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F3. Policy Iteration Introduction

F3.1 Introduction
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F3. Policy Iteration Introduction

Limitations of LPs in Practice

With the LP we can compute an optimal policy
in polynomial time.

Possible issues in practice:

I LPs often too expensive even for small MDPs

I LP solver usage prohibited

I More expressive model required (e.g. continuous state space)

Policy Iteration (PI) is a suitable alternative.
It has 2 components:

I Policy Evaluation: Compute Vπ for a given π

I Policy Improvement: Determine better policy from Vπ
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F3. Policy Iteration Policy Evaluation

F3.2 Policy Evaluation
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F3. Policy Iteration Policy Evaluation

Reminder: Value Functions for SSPs

Definition (Value Functions for SSPs)

Let T = 〈S ,A, c ,T , s0, S?〉 be an SSP and π be a policy for T .

The state-value Vπ(s) of s under π is defined as

Vπ(s) :=

{
0 if s ∈ S?

Qπ(s, π(s)) otherwise,

where the action-value Qπ(s, a) of s and a under π is defined as

Qπ(s, a) := c(a) +
∑

s′∈succ(s,a)

T (s, a, s ′) · Vπ(s ′).

The state-value Vπ(s) describes the expected cost
of applying π in SSP T , starting from s.
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F3. Policy Iteration Policy Evaluation

Policy Evaluation: Implementations

Computing Vπ for a given policy π is called policy evaluation.

There are several algorithms for policy evaluation:

1 Linear Program

2 Backward Induction

3 Iterative Policy Evaluation
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F3. Policy Iteration Policy Evaluation

Reminder: LP for Expected Cost in SSP

Variables
Non-negative variable ExpCosts for each state s

Objective

Maximize ExpCosts0

Subject to

ExpCosts? = 0 for all goal states s?

ExpCosts ≤ (
∑
s′∈S

T (s, a, s ′) · ExpCosts′) + c(a)

for all s ∈ S and a ∈ A(s)
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F3. Policy Iteration Policy Evaluation

LP for Policy Evaluation in SSP

Variables
Non-negative variable ExpCosts for each state s

Objective

Maximize ExpCosts0

Subject to

ExpCosts? = 0 for all goal states s?

ExpCosts ≤ (
∑
s′∈S

T (s, π(s), s ′) · ExpCosts′) + c(π(s))

for all s ∈ S and a ∈ A(s)
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F3. Policy Iteration Policy Evaluation

Policy Evaluation via LP

I is polynomial in |S |
I difference between polynomial in |S | and

polynomial in |S | · |A| is sometimes relevant in practice

I but often this is not the case

I other practical limitations also apply here

 Require policy evaluation without LP
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F3. Policy Iteration Policy Evaluation

Policy Evaluation: Implementations

Computing Vπ for a given policy π is called policy evaluation.

There are several algorithms for policy evaluation:

1 Linear Program

2 Backward Induction

3 Iterative Policy Evaluation

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 13 / 44

F3. Policy Iteration Policy Evaluation

Example: Backward Induction in Deterministic SSP

1 2 3 4

1

2

3

4

5

s0⇒
9.00

⇒
8.00

⇑
7.00

⇐
10.00

⇑
10.00

⇑
7.00

⇑
6.00

⇐
9.00

⇒
7.00

⇑
4.00

⇐
5.00

⇐
8.00

⇒
6.00

⇑
3.00

⇑
4.00

⇑
3.00

⇒
5.00

⇒
2.00

⇒
1.00 0.00

s?

I cost of 3 to move from striped cells (cost is 1 otherwise)

I Dummy
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F3. Policy Iteration Policy Evaluation

Policy Evaluation via Backward Induction

I is linear in |S |
I but restricted to special cases

 When is policy evaluation via backward induction possible?

In deterministic planning problems?
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F3. Policy Iteration Policy Evaluation

Example: Backward Induction in Probabilistic SSP

1 2 3 4

1

2

3

4

5

s0⇒
9.00

⇒
8.00

⇑
7.00

⇐
10.00

⇑
10.00

⇑
7.00

⇑
6.00

⇐
9.00

⇒
7.00

⇑
4.00

⇐
5.00

⇐
8.00

⇒
6.00

⇑
3.00

⇑
2.80

⇑
3.00

⇒
5.00

⇒
2.00

⇒
1.00 0.00

s?

I cost of 3 to move from striped cells (cost is 1 otherwise)

I probability of 0.4 to “⇒” in gray cell
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F3. Policy Iteration Policy Evaluation

Policy Evaluation via Backward Induction

 When is policy evaluation via backward induction possible?

In deterministic planning problems?
No, policy must be acyclic.
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F3. Policy Iteration Policy Evaluation

Policy Evaluation: Implementations

Computing Vπ for a given policy π is called policy evaluation.

There are several algorithms for policy evaluation:

1 Linear Program

2 Backward Induction for acyclic policies

3 Iterative Policy Evaluation
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F3. Policy Iteration Policy Evaluation

Backward Induction: Algorithm

Backward Induction for SSP 〈S ,A, c ,T , s0,S?〉
and complete policy π

initialize Vπ(s) := none for all s ∈ S
Vπ(s) := 0 for all s ∈ S?
while there is a s ∈ S with Vπ(s) = none:

pick s ∈ S with Vπ(s) = none and
Vπ(s ′) 6= none for all s ′ ∈ succ(s, π(s))

set Vπ(s) := c(π(s)) +
∑

s′∈S T (s, π(s), s ′) · Vπ(s ′)
return Vπ
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F3. Policy Iteration Policy Evaluation

Policy Evaluation: Implementations

Computing Vπ for a given policy π is called policy evaluation.

There are several algorithms for policy evaluation:

1 Linear Program

2 Backward Induction for acyclic policies

3 Iterative Policy Evaluation
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F3. Policy Iteration Policy Evaluation

Iterative Policy Evaluation: Idea

I impossible to compute state-values
in one sweep over the state space in presence of cycles

I start with arbitrary state-value function V̂ 0
π

I treat state-value function as update rule

V̂ i
π(s) = c(π(s)) +

∑
s′∈S

T (s, π(s), s ′) · V̂ i−1
π (s ′)

I apply update rule iteratively

I until state-values have converged
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F3. Policy Iteration Policy Evaluation

Iterative Policy Evaluation for SSPs: Example

1 2 3 4

1

2

3

4

5

V̂ 0
π

s0⇒
0.00

⇒
0.00

⇑
0.00

⇐
0.00

⇑
0.00

⇑
0.00

⇑
0.00

⇐
0.00

⇒
0.00

⇑
0.00

⇐
0.00

⇐
0.00

⇒
0.00

⇑
0.00

⇑
0.00

⇑
0.00

⇒
0.00

⇒
0.00

⇒
0.00 0.00

s?

I cost of 3 to move from striped cells (cost is 1 otherwise)

I moving from gray cells unsuccessful with probability 0.6
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F3. Policy Iteration Policy Evaluation

Iterative Policy Evaluation for SSPs: Example

1 2 3 4

1

2

3

4

5

V̂ 1
π

s0⇒
1.00

⇒
1.00

⇑
1.00

⇐
1.00

⇑
1.00

⇑
1.00

⇑
1.00

⇐
1.00

⇒
1.00

⇑
1.00

⇐
1.00

⇐
1.00

⇒
1.00

⇑
1.00

⇑
3.00

⇑
1.00

⇒
1.00

⇒
1.00

⇒
1.00 0.00

s?

I cost of 3 to move from striped cells (cost is 1 otherwise)

I moving from gray cells unsuccessful with probability 0.6
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F3. Policy Iteration Policy Evaluation

Iterative Policy Evaluation for SSPs: Example

1 2 3 4

1

2

3

4

5

V̂ 2
π

s0⇒
2.00

⇒
2.00

⇑
2.00

⇐
2.00

⇑
2.00

⇑
2.00

⇑
2.00

⇐
2.00

⇒
2.00

⇑
2.00

⇐
2.00

⇐
2.00

⇒
2.00

⇑
2.00

⇑
5.20

⇑
1.60

⇒
2.00

⇒
2.00

⇒
1.00 0.00

s?

I cost of 3 to move from striped cells (cost is 1 otherwise)

I moving from gray cells unsuccessful with probability 0.6
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F3. Policy Iteration Policy Evaluation

Iterative Policy Evaluation for SSPs: Example

1 2 3 4

1

2

3

4

5

V̂ 5
π

s0⇒
5.00

⇒
5.00

⇑
5.00

⇐
5.00

⇑
5.00

⇑
5.00

⇑
5.00

⇐
5.00

⇒
5.00

⇑
4.00

⇐
5.00

⇐
5.00

⇒
4.60

⇑
3.00

⇑
7.79

⇑
2.31

⇒
3.96

⇒
2.00

⇒
1.00 0.00

s?

I cost of 3 to move from striped cells (cost is 1 otherwise)

I moving from gray cells unsuccessful with probability 0.6
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F3. Policy Iteration Policy Evaluation

Iterative Policy Evaluation for SSPs: Example

1 2 3 4

1

2

3

4

5

V̂ 10
π

s0⇒
9.00

⇒
8.00

⇑
7.00

⇐
8.96

⇑
8.30

⇑
6.38

⇑
6.00

⇐
8.18

⇒
6.38

⇑
4.00

⇐
5.00

⇐
7.31

⇒
5.43

⇑
3.00

⇑
8.44

⇑
2.50

⇒
4.46

⇒
2.00

⇒
1.00 0.00

s?

I cost of 3 to move from striped cells (cost is 1 otherwise)

I moving from gray cells unsuccessful with probability 0.6
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F3. Policy Iteration Policy Evaluation

Iterative Policy Evaluation for SSPs: Example

1 2 3 4

1

2

3

4

5

V̂ 29
π

s0⇒
9.00

⇒
8.00

⇑
7.00

⇐
9.50

⇑
9.00

⇑
6.50

⇑
6.00

⇐
8.50

⇒
6.50

⇑
4.00

⇐
5.00

⇐
7.50

⇒
5.50

⇑
3.00

⇑
8.50

⇑
2.50

⇒
4.50

⇒
2.00

⇒
1.00 0.00

s?

I cost of 3 to move from striped cells (cost is 1 otherwise)

I moving from gray cells unsuccessful with probability 0.6
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F3. Policy Iteration Policy Evaluation

Iterative Policy Evaluation: Algorithm

Iterative Policy Evaluation for SSP 〈S ,A, c,T , s0,S?〉,
complete policy π and ε > 0

initialize V̂ 0 to 0 for goal states, otherwise arbitarily
for i = 1, 2, . . . :

for all states s ∈ S \ S?:
V̂ i
π(s) := c(π(s)) +

∑
s′∈S T (s, π(s), s ′) · V̂ i−1

π (s ′)

if maxs∈S |V̂ i
π(s)− V̂ i−1

π (s)| < ε:
return V̂ i

π
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F3. Policy Iteration Policy Evaluation

Iterative Policy Evaluation: Properties

Theorem (Convergence of Iterative Policy Evaluation)

Let T = 〈S ,A, c ,T , s0, S?〉 be an SSP, π be a proper policy for T
and V̂ 0

π (s) ∈ R arbitrarily for all s \ S?.

Iterative policy evaluation converges to the true state-values, i.e.,

lim
i→∞

V̂ i
π(s) = Vπ(s) for all s ∈ S .

Proof omitted.

In practice, iterative policy evaluation converges to
true state-values if ε is small enough.
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F3. Policy Iteration Policy Evaluation

Policy Evaluation: MDPs

What about policy evaluation for MDPs?

I MDPs (with finite state set) are always cyclic
⇒ backward induction not applicable

I but goal state not required for iterative policy evaluation

I albeit traces are infinite, iterative policy evaluation converges

I convergence theorem also holds for MDPs
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F3. Policy Iteration Policy Improvement

F3.3 Policy Improvement
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F3. Policy Iteration Policy Improvement

Example: Greedy Action

1 2 3 4

1

2

3

4

5

V̂ 18
π (s)

s0⇒
9.0

⇒
8.00

⇑
7.00

⇐
9.50

⇑
9.00

⇑
6.50

⇑
6.00

⇐
8.50

⇒
6.50

⇑
4.00

⇐
5.00

⇐
7.50

⇒
5.50

⇑
3.00

⇑
8.50

⇑
2.50

⇒
4.50

⇒
2.00

⇒
1.00 0.00

s?

I Can we learn more from this than the state-values of a policy?

I Yes! By evaluating all actions in each state,
we can derive a better policy
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F3. Policy Iteration Policy Improvement

Example: Greedy Action

1 2 3 4

1

2

3

4

5

V̂ 18
π (s)

s0⇒
9.0

⇑
8.00

⇑
7.00

⇐
9.50

⇑
9.00

⇑
6.50

⇑
6.00

⇐
8.50

⇒
6.50

⇑
4.00

⇐
5.00

⇑
7.50

⇒
5.50

⇑
3.00

⇑
8.50

⇑
2.50

⇒
4.50

⇒
2.00

⇒
1.00 0.00

s?

I Can we learn more from this than the state-values of a policy?

I Yes! By evaluating all actions in each state,
we can derive a better policy
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F3. Policy Iteration Policy Improvement

Greedy Actions and Policies for SSPs

Definition (Greedy Action)

Let s be a state of an SSP T = 〈S ,A, c ,T , s0,S?〉 and
V be a state-value function for T .
The set of greedy actions in s with respect to V is

AV (s) := arg min
a∈A(s)

(
c(a) +

∑
s′∈S

T (s, a, s ′) · V (s ′)

)
.

A policy πV with πV (s) ∈ AV (s) is a greedy policy.

Determining a greedy policy of a given state-value function
is called policy improvement.
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F3. Policy Iteration Policy Improvement

Greedy Actions and Policies for MDPs

Definition (Greedy Action)

Let s be a state of a (discounted-reward) MDP
T = 〈S ,A,R,T , s0, γ〉 and V be a state-value function for T .
The set of greedy actions in s with respect to V is

AV (s) := arg max
a∈A(s)

(
R(s, a) + γ

∑
s′∈S

T (s, a, s ′) · V (s ′)

)
.

A policy πV with πV (s) ∈ AV (s) is a greedy policy.

Determining a greedy policy of a given state-value function
is called policy improvement.
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F3. Policy Iteration Policy Iteration

F3.4 Policy Iteration
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F3. Policy Iteration Policy Iteration

Policy Iteration

I Policy Iteration (PI) was first proposed by Howard in 1960

I based on the observation that the greedy actions
describe a better policy

I starts with arbitrary policy π0
I alternates policy evaluation and policy improvement

I as long as policy changes
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F3. Policy Iteration Policy Iteration

Example: Policy Iteration

1 2 3 4

1

2

3

4

5

π0 = π3

π0

s0⇒
9.00

⇒
8.00

⇑
7.00

⇐
9.50

⇑
9.00

⇑
6.50

⇑
6.00

⇐
8.50

⇒
6.50

⇑
4.00

⇐
5.00

⇐
7.50

⇒
5.50

⇑
3.00

⇑
8.50

⇑
2.50

⇒
4.50

⇒
2.00

⇒
1.00 0.00

s?
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F3. Policy Iteration Policy Iteration

Example: Policy Iteration

1 2 3 4

1

2

3

4

5

π0 = π3

π1

s0⇒
8.50

⇑
7.50

⇑
7.00

⇐
9.50

⇑
9.00

⇑
6.50

⇑
6.00

⇐
8.50

⇒
6.50

⇑
4.00

⇐
5.00

⇑
5.00

⇒
5.50

⇑
3.00

⇑
8.50

⇑
2.50

⇒
4.50

⇒
2.00

⇒
1.00 0.00

s?
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F3. Policy Iteration Policy Iteration

Example: Policy Iteration

1 2 3 4

1

2

3

4

5

π0 = π3

π2 = π3

s0⇒
8.50

⇑
7.50

⇑
7.00

⇐
9.50

⇑
9.00

⇑
6.50

⇑
6.00

⇑
7.50

⇒
6.50

⇑
4.00

⇐
5.00

⇑
5.00

⇒
5.50

⇑
3.00

⇑
8.50

⇑
2.50

⇒
4.50

⇒
2.00

⇒
1.00 0.00

s?
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F3. Policy Iteration Policy Iteration

Policy Iteration: Algorithm

Policy Iteration for SSP or MDP T
initialize π0 to any policy (for SSP: proper)
for i = 0, 1, . . . :

compute Vπi
let πi+1 be a greedy policy w.r.t Vπi
if πi = πi+1:

return πi

Note: if πi (s) ∈ AVπi (s)
then use πi+1(s) := πi (s)

(only update the policy where necessary).
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F3. Policy Iteration Policy Iteration

Properties

I PI computes optimal policy if policy evaluation is exact

I In practice, PI often requires very few iterations . . .

I . . . and is much faster than solving an LP
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F3. Policy Iteration Summary

F3.5 Summary
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F3. Policy Iteration Summary

Summary

I Policy evaluation for an acyclic policy is possible in one sweep
over the state space with backward induction

I Iterative policy evaluation applies state-value function
iteratively and converges to true state-values

I Greedy actions in evaluated policy allow to improve policy

I Policy iteration alternates policy evaluation and policy
improvement

I Policy iteration computes an optimal policy
(if policy evaluation is exact)
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