Planning and Optimization
F3. Policy Iteration

Malte Helmert and Gabriele Roger

Universitat Basel

Planning and Optimization
— F3. Policy Iteration

F3.1 Introduction

F3.2 Policy Evaluation
F3.3 Policy Improvement
F3.4 Policy lteration

F3.5 Summary

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

2/ 44

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 1/ 44
Content of this Course
—I Foundations |
—I Logic |
—| Classical I—
—| Heuristics |
—I Constraints |
Factored MDPs
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 3 /44

Content of this Course: Explicit MDPs

—| Foundations |

Linear
Programing

Policy
Iteration

Value
Iteration

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

4/ 44

F3. Policy lteration

F3.1 Introduction

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

Introduction

F3. Policy lteration Introduction

Limitations of LPs in Practice

With the LP we can compute an optimal policy

in polynomial time.

Possible issues in practice:
» LPs often too expensive even for small MDPs
» LP solver usage prohibited

» More expressive model required (e.g. continuous state space)

Policy Iteration (PI) is a suitable alternative.
It has 2 components:

» Policy Evaluation: Compute V. for a given 7

» Policy Improvement: Determine better policy from V/;

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 6 / 44

F3. Policy Iteration

F3.2 Policy Evaluation

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

Policy Evaluation

F3. Policy lteration Policy Evaluation

Reminder: Value Functions for SSPs

Definition (Value Functions for SSPs)
Let T =(S,A,c, T,sp,Ss) be an SSP and 7 be a policy for 7.

The state-value V(s) of s under 7 is defined as

Vi(s) := {0 if s € 5;*
Qx(s,m(s)) otherwise,

where the action-value Qx(s, a) of s and a under 7 is defined as

Qr(s,a) :=c(a) + Z T(s,a,s") - V(5.

s’esucc(s,a)

The state-value V(s) describes the expected cost
of applying 7 in SSP T, starting from s.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 8 / 44

F3. Policy lteration Policy Evaluation

Policy Evaluation: Implementations

Computing V;; for a given policy 7 is called policy evaluation.

There are several algorithms for policy evaluation:

© Linear Program

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 9 / 44

F3. Policy lteration Policy Evaluation

Reminder: LP for Expected Cost in SSP

Variables
Non-negative variable ExpCost, for each state s

Objective
Maximize ExpCost,,

Subject to

ExpCost,, =0 for all goal states s,

ExpCost, < (Z T(s,a,s’) - ExpCost.) + c(a)
s'eS
forall s € S and a € A(s)

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 10 / 44

F3. Policy Iteration Policy Evaluation

LP for Policy Evaluation in SSP

Variables
Non-negative variable ExpCost, for each state s

Objective
Maximize ExpCost,

Subject to

ExpCost,, =0 for all goal states s,

ExpCost, < (z T(s,7(s),s") - ExpCost,) + c(7(s))
s'eS

for all s € S and-acAfs)

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 11 / 44

F3. Policy lteration Policy Evaluation

Policy Evaluation via LP

» is polynomial in |S|
» difference between polynomial in |S| and
polynomial in |S| - |A] is sometimes relevant in practice

» but often this is not the case

» other practical limitations also apply here

~> Require policy evaluation without LP

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 12 / 44

F3. Policy lteration

Policy Evaluation: Implementations

Computing V;; for a given policy 7 is called policy evaluation.

There are several algorithms for policy evaluation:
© Linear Program
@ Backward Induction

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

Policy Evaluation

13 / 44

F3. Policy lteration Policy Evaluation

Example: Backward Induction in Deterministic SSP

Sk
5.00 | 2.00 | 1.00 | 0.00

6.00 | 3.00 | 4.00 | 3.00

7.00 | 4.00 | 5.00 | 8.00

)
10.00 | 7.00 | 6.00 | 9.00

1 120 =| 1|«
9.00 | 8.00 | 7.00 |10.00

1 2 3 4

> cost of 3 to move from striped cells (cost is 1 otherwise)

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 14 / 44

F3. Policy Iteration

Policy Evaluation via Backward Induction

» is linear in |S]
» but restricted to special cases
~» When is policy evaluation via backward induction possible?

In deterministic planning problems?

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

Policy Evaluation

15 / 44

F3. Policy lteration Policy Evaluation

Example: Backward Induction in Probabilistic SSP

N S,
5.00 | 2.00 | 1.00 | 0.00

6.00 | 3.00 | 2.80 | 3.00

7.00 | 4.00 | 5.00 | 8.00

10.00| 7.00 | 6.00 | 9.00

1120 = | 1|«
9.00 | 8.00 | 7.00 |10.00

1 2 3 4

> cost of 3 to move from striped cells (cost is 1 otherwise)
» probability of 0.4 to “=" in gray cell

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 16 / 44

F3. Policy lteration Policy Evaluation

Policy Evaluation via Backward Induction

~» When is policy evaluation via backward induction possible?

In deterministic planning problems?
No, policy must be acyclic.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 17 / 44

F3. Policy lteration Policy Evaluation

Policy Evaluation: Implementations

Computing V;; for a given policy 7 is called policy evaluation.

There are several algorithms for policy evaluation:
@ Linear Program

@ Backward Induction for acyclic policies

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 18 / 44

F3. Policy Iteration Policy Evaluation

Backward Induction: Algorithm

Backward Induction for SSP (S, A, ¢, T, so, S&)
and complete policy 7
initialize V(s) :=none foralls € S
Vy(s) =0 for all s € S,
while there is a s € S with V;(s) = none:

pick s € S with V,(s) = none and

V(") # none for all s” € succ(s, 7(s))

set Vi (s) := c(7(s)) + Dges T(s,7(s),s") - V(')

return V,

F3. Policy lteration Policy Evaluation

Policy Evaluation: Implementations

Computing V,; for a given policy 7 is called policy evaluation.

There are several algorithms for policy evaluation:
© Linear Program
@ Backward Induction for acyclic policies

© lIterative Policy Evaluation

19 / 44

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 20 / 44

F3. Policy lteration

Iterative Policy Evaluation: ldea

» impossible to compute state-values
in one sweep over the state space in presence of cycles

> start with arbitrary state-value function \779

P treat state-value function as update rule
Vi(s) = c(x(s)) + D T(s,m(s),s) - Vi X(s")
s'eS

» apply update rule iteratively

P until state-values have converged

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

Policy Evaluation

21 / 44

F3. Policy lteration

Iterative Policy Evaluation for SSPs: Example

Sy
0.00 | 0.00 | 0.00 | 0.00

4 | = | T |
0.00 | 0.00 | 0.00 | 0.00
3= 0= | s Vo
0.00 | 0.00 | 0.00 | 0.00 i
5 =
0.00 | 0.00 | 0.00 | 0.00
1| = = =

0.00 | 0.00 | 0.00 | 0.00

1 2 3 4

> cost of 3 to move from striped cells (cost is 1 otherwise)

» moving from gray cells unsuccessful with probability 0.6

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

Policy Evaluation

22 / 44

F3. Policy Iteration

Iterative Policy Evaluation for SSPs: Example

Sk
1.00 | 1.00 | 1.00 | 0.00

1.00 | 1.00 | 3.00 | 1.00

fr
>
A=

1.00 | 1.00 | 1.00 | 1.00

1.00 | 1.00 | 1.00 | 1.00
So

1.00 | 1.00 | 1.00 | 1.00

1 2 3 4

> cost of 3 to move from striped cells (cost is 1 otherwise)

» moving from gray cells unsuccessful with probability 0.6

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

Policy Evaluation

23 / 44

F3. Policy lteration

Iterative Policy Evaluation for SSPs: Example

Sy
2.00 | 2.00 | 1.00 | 0.00

2.00 | 2.00 | 5.20 | 1.60

= | ¢4 | |« 52
3 1200 200 | 200 | 2,00 Ve
>l L=

2.00 | 2.00 | 2.00 | 2.00
S0

2.00 | 2.00 | 2.00 | 2.00

1 2 3 4

» cost of 3 to move from striped cells (cost is 1 otherwise)

» moving from gray cells unsuccessful with probability 0.6

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

Policy Evaluation

24 / 44

F3. Policy lteration

Iterative Policy Evaluation for SSPs: Example

Sk
3.96 | 2.00 | 1.00 | 0.00

T Bl
4.60 | 3.00 | 7.79 | 2.31

= = | = 5
3 5.00 | 4.00 | 5.00 | 5.00 v
5 =

5.00 | 5.00 | 5.00 | 5.00
1| =] = =

5.00 | 5.00 | 5.00 | 5.00

1 2 3 4

» cost of 3 to move from striped cells (cost is 1 otherwise)

» moving from gray cells unsuccessful with probability 0.6

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

Policy Evaluation

25 / 44

F3. Policy lteration

Iterative Policy Evaluation for SSPs: Example

Sy
4.46 | 2.00 | 1.00 | 0.00

5.43 | 3.00 | 8.44 | 2.50

3 | = = | « V10
6.38 | 4.00 | 5.00 | 7.31 G
2 T <
8.30 | 6.38 | 6.00 | 8.18
1| =0 = =

9.00 | 8.00 | 7.00 | 8.96

1 2 3 4

> cost of 3 to move from striped cells (cost is 1 otherwise)

» moving from gray cells unsuccessful with probability 0.6

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

Policy Evaluation

26 / 44

F3. Policy Iteration

Iterative Policy Evaluation for SSPs: Example

Sy
450 | 2.00 | 1.00 | 0.00

5.50 | 3.00 | 8.50 | 2.50

= 1y = = 729
3 6.50 | 4.00 | 5.00 | 7.50 Ve
2 TPt =

9.00 | 6.50 | 6.00 | 8.50

9.00 | 8.00 | 7.00 | 9.50

1 2 3 4

> cost of 3 to move from striped cells (cost is 1 otherwise)

» moving from gray cells unsuccessful with probability 0.6

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

Policy Evaluation

27 / 44

F3. Policy lteration

Iterative Policy Evaluation: Algorithm

Iterative Policy Evaluation for SSP (S, A, ¢, T, s, S&),
complete policy m and € > 0
initialize V° to 0 for goal states, otherwise arbitarily
for i=1,2,...:
for all states s € S\ S,:
Vi(s) := e(m(s)) + Laes T(s.7(5),¢) - ViX(s')
if maxses |Vi(s) — Vi~l(s)| < e
return V/

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

Policy Evaluation

28 / 44

F3. Policy lteration Policy Evaluation

Iterative Policy Evaluation: Properties

Theorem (Convergence of Iterative Policy Evaluation)
Let T =(S,A,c, T,sp,S.) be an SSP, 7w be a proper policy for T
and V2(s) € R arbitrarily for all s\ S,.

Iterative policy evaluation converges to the true state-values, i.e.,

lim Vi(s) = Vy(s) forall s € S.

i—00
Proof omitted.

In practice, iterative policy evaluation converges to
true state-values if ¢ is small enough.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 29 / 44

F3. Policy lteration

Policy Evaluation: MDPs

What about policy evaluation for MDPs?

» MDPs (with finite state set) are always cyclic
= backward induction not applicable

» but goal state not required for iterative policy evaluation

v

albeit traces are infinite, iterative policy evaluation converges

» convergence theorem also holds for MDPs

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

Policy Evaluation

30 / 44

F3. Policy Iteration Policy Improvement

F3.3 Policy Improvement

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 31 /44

F3. Policy lteration

Example: Greedy Action

5= | = | = S
4.50 | 2.00 | 1.00 | 0.00
PR S N S

5.50 | 3.00 | 8.50 | 2.50

3 =2 0« | &
6.50 | 4.00 | 5.00 | 7.50

X | O

9.00 | 6.50 | 6.00 | 8.50

112 =] 1| €
9.0 | 8.00 | 7.00 | 9.50

1 2 3 4

» Can we learn more from this than the state-values of a policy?

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

Policy Improvement

32/ 44

F3. Policy lteration Policy Improvement

Example: Greedy Action

5 =] == S«
4.50 | 2.00 | 1.00 | 0.00

4 = 2l
5.50 | 3.00 | 8.50 | 2.50

3 = 1 =
6.50 | 4.00 | 5.00 | 7.50

9.00 | 6.50 | 6.00 | 8.50

9.0 | 8.00 | 7.00 | 9.50

1 2 3 4

» Can we learn more from this than the state-values of a policy?

> Yes! By evaluating all actions in each state,
we can derive a better policy

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 33 / 44

F3. Policy lteration Policy Improvement

Greedy Actions and Policies for SSPs

Definition (Greedy Action)

Let s be a state of an SSP T = (5, A, ¢, T, s, Sx) and
V be a state-value function for 7.
The set of greedy actions in s with respect to V' is

Ay(s) := arg min <c(a) + Z T(s,a,s)- V(s’)) :

acA(s) Jcs
A policy my with my(s) € Ay(s) is a greedy policy.

Determining a greedy policy of a given state-value function
is called policy improvement.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 34 / 44

F3. Policy Iteration Policy Improvement

Greedy Actions and Policies for MDPs

Definition (Greedy Action)

Let s be a state of a (discounted-reward) MDP
T =(S,A R, T,sy,7) and V be a state-value function for T.
The set of greedy actions in s with respect to V is

Ay (s) := arg max (R(s, a)+ vy Z T(s,a,s')- V(s’)) :

acA(s) Jcs
A policy my with my(s) € Ay(s) is a greedy policy.

Determining a greedy policy of a given state-value function
is called policy improvement.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 35 / 44

F3. Policy lteration Policy Iteration

F3.4 Policy Iteration

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 36 / 44

F3. Policy lteration

Policy Iteration

» Policy lteration (PI) was first proposed by Howard in 1960

» based on the observation that the greedy actions
describe a better policy

P starts with arbitrary policy g

v

alternates policy evaluation and policy improvement

> as long as policy changes

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

Policy Iteration

37 / 44

F3. Policy lteration

Example: Policy Iteration

Sx
4.50 | 2.00 | 1.00 | 0.00

Policy Iteration

F3. Policy Iteration

Example: Policy Iteration

Sy
450 | 2.00 | 1.00 | 0.00

550 | 3.00 | 8.50 | 2.50

6.50 | 4.00 | 5.00 | 5.00

9.00 | 6.50 | 6.00 | 8.50

8.50 | 7.50 | 7.00 | 9.50

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

Policy Iteration

39 / 44

s = L
5.50 | 3.00 | 8.50 | 2.50
3 | = = | = o
6.50 | 4.00 | 5.00 | 7.50
2 Tl =
9.00 | 6.50 | 6.00 | 8.50
1| =0 = =
9.00 | 8.00 | 7.00 | 9.50
1 2 3 4
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 38 / 44
F3. Policy lteration Policy Iteration
Example: Policy Iteration
Sy
5 = | = | =
450 | 2.00 | 1.00 | 0.00
4 | = TN
5.50 | 3.00 | 8.50 | 2.50
3 = TT < ﬂ Ty = T3

6.50 | 4.00 | 5.00 | 5.00

9.00 | 6.50 | 6.00 | 7.50

8.50 | 7.50 | 7.00 | 9.50

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

40 / 44

F3. Policy lteration Policy Iteration

Policy Iteration: Algorithm

Policy Iteration for SSP or MDP T
initialize 7y to any policy (for SSP: proper)
for i=0,1,...:
compute Vg,
let wiy1 be a greedy policy w.r.t Vp,
if T = Tj41:
return 7;

Note: if mi(s) € Ay, (s) then use m;11(s) := 7i(s)
(only update the policy where necessary).

M. Helmert, G. Roger (Universitat Basel)

Planning and Optimization 41 /

44

F3. Policy lteration Policy Iteration

Properties

» Pl computes optimal policy if policy evaluation is exact
» In practice, Pl often requires very few iterations ...

» ... and is much faster than solving an LP

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 42 / 44

F3. Policy Iteration Summary

F3.5 Summary

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 43

/ 44

F3. Policy lteration Summary

Summary

» Policy evaluation for an acyclic policy is possible in one sweep
over the state space with backward induction

> |terative policy evaluation applies state-value function
iteratively and converges to true state-values

» Greedy actions in evaluated policy allow to improve policy

» Policy iteration alternates policy evaluation and policy
improvement

> Policy iteration computes an optimal policy
(if policy evaluation is exact)

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 44 / 44

	Introduction
	

	Policy Evaluation
	

	Policy Improvement
	

	Policy Iteration
	

	Summary
	

