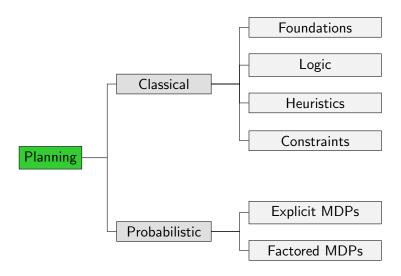
Planning and Optimization F1. Markov Decision Processes

Malte Helmert and Gabriele Röger

Universität Basel

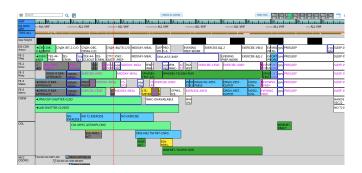
Content of this Course



Motivation •00000000

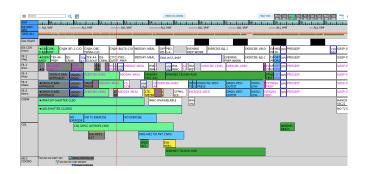
Motivation

Limitations of Classical Planning



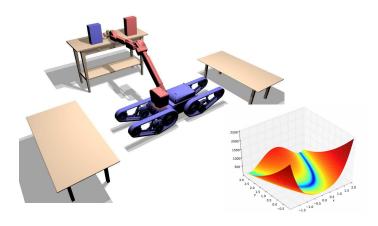
timetable for astronauts on ISS

Generalization of Classical Planning: Temporal Planning



- timetable for astronauts on ISS
- concurrency required for some experiments
- optimize makespan

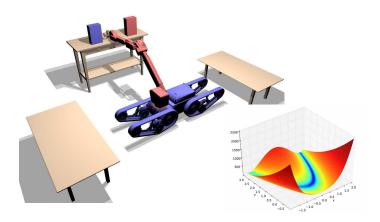
Motivation



kinematics of robotic arm

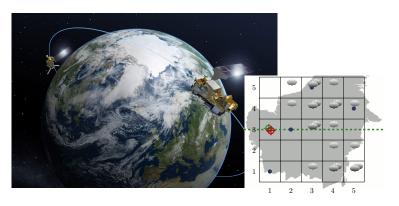
Motivation 00000000

Generalization of Classical Planning: Numeric Planning



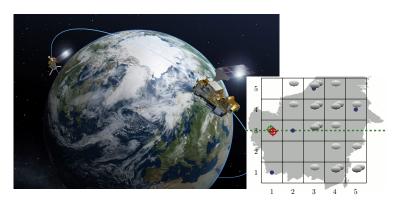
- kinematics of robotic arm
- state space is continuous
- preconditions and effects described by complex functions

Limitations of Classical Planning



satellite takes images of patches on earth

Generalization of Classical Planning: MDPs



- satellite takes images of patches on earth
- weather forecast is uncertain
- find solution with lowest expected cost

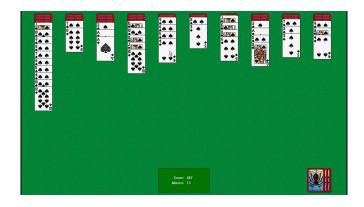
Limitations of Classical Planning

Chess

Generalization of Classical Planning: Multiplayer Games

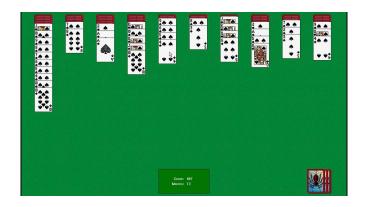
- Chess
- there is an opponent with a contradictory objective

Limitations of Classical Planning



Solitaire

Generalization of Classical Planning: POMDPs

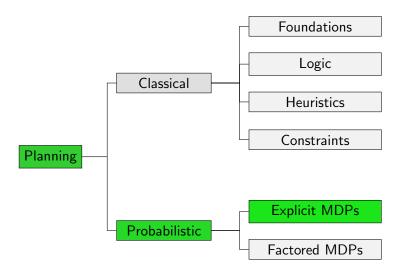


- Solitaire
- some state information cannot be observed
- must reason over belief for good behaviour

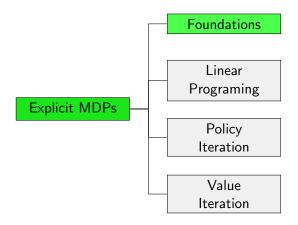
Limitations of Classical Planning

- many applications are combinations of these
- all of these are active research areas
- we focus on one of them: probabilistic planning with Markov decision processes
- MDPs are closely related to games (Why?)

Content of this Course



Content of this Course: Explicit MDPs



Markov Decision Process

Markov Decision Processes

- Markov decision processes (MDPs) studied since the 1950s
- Work up to 1980s mostly on theory and basic algorithms for small to medium sized MDPs (→ Parts F1–F4)
- Today, focus on large, factored MDPs (→ Part F5 and following)
- Fundamental datastructure for reinforcement learning (not covered in this course)
- and for probabilistic planning
- different variants exist.

Reminder: Transition Systems

Definition (Transition System)

A transition system is a 6-tuple $\mathcal{T} = \langle S, L, c, T, s_0, S_{\star} \rangle$ where

- S is a finite set of states,
- L is a finite set of (transition) labels,
- $ullet c: L o \mathbb{R}_0^+$ is a label cost function,
- $T \subseteq S \times L \times S$ is the transition relation,
- $s_0 \in S$ is the initial state, and
- $S_{\star} \subseteq S$ is the set of goal states.
- ightarrow goal states and deterministic transition function

Markov Decision Process

Definition (Markov Decision Process)

A (discounted reward) Markov decision process (MDP) is a 6-tuple $\mathcal{T} = \langle S, A, R, T, s_0, \gamma \rangle$, where

- lacksquare S is a finite set of states,
- A is a finite set of actions,
- $R: S \times A \rightarrow \mathbb{R}$ is the reward function,
- $T: S \times A \times S \mapsto [0,1]$ is the transition function,
- $s_0 \in S$ is the initial state, and
- $\gamma \in (0,1)$ is the discount factor.

For all $s \in S$ and $a \in A$ with T(s, a, s') > 0 for some $s' \in S$, we require $\sum_{s' \in S} T(s, a, s') = 1$.

Reward instead of Goal States

- the agent does not try to reach a goal state but gets a (positive or negative) reward for each action application.
- infinite horizon: agent acts forever
- finite horizon: agent acts for a specified number of steps
- we only consider the variant with an infinite horizon
- immediate reward is worth more than later reward
 - as in economic investments
 - ensures that our algorithms will converge
- lacktriangle the value of a reward decays exponentially with γ
- now full value r, in next step γr , in two steps only $\gamma^2 r$, ...
- aim: maximize expected overall reward

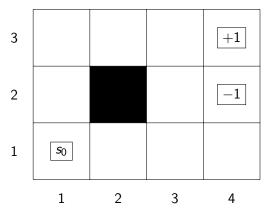
Markov Property

Why is this called a Markov decision process?

Russian mathematician Andrey Markov (1856–1922)

Markov property: the probability distribution for the next state and the reward only depend on the current state (and the action) but not on previously visited states or earlier actions.

Example: Grid World



- moving north goes east with probability 0.4
- only applicable action in (4,2) and (4,3) is *collect*, which
 - sets position back to (1,1)
 - \blacksquare gives reward of +1 in (4,3)
 - \blacksquare gives reward of -1 in (4,2)

Solutions in MDPs

- classical planning
 - a solution is a sequence of operators
 - next state always clear
 - at the end we are in a goal state
- MDP
 - next state uncertain
 - we cannot know in advance what actions will be applicable in the encountered state
 - infinite horizon: act forever
 - $lue{}$ ightarrow sequence of operators does not work
 - \rightarrow policy: specify for each state the action to take
 - lacktriangleright ightarrow at least for all states which we can potentially reach

Terminology (1)

- If p := T(s, a, s') > 0, we write $s \xrightarrow{p:a} s'$ (or $s \xrightarrow{p} s'$ if a is not relevant).
- If T(s, a, s') = 1, we also write $s \stackrel{a}{\rightarrow} s'$ or $s \rightarrow s'$.
- If T(s, a, s') > 0 for some s' we say that a is applicable in s.
- The set of applicable actions in s is A(s). We assume that $A(s) \neq \emptyset$ for all $s \in S$.

Terminology (2)

- the successor set of s and a is $\operatorname{succ}(s, a) = \{s' \in S \mid T(s, a, s') > 0\}.$
- s' is a successor of s if $s' \in \text{succ}(s, a)$ for some a.
- to indicate that s' is a successor of s and a that is sampled according to probability distribution T, we write $s' \sim \text{succ}(s, a)$

Policy for MDPs

Definition (Policy for MDPs)

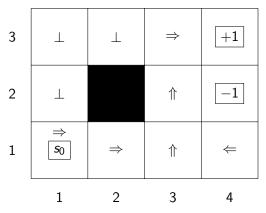
Let $\mathcal{T} = \langle S, A, R, T, s_0, \gamma \rangle$ be a (discounted-reward) MDP. Let π be a mapping $\pi : S \to A \cup \{\bot\}$ such that $\pi(s) \in A(s) \cup \{\bot\}$ for all $s \in S$.

The set of reachable states $S_{\pi}(s)$ from s under π is defined recursively as the smallest set satisfying the rules

- $ullet s \in S_\pi(s)$ and
- $\operatorname{succ}(s', \pi(s')) \subseteq S_{\pi}(s)$ for all $s' \in S_{\pi}(s)$ where $\pi(s') \neq \bot$.

If $\pi(s') \neq \bot$ for all $s' \in S_{\pi}(s_0)$, then π is a policy for \mathcal{T} .

Example: Grid World



- moving *north* goes *east* with probability 0.4
- only applicable action in (4,2) and (4,3) is *collect*, which
 - sets position back to (1,1)
 - \blacksquare gives reward of +1 in (4,3)
 - \blacksquare gives reward of -1 in (4,2)

I Want My Goal States Back!

- We also consider a variant of MDPs that are not discounted-reward MDPs.
- Stochastic Shortest Path Problems (SSPs) are closer to classical planning.
 - goal states
 - but still stochastic transition function
- We will use the same concepts for SSPs as for discounted-reward MDPs (e.g. policies)

Stochastic Shortest Path Problem

Definition (Stochastic Shortest Path Problem)

A stochastic shortest path problem (SSP) is a 6-tuple

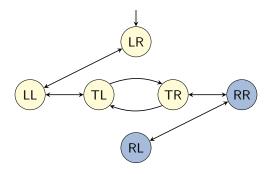
$$\mathcal{T} = \langle S, A, c, T, s_0, S_{\star} \rangle$$
, where

- S is a finite set of states,
- A is a finite set of actions,
- $c: A \to \mathbb{R}_0^+$ is an action cost function,
- $T: S \times A \times S \mapsto [0,1]$ is the transition function,
- $s_0 \in S$ is the initial state, and
- $S_{\star} \subseteq S$ is the set of goal states.

For all $s \in S$ and $a \in A$ with T(s, a, s') > 0 for some $s' \in S$, we require $\sum_{s' \in S} T(s, a, s') = 1$.

Note: An SSP is the probabilistic analogue of a transition system.

Transition System Example



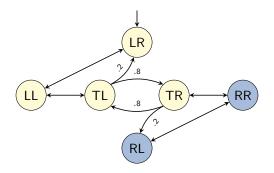
Stochastic Shortest Path Problem

000000000

Logistics problem with one package, one truck, two locations:

- location of package: domain $\{L, R, T\}$
- location of truck: domain $\{L, R\}$

SSP Example



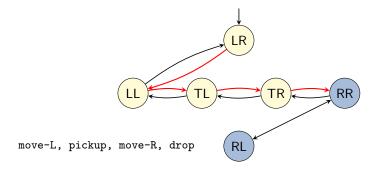
Stochastic Shortest Path Problem

0000000000

Logistics problem with one package, one truck, two locations:

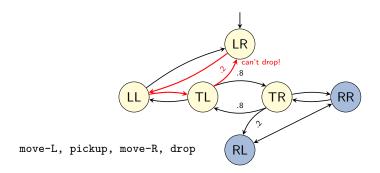
- location of package: $\{L, R, T\}$
- location of truck: {*L*, *R*}
- if truck moves with package, 20% chance of losing package

Solutions in Transition Systems



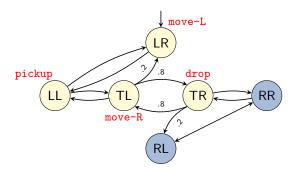
- in a deterministic transition system a solution is a plan, i.e., a sequence of operators that leads from s_0 to some $s_{\star} \in S_{\star}$
- an optimal solution is a cheapest possible plan
- a deterministic agent that executes a plan will reach the goal

Solutions in SSPs



- the same plan does not always work for the probabilistic agent (not reaching the goal or not being able to execute the plan)
- non-determinism can lead to a different outcome than anticipated in the plan
- need again a policy

Solutions in SSPs



Policy for SSPs

Definition (Policy for SSPs)

Let $\mathcal{T} = \langle S, A, c, T, s_0, S_{\star} \rangle$ be an SSP.

Let π be a mapping $\pi: S \to A \cup \{\bot\}$ such that $\pi(s) \in A(s) \cup \{\bot\}$ for all $s \in S$.

The set of reachable states $S_{\pi}(s)$ from s under π is defined recursively as the smallest set satisfying the rules

- $s \in S_{\pi}(s)$ and
- $\operatorname{succ}(s', \pi(s')) \subseteq S_{\pi}(s)$ for all $s' \in S_{\pi}(s) \setminus S_{\star}$ where $\pi(s') \neq \bot$.

If $\pi(s') \neq \bot$ for all $s' \in S_{\pi}(s_0) \setminus S_{\star}$, then π is a policy for \mathcal{T} . If the probability to eventually reach a goal is 1 for all $s' \in S_{\pi}(s_0)$ then π is a proper policy for \mathcal{T} .

Additional Requirements for SSPs

- We make two requirements for SSPs:
 - There is a proper policy.
 - Every improper policy incurs infinite cost from every reachable state from which it does not reach a goal with probability 1.
- We will only consider SSPs that satisfy these requirements.
- What does this mean in practise?
 - no unavoidable dead ends
 - no cost-free cyclic behaviour possible
- With these requirements every cost-minimizing policy is a proper policy.

Summary

Summary

- There are many planning scenarios beyond classical planning.
- For the rest of the course we consider probabilistic planning.
- (Discounted-reward) MDPs allow state-dependent rewards that are discounted over an infinite horizon
- SSPs are transition systems with a probabilistic transition relation.
- Solutions of SSPs and MDPs are policies.
- For MDPs we want to maximize the expected reward, for SSPs we want to minimize the expected cost.