇑
3.00

⇑
7.79

⇑
2.31

⇒
3.96

⇒
2.00

⇒
1.00 0.00

s?

I cost of 3 to move from striped cells (cost is 1 otherwise)

I moving from gray cells unsuccessful with probability 0.6

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 25 / 44

F3. Policy Iteration Policy Evaluation

Iterative Policy Evaluation for SSPs: Example

1 2 3 4

1

2

3

4

5

V̂ 10
π

s0⇒
9.00

⇒
8.00

⇑
7.00

⇐
8.96

⇑
8.30

⇑
6.38

⇑
6.00

⇐
8.18

⇒
6.38

⇑
4.00

⇐
5.00

⇐
7.31

⇒
5.43

⇑
3.00

⇑
8.44

⇑
2.50

⇒
4.46

⇒
2.00

⇒
1.00 0.00

s?

I cost of 3 to move from striped cells (cost is 1 otherwise)

I moving from gray cells unsuccessful with probability 0.6

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 26 / 44

F3. Policy Iteration Policy Evaluation

Iterative Policy Evaluation for SSPs: Example

1 2 3 4

1

2

3

4

5

V̂ 29
π

s0⇒
9.00

⇒
8.00

⇑
7.00

⇐
9.50

⇑
9.00

⇑
6.50

⇑
6.00

⇐
8.50

⇒
6.50

⇑
4.00

⇐
5.00

⇐
7.50

⇒
5.50

⇑
3.00

⇑
8.50

⇑
2.50

⇒
4.50

⇒
2.00

⇒
1.00 0.00

s?

I cost of 3 to move from striped cells (cost is 1 otherwise)

I moving from gray cells unsuccessful with probability 0.6

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 27 / 44

F3. Policy Iteration Policy Evaluation

Iterative Policy Evaluation: Algorithm

Iterative Policy Evaluation for SSP 〈S ,A, c,T , s0,S?〉,
complete policy π and ε > 0

initialize V̂ 0 to 0 for goal states, otherwise arbitarily
for i = 1, 2, . . . :

for all states s ∈ S \ S?:
V̂ i
π(s) := c(π(s)) +

∑
s′∈S T (s, π(s), s ′) · V̂ i−1

π (s ′)

if maxs∈S |V̂ i
π(s)− V̂ i−1

π (s)| < ε:
return V̂ i

π

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 28 / 44

F3. Policy Iteration Policy Evaluation

Iterative Policy Evaluation: Properties

Theorem (Convergence of Iterative Policy Evaluation)

Let T = 〈S ,A, c ,T , s0, S?〉 be an SSP, π be a proper policy for T
and V̂ 0

π (s) ∈ R arbitrarily for all s \ S?.

Iterative policy evaluation converges to the true state-values, i.e.,

lim
i→∞

V̂ i
π(s) = Vπ(s) for all s ∈ S .

Proof omitted.

In practice, iterative policy evaluation converges to
true state-values if ε is small enough.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 29 / 44

F3. Policy Iteration Policy Evaluation

Policy Evaluation: MDPs

What about policy evaluation for MDPs?

I MDPs (with finite state set) are always cyclic
⇒ backward induction not applicable

I but goal state not required for iterative policy evaluation

I albeit traces are infinite, iterative policy evaluation converges

I convergence theorem also holds for MDPs

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 30 / 44

F3. Policy Iteration Policy Improvement

F3.3 Policy Improvement

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 31 / 44

F3. Policy Iteration Policy Improvement

Example: Greedy Action

1 2 3 4

1

2

3

4

5

V̂ 18
π (s)

s0⇒
9.0

⇒
8.00

⇑
7.00

⇐
9.50

⇑
9.00

⇑
6.50

⇑
6.00

⇐
8.50

⇒
6.50

⇑
4.00

⇐
5.00

⇐
7.50

⇒
5.50

⇑
3.00

⇑
8.50

⇑
2.50

⇒
4.50

⇒
2.00

⇒
1.00 0.00

s?

I Can we learn more from this than the state-values of a policy?

I Yes! By evaluating all actions in each state,
we can derive a better policy

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 32 / 44

F3. Policy Iteration Policy Improvement

Example: Greedy Action

1 2 3 4

1

2

3

4

5

V̂ 18
π (s)

s0⇒
9.0

⇑
8.00

⇑
7.00

⇐
9.50

⇑
9.00

⇑
6.50

⇑
6.00

⇐
8.50

⇒
6.50

⇑
4.00

⇐
5.00

⇑
7.50

⇒
5.50

⇑
3.00

⇑
8.50

⇑
2.50

⇒
4.50

⇒
2.00

⇒
1.00 0.00

s?

I Can we learn more from this than the state-values of a policy?

I Yes! By evaluating all actions in each state,
we can derive a better policy

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 33 / 44

F3. Policy Iteration Policy Improvement

Greedy Actions and Policies for SSPs

Definition (Greedy Action)

Let s be a state of an SSP T = 〈S ,A, c ,T , s0,S?〉 and
V be a state-value function for T .
The set of greedy actions in s with respect to V is

AV (s) := arg min
a∈A(s)

(
c(a) +

∑
s′∈S

T (s, a, s ′) · V (s ′)

)
.

A policy πV with πV (s) ∈ AV (s) is a greedy policy.

Determining a greedy policy of a given state-value function
is called policy improvement.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 34 / 44

F3. Policy Iteration Policy Improvement

Greedy Actions and Policies for MDPs

Definition (Greedy Action)

Let s be a state of a (discounted-reward) MDP
T = 〈S ,A,R,T , s0, γ〉 and V be a state-value function for T .
The set of greedy actions in s with respect to V is

AV (s) := arg max
a∈A(s)

(
R(s, a) + γ

∑
s′∈S

T (s, a, s ′) · V (s ′)

)
.

A policy πV with πV (s) ∈ AV (s) is a greedy policy.

Determining a greedy policy of a given state-value function
is called policy improvement.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 35 / 44

F3. Policy Iteration Policy Iteration

F3.4 Policy Iteration

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 36 / 44

F3. Policy Iteration Policy Iteration

Policy Iteration

I Policy Iteration (PI) was first proposed by Howard in 1960

I based on the observation that the greedy actions
describe a better policy

I starts with arbitrary policy π0
I alternates policy evaluation and policy improvement

I as long as policy changes

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 37 / 44

F3. Policy Iteration Policy Iteration

Example: Policy Iteration

1 2 3 4

1

2

3

4

5

π0 = π3

π0

s0⇒
9.00

⇒
8.00

⇑
7.00

⇐
9.50

⇑
9.00

⇑
6.50

⇑
6.00

⇐
8.50

⇒
6.50

⇑
4.00

⇐
5.00

⇐
7.50

⇒
5.50

⇑
3.00

⇑
8.50

⇑
2.50

⇒
4.50

⇒
2.00

⇒
1.00 0.00

s?

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 38 / 44

F3. Policy Iteration Policy Iteration

Example: Policy Iteration

1 2 3 4

1

2

3

4

5

π0 = π3

π1

s0⇒
8.50

⇑
7.50

⇑
7.00

⇐
9.50

⇑
9.00

⇑
6.50

⇑
6.00

⇐
8.50

⇒
6.50

⇑
4.00

⇐
5.00

⇑
5.00

⇒
5.50

⇑
3.00

⇑
8.50

⇑
2.50

⇒
4.50

⇒
2.00

⇒
1.00 0.00

s?

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 39 / 44

F3. Policy Iteration Policy Iteration

Example: Policy Iteration

1 2 3 4

1

2

3

4

5

π0 = π3

π2 = π3

s0⇒
8.50

⇑
7.50

⇑
7.00

⇐
9.50

⇑
9.00

⇑
6.50

⇑
6.00

⇑
7.50

⇒
6.50

⇑
4.00

⇐
5.00

⇑
5.00

⇒
5.50

⇑
3.00

⇑
8.50

⇑
2.50

⇒
4.50

⇒
2.00

⇒
1.00 0.00

s?

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 40 / 44

F3. Policy Iteration Policy Iteration

Policy Iteration: Algorithm

Policy Iteration for SSP or MDP T
initialize π0 to any policy (for SSP: proper)
for i = 0, 1, . . . :

compute Vπi
let πi+1 be a greedy policy w.r.t Vπi
if πi = πi+1:

return πi

Note: if πi (s) ∈ AVπi (s)
then use πi+1(s) := πi (s)

(only update the policy where necessary).

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 41 / 44

F3. Policy Iteration Policy Iteration

Properties

I PI computes optimal policy if policy evaluation is exact

I In practice, PI often requires very few iterations . . .

I . . . and is much faster than solving an LP

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 42 / 44

F3. Policy Iteration Summary

F3.5 Summary

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 43 / 44

F3. Policy Iteration Summary

Summary

I Policy evaluation for an acyclic policy is possible in one sweep
over the state space with backward induction

I Iterative policy evaluation applies state-value function
iteratively and converges to true state-values

I Greedy actions in evaluated policy allow to improve policy

I Policy iteration alternates policy evaluation and policy
improvement

I Policy iteration computes an optimal policy
(if policy evaluation is exact)

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 44 / 44

	Introduction
	

	Policy Evaluation
	

	Policy Improvement
	

	Policy Iteration
	

	Summary
	

