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F3. Policy lteration

F3.1 Introduction
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Introduction

F3. Policy lteration Introduction

Limitations of LPs in Practice

With the LP we can compute an optimal policy

in polynomial time.

Possible issues in practice:
» LPs often too expensive even for small MDPs
» LP solver usage prohibited

» More expressive model required (e.g. continuous state space)

Policy Iteration (PI) is a suitable alternative.
It has 2 components:

» Policy Evaluation: Compute V. for a given 7

» Policy Improvement: Determine better policy from V/;
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F3. Policy Iteration

F3.2 Policy Evaluation
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Policy Evaluation

F3. Policy lteration Policy Evaluation

Reminder: Value Functions for SSPs

Definition (Value Functions for SSPs)
Let T =(S,A,c, T,sp,Ss) be an SSP and 7 be a policy for 7.

The state-value V(s) of s under 7 is defined as

Vi(s) := {0 if s € 5;*
Qx(s,m(s)) otherwise,

where the action-value Qx(s, a) of s and a under 7 is defined as

Qr(s,a) :=c(a) + Z T(s,a,s") - V(5.

s’esucc(s,a)

The state-value V(s) describes the expected cost
of applying 7 in SSP T, starting from s.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 8 / 44




F3. Policy lteration Policy Evaluation

Policy Evaluation: Implementations

Computing V;; for a given policy 7 is called policy evaluation.

There are several algorithms for policy evaluation:

© Linear Program
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F3. Policy lteration Policy Evaluation

Reminder: LP for Expected Cost in SSP

Variables
Non-negative variable ExpCost, for each state s

Objective
Maximize ExpCost,,

Subject to

ExpCost,, =0  for all goal states s,

ExpCost, < (Z T(s,a,s’) - ExpCost. ) + c(a)
s'eS
forall s € S and a € A(s)
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F3. Policy Iteration Policy Evaluation

LP for Policy Evaluation in SSP

Variables
Non-negative variable ExpCost, for each state s

Objective
Maximize ExpCost,

Subject to

ExpCost,, =0  for all goal states s,

ExpCost, < (z T(s,7(s),s") - ExpCost,) + c(7(s))
s'eS

for all s € S and-acAfs)
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F3. Policy lteration Policy Evaluation

Policy Evaluation via LP

» is polynomial in |S|
» difference between polynomial in |S| and
polynomial in |S| - |A] is sometimes relevant in practice

» but often this is not the case

» other practical limitations also apply here

~> Require policy evaluation without LP
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F3. Policy lteration

Policy Evaluation: Implementations

Computing V;; for a given policy 7 is called policy evaluation.

There are several algorithms for policy evaluation:
© Linear Program
@ Backward Induction
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Policy Evaluation
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F3. Policy lteration Policy Evaluation

Example: Backward Induction in Deterministic SSP

Sk
5.00 | 2.00 | 1.00 | 0.00

6.00 | 3.00 | 4.00 | 3.00

7.00 | 4.00 | 5.00 | 8.00

)
10.00 | 7.00 | 6.00 | 9.00

1 120 =| 1|«
9.00 | 8.00 | 7.00 |10.00

1 2 3 4

> cost of 3 to move from striped cells (cost is 1 otherwise)

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 14 / 44

F3. Policy Iteration

Policy Evaluation via Backward Induction

» is linear in |S]
» but restricted to special cases
~» When is policy evaluation via backward induction possible?

In deterministic planning problems?
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F3. Policy lteration Policy Evaluation

Example: Backward Induction in Probabilistic SSP

N S,
5.00 | 2.00 | 1.00 | 0.00

6.00 | 3.00 | 2.80 | 3.00

7.00 | 4.00 | 5.00 | 8.00

10.00| 7.00 | 6.00 | 9.00

1120 = | 1|«
9.00 | 8.00 | 7.00 |10.00

1 2 3 4

> cost of 3 to move from striped cells (cost is 1 otherwise)
» probability of 0.4 to “=" in gray cell
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F3. Policy lteration Policy Evaluation

Policy Evaluation via Backward Induction

~» When is policy evaluation via backward induction possible?

In deterministic planning problems?
No, policy must be acyclic.
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F3. Policy lteration Policy Evaluation

Policy Evaluation: Implementations

Computing V;; for a given policy 7 is called policy evaluation.

There are several algorithms for policy evaluation:
@ Linear Program

@ Backward Induction for acyclic policies

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 18 / 44

F3. Policy Iteration Policy Evaluation

Backward Induction: Algorithm

Backward Induction for SSP (S, A, ¢, T, so, S&)
and complete policy 7
initialize V(s) :=none foralls € S
Vy(s) =0 for all s € S,
while there is a s € S with V;(s) = none:

pick s € S with V,(s) = none and

V(") # none for all s” € succ(s, 7(s))

set Vi (s) := c(7(s)) + Dges T(s,7(s),s") - V(')

return V,

F3. Policy lteration Policy Evaluation

Policy Evaluation: Implementations

Computing V,; for a given policy 7 is called policy evaluation.

There are several algorithms for policy evaluation:
© Linear Program
@ Backward Induction for acyclic policies

© lIterative Policy Evaluation
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F3. Policy lteration

Iterative Policy Evaluation: ldea

» impossible to compute state-values
in one sweep over the state space in presence of cycles

> start with arbitrary state-value function \779

P treat state-value function as update rule
Vi(s) = c(x(s)) + D T(s,m(s),s) - Vi X(s")
s'eS

» apply update rule iteratively

P until state-values have converged

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

Policy Evaluation

21 / 44

F3. Policy lteration

Iterative Policy Evaluation for SSPs: Example

Sy
0.00 | 0.00 | 0.00 | 0.00

4 | = | T |
0.00 | 0.00 | 0.00 | 0.00
3= 0= | s Vo
0.00 | 0.00 | 0.00 | 0.00 i
5 =
0.00 | 0.00 | 0.00 | 0.00
1| = = =

0.00 | 0.00 | 0.00 | 0.00

1 2 3 4

> cost of 3 to move from striped cells (cost is 1 otherwise)

» moving from gray cells unsuccessful with probability 0.6
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F3. Policy Iteration

Iterative Policy Evaluation for SSPs: Example

Sk
1.00 | 1.00 | 1.00 | 0.00

1.00 | 1.00 | 3.00 | 1.00

fr
>
A=

1.00 | 1.00 | 1.00 | 1.00

1.00 | 1.00 | 1.00 | 1.00
So

1.00 | 1.00 | 1.00 | 1.00

1 2 3 4

> cost of 3 to move from striped cells (cost is 1 otherwise)

» moving from gray cells unsuccessful with probability 0.6
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F3. Policy lteration

Iterative Policy Evaluation for SSPs: Example

Sy
2.00 | 2.00 | 1.00 | 0.00

2.00 | 2.00 | 5.20 | 1.60

= | ¢4 | |« 52
3 1200 200 | 200 | 2,00 Ve
>l L=

2.00 | 2.00 | 2.00 | 2.00
S0

2.00 | 2.00 | 2.00 | 2.00

1 2 3 4

» cost of 3 to move from striped cells (cost is 1 otherwise)

» moving from gray cells unsuccessful with probability 0.6
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F3. Policy lteration

Iterative Policy Evaluation for SSPs: Example

Sk
3.96 | 2.00 | 1.00 | 0.00

T Bl
4.60 | 3.00 | 7.79 | 2.31

= = | = 5
3 5.00 | 4.00 | 5.00 | 5.00 v
5 =

5.00 | 5.00 | 5.00 | 5.00
1| =] = =

5.00 | 5.00 | 5.00 | 5.00

1 2 3 4

» cost of 3 to move from striped cells (cost is 1 otherwise)

» moving from gray cells unsuccessful with probability 0.6
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F3. Policy lteration

Iterative Policy Evaluation for SSPs: Example

Sy
4.46 | 2.00 | 1.00 | 0.00

5.43 | 3.00 | 8.44 | 2.50

3 | = = | « V10
6.38 | 4.00 | 5.00 | 7.31 G
2 T <
8.30 | 6.38 | 6.00 | 8.18
1| =0 = =

9.00 | 8.00 | 7.00 | 8.96

1 2 3 4

> cost of 3 to move from striped cells (cost is 1 otherwise)

» moving from gray cells unsuccessful with probability 0.6
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F3. Policy Iteration

Iterative Policy Evaluation for SSPs: Example

Sy
450 | 2.00 | 1.00 | 0.00

5.50 | 3.00 | 8.50 | 2.50

= 1y = = 729
3 6.50 | 4.00 | 5.00 | 7.50 Ve
2 TPt =

9.00 | 6.50 | 6.00 | 8.50

9.00 | 8.00 | 7.00 | 9.50

1 2 3 4

> cost of 3 to move from striped cells (cost is 1 otherwise)

» moving from gray cells unsuccessful with probability 0.6
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F3. Policy lteration

Iterative Policy Evaluation: Algorithm

Iterative Policy Evaluation for SSP (S, A, ¢, T, s, S&),
complete policy m and € > 0
initialize V° to 0 for goal states, otherwise arbitarily
for i=1,2,...:
for all states s € S\ S,:
Vi(s) := e(m(s)) + Laes T(s.7(5),¢) - ViX(s')
if maxses |Vi(s) — Vi~l(s)| < e
return V/
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F3. Policy lteration Policy Evaluation

Iterative Policy Evaluation: Properties

Theorem (Convergence of Iterative Policy Evaluation)
Let T =(S,A,c, T,sp,S.) be an SSP, 7w be a proper policy for T
and V2(s) € R arbitrarily for all s\ S,.

Iterative policy evaluation converges to the true state-values, i.e.,

lim Vi(s) = Vy(s) forall s € S.

i—00
Proof omitted.

In practice, iterative policy evaluation converges to
true state-values if ¢ is small enough.
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F3. Policy lteration

Policy Evaluation: MDPs

What about policy evaluation for MDPs?

» MDPs (with finite state set) are always cyclic
= backward induction not applicable

» but goal state not required for iterative policy evaluation

v

albeit traces are infinite, iterative policy evaluation converges

» convergence theorem also holds for MDPs
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F3. Policy Iteration Policy Improvement

F3.3 Policy Improvement
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F3. Policy lteration

Example: Greedy Action

5= | = | = S
4.50 | 2.00 | 1.00 | 0.00
PR S N S

5.50 | 3.00 | 8.50 | 2.50

3 =2 0« | &
6.50 | 4.00 | 5.00 | 7.50

X | O

9.00 | 6.50 | 6.00 | 8.50

112 =] 1| €
9.0 | 8.00 | 7.00 | 9.50

1 2 3 4

» Can we learn more from this than the state-values of a policy?
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Policy Improvement
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F3. Policy lteration Policy Improvement

Example: Greedy Action

5 =] == S«
4.50 | 2.00 | 1.00 | 0.00

4 = 2l
5.50 | 3.00 | 8.50 | 2.50

3 = 1 =
6.50 | 4.00 | 5.00 | 7.50

9.00 | 6.50 | 6.00 | 8.50

9.0 | 8.00 | 7.00 | 9.50

1 2 3 4

» Can we learn more from this than the state-values of a policy?

> Yes! By evaluating all actions in each state,
we can derive a better policy
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F3. Policy lteration Policy Improvement

Greedy Actions and Policies for SSPs

Definition (Greedy Action)

Let s be a state of an SSP T = (5, A, ¢, T, s, Sx) and
V be a state-value function for 7.
The set of greedy actions in s with respect to V' is

Ay(s) := arg min <c(a) + Z T(s,a,s)- V(s’)) :

acA(s) Jcs
A policy my with my(s) € Ay(s) is a greedy policy.

Determining a greedy policy of a given state-value function
is called policy improvement.
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F3. Policy Iteration Policy Improvement

Greedy Actions and Policies for MDPs

Definition (Greedy Action)

Let s be a state of a (discounted-reward) MDP
T =(S,A R, T,sy,7) and V be a state-value function for T.
The set of greedy actions in s with respect to V is

Ay (s) := arg max (R(s, a)+ vy Z T(s,a,s')- V(s’)) :

acA(s) Jcs
A policy my with my(s) € Ay(s) is a greedy policy.

Determining a greedy policy of a given state-value function
is called policy improvement.
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F3. Policy lteration Policy Iteration

F3.4 Policy Iteration
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F3. Policy lteration

Policy Iteration

» Policy lteration (PI) was first proposed by Howard in 1960

» based on the observation that the greedy actions
describe a better policy

P starts with arbitrary policy g

v

alternates policy evaluation and policy improvement

> as long as policy changes
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Policy Iteration
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F3. Policy lteration

Example: Policy Iteration

Sx
4.50 | 2.00 | 1.00 | 0.00

Policy Iteration

F3. Policy Iteration

Example: Policy Iteration

Sy
450 | 2.00 | 1.00 | 0.00

550 | 3.00 | 8.50 | 2.50

6.50 | 4.00 | 5.00 | 5.00

9.00 | 6.50 | 6.00 | 8.50

8.50 | 7.50 | 7.00 | 9.50
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Policy Iteration
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s = L
5.50 | 3.00 | 8.50 | 2.50
3 | = = | = o
6.50 | 4.00 | 5.00 | 7.50
2 Tl =
9.00 | 6.50 | 6.00 | 8.50
1| =0 = =
9.00 | 8.00 | 7.00 | 9.50
1 2 3 4
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F3. Policy lteration Policy Iteration
Example: Policy Iteration
Sy
5 = | = | =
450 | 2.00 | 1.00 | 0.00
4 | = TN
5.50 | 3.00 | 8.50 | 2.50
3 = TT < ﬂ Ty = T3

6.50 | 4.00 | 5.00 | 5.00

9.00 | 6.50 | 6.00 | 7.50

8.50 | 7.50 | 7.00 | 9.50
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F3. Policy lteration Policy Iteration

Policy Iteration: Algorithm

Policy Iteration for SSP or MDP T
initialize 7y to any policy (for SSP: proper)
for i=0,1,...:
compute Vg,
let wiy1 be a greedy policy w.r.t Vp,
if T = Tj41:
return 7;

Note: if mi(s) € Ay, (s) then use m;11(s) := 7i(s)
(only update the policy where necessary).
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F3. Policy lteration Policy Iteration

Properties

» Pl computes optimal policy if policy evaluation is exact
» In practice, Pl often requires very few iterations ...

» ... and is much faster than solving an LP
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F3. Policy Iteration Summary

F3.5 Summary
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F3. Policy lteration Summary

Summary

» Policy evaluation for an acyclic policy is possible in one sweep
over the state space with backward induction

> |terative policy evaluation applies state-value function
iteratively and converges to true state-values

» Greedy actions in evaluated policy allow to improve policy

» Policy iteration alternates policy evaluation and policy
improvement

> Policy iteration computes an optimal policy
(if policy evaluation is exact)
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