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F2.1 Introduction

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 5 / 24

F2. Bellman Equation & Linear Programming Introduction

Quality of Solutions

I Solution in classical planning: plan

I Optimality criterion of a solution in classical planning:
minimize plan cost

I Solution in probabilistic planning: policy

I What is the optimality criterion of a solution
in probabilistic planning?
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F2. Bellman Equation & Linear Programming Introduction

Example: Swiss Lotto

Example (Swiss Lotto)

What is the expected payoff of placing one bet in Swiss Lotto for a
cost of CHF 2.50 with (simplified) payouts and probabilities:

CHF 30.000.000 with prob. 1/31474716 (6 + 1)

CHF 1.000.000 with prob. 1/5245786 (6)

CHF 5.000 with prob. 1/850668 (5)

CHF 50 with prob. 1/111930 (4)

CHF 10 with prob. 1/11480 (3)

Solution:
30000000

31474716
+

1000000

5245786
+

5000

850668
+

50

111930
+

10

11480
− 2.5 ≈ −1.35.
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F2. Bellman Equation & Linear Programming Introduction

Expected Values under Uncertainty

Definition (Expected Value of a Random Variable)

Let X be a random variable with a finite number of
outcomes d1, . . . , dn ∈ R, and let di happen with
probability pi ∈ [0, 1] (for i = 1, . . . n) s.t.

∑n
i=1 pi = 1.

The expected value of X is E[X ] =
∑n

i=1(pi · di ).
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F2.2 Bellman Equation
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F2. Bellman Equation & Linear Programming Bellman Equation

Value Functions for MDPs

Definition (Value Functions for MDPs)

Let π be a policy for MDP T = 〈S ,A,R,T , s0, γ〉.
The state-value Vπ(s) of s ∈ Sπ(s0) under π is defined as

Vπ(s) := Qπ(s, π(s))

where the action-value Qπ(s, a) of s and a under π is defined as

Qπ(s, a) := R(s, a) + γ ·
∑

s′∈succ(s,a)

T (s, a, s ′) · Vπ(s ′).

The state-value Vπ(s) describes the expected reward
of applying π in MDP T , starting from s.
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F2. Bellman Equation & Linear Programming Bellman Equation

Bellman Equation in MDPs

Definition (Bellman Equation in MDPs)

Let T = 〈S ,A,R,T , s0, γ〉 be an MDP.

The Bellman equation for a state s of T is the set of equations
that describes V?(s), where

V?(s) := max
a∈A(s)

Q?(s, a)

Q?(s, a) := R(s, a) + γ ·
∑

s′∈succ(s,a)

T (s, a, s ′) · V?(s ′).

The solution V?(s) of the Bellman equation describes the maximal
expected reward that can be achieved from state s in MDP T .
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F2. Bellman Equation & Linear Programming Bellman Equation

Optimal Policy in MDPs

What is the policy that achieves the maximal expected reward?

Definition (Optimal Policy in MDPs)

Let T = 〈S ,A,R,T , s0, γ〉 be an MDP.
A policy π is an optimal policy if π(s) ∈ arg maxa∈A(s)Q?(s, a) for
all s ∈ Sπ(s0) and the expected reward of π in T is V?(s0).
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F2. Bellman Equation & Linear Programming Bellman Equation

Value Functions for SSPs

Definition (Value Functions for SSPs)

Let T = 〈S ,A, c ,T , s0, S?〉 be an SSP and π be a policy for T .

The state-value Vπ(s) of s under π is defined as

Vπ(s) :=

{
0 if s ∈ S?

Qπ(s, π(s)) otherwise,

where the action-value Qπ(s, a) of s and a under π is defined as

Qπ(s, a) := c(a) +
∑

s′∈succ(s,a)

T (s, a, s ′) · Vπ(s ′).

The state-value Vπ(s) describes the expected cost
of applying π in SSP T , starting from s.
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F2. Bellman Equation & Linear Programming Bellman Equation

Bellman Equation in SSPs

Definition (Bellman Equation in SSPs)

Let T = 〈S ,A, c ,T , s0, S?〉 be an SSP.

The Bellman equation for a state s of T is the set of equations
that describes V?(s), where

V?(s) :=

{
0 if s ∈ S?

mina∈A(s)Q?(s, a) otherwise,

Q?(s, a) := c(a) +
∑

s′∈succ(s,a)

T (s, a, s ′) · V?(s ′).

The solution V?(s) of the Bellman equation describes the minimal
expected cost that can be achieved from state s in SSP T .
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F2. Bellman Equation & Linear Programming Bellman Equation

Optimal Policy in SSPs

What is the policy that achieves the minimal expected cost?

Definition (Optimal Policy in SSPs)

Let T = 〈S ,A, c ,T , s0, S?〉 be an SSP.
A policy π is an optimal policy if π(s) ∈ arg mina∈A(s)Q?(s, a) for
all s ∈ Sπ(s0) \ S? and the expected cost of π in T is V?(s0).
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F2. Bellman Equation & Linear Programming Linear Programming

F2.3 Linear Programming
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F2. Bellman Equation & Linear Programming Linear Programming

Linear Programming for SSPs

I Bellman equation: set of equations that describes the
expected cost for each state.

I there are |S | variables and |S | equations
(replacing Q? in V? with the corresponding equation)

I If we solve these equations, we can determine an optimal
policy for the SSP from the state-values.

I Problem: how can we deal with the minimization?

⇒ We have solved the “same” problem before

⇒

with the help of an LP solver
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F2. Bellman Equation & Linear Programming Linear Programming

Reminder: LP for Shortest Path in State Space

Variables
Non-negative variable Distances for each state s

Objective

Maximize Distances0

Subject to

Distances?= 0 for all goal states s?

Distances ≤ Distances′ + c(`) for all transitions s
`−→ s ′
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F2. Bellman Equation & Linear Programming Linear Programming

LP for Expected Cost in SSP

Variables
Non-negative variable ExpCosts for each state s

Objective

Maximize ExpCosts0

Subject to

ExpCosts? = 0 for all goal states s?

ExpCosts ≤ (
∑
s′∈S

T (s, a, s ′) · ExpCosts′) + c(a)

for all s ∈ S and a ∈ A(s)
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F2. Bellman Equation & Linear Programming Linear Programming

LP for Expected Reward in MDP

Variables
Non-negative variable ExpRewards for each state s

Objective

Minimize ExpRewards0

Subject to

ExpRewards ≥ (γ ·
∑
s′∈S

T (s, a, s ′)ExpRewards′) + R(s, a)

for all s ∈ S and A ∈ A(s)
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F2. Bellman Equation & Linear Programming Linear Programming

Complexity of Probabilistic Planning

I an optimal solution for MDPs or SSPs can be
computed with an LP solver

I requires |S | variables and |S | · |A| constraints

I we know that LPs can be solved in polynomial time

I ⇒ solving MDPs or SSPs is a polynomial time problem

How does this relate to the complexity result for classical planning?

Solving MDPs or SSPs is polynomial in |S | · |A|.
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F2. Bellman Equation & Linear Programming Summary

F2.4 Summary
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F2. Bellman Equation & Linear Programming Summary

Summary

I The state-values of a policy specify the expected reward
(cost) of following that policy.

I The Bellman equation describes the state-values
of an optimal policy.

I Linear Programming can be used to solve MDPs and SSPs
in time polynomial in the size of the MDP/SSP.
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