Planning and Optimization

E7. Network Flow Heuristics

Malte Helmert and Gabriele Roger

Universitat Basel

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

1/34

Planning and Optimization

— E7. Network Flow Heuristics

E7.1 Introduction

E7.2 Transition Normal Form

E7.3 Flow Heuristic

E7.4 Summary

Content of this Course

—I Foundations |

—I Logic |

—| Heuristics |

Explicit MDPs |

Probabilistic

Factored MDPs |

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

3 /34

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 2 /34
Content of this Course: Constraints
—| Landmarks
Cost
Partitioning
e [ e
Flows

Operator

Counting
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 4/ 34




E7. Network Flow Heuristics Introduction

E7.1 Introduction
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Reminder: SAS™ Planning Tasks

For a SAS™ planning task M= (V,/, 0,):
> V is a set of finite-domain state variables,
» Each atom has the form v = d with v € V,d € dom(v).

» Operator preconditions and the goal formula
are satisfiable conjunctions of atoms.

» Operator effects are conflict-free conjunctions of
atomic effects of the form vy :=di A--- A v, := d,.

Introduction

E7. Network Flow Heuristics Introduction

Example Task (1)

» One package, two trucks, two locations
» Variables:
» pos-p with dom(pos-p) = {locy, locy, t1, o}
» pos-t-i with dom(pos-t-i) = {locy, locy} for i € {1,2}
» The package is at location 1 and the trucks at location 2,
» | = {pos-p — locy, pos-t-1 — locy, pos-t-2 — locy)
» The goal is to have the package at location 2 and
truck 1 at location 1.
» ~ = (pos-p = locy) A (pos-t-1 = locy)
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Example Task (2)
» Operators: for i,j, k € {1,2}:
load(t;, locj) = (pos-t-i = locj A\ pos-p = locj,
pos-p := t;, 1)
unload(t;, locj) = (pos-t-i = locj A\ pos-p = t;,
pos-p = locj, 1)
drive(t;, locj, loc) = (pos-t-i = loc;,
pos-t-i := lock, 1)
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Example Task: Observations

Consider some atoms of the example task:

» pos-p = locy initially true and must be false in the goal
> at location 1 the package must be loaded
one time more often than unloaded.

» pos-p = locy initially false and must be true in the goal
> at location 2 the package must be unloaded
one time more often than loaded.

P> pos-p = tj initially false and must be false in the goal
> same number of load and unload actions for truck 1.

Can we derive a heuristic from this kind of information?
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Example: Flow Constraints

Let m be some arbitrary plan for the example task and let
#o0 denote the number of occurrences of operator o in .
Then the following holds:

» pos-p = locy initially true and must be false in the goal
> at location 1 the package must be loaded

one time more often than unloaded.
#load(ty, locy) + #load(to, locy) =
1+ #unload(ty, loci) + #unload(tz, locy )

» pos-p = tj initially false and must be false in the goal
> same number of load and unload actions for truck 1.
#unload(ty, loc1) + #unload(ty, locy) =
#load(t1, loc1) + #load(t1, locy)
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Network Flow Heuristics: General Idea

Formulate flow constraints for each atom.
These are satisfied by every plan of the task.
The cost of a plan is ) cost(o)#o

vvyyvyy

The objective value of an integer program that minimizes this
cost subject to the flow constraints is a lower bound on the
plan cost (i.e., an admissible heuristic estimate).

» As solving the IP is NP-hard, we solve the LP relaxation
instead.

How do we get the flow constraints?
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How to Derive Flow Constraints?

» The constraints formulate how often an atom can be
produced or consumed.

» “Produced” (resp. “consumed”) means that the atom is false
(resp. true) before an operator application and true (resp.
false) in the successor state.

» For general SAS™ operators, this depends on the state where
the operator is applied: effect v := d only produces v = d
if the operator is applied in a state s with s(v) # d.

» For general SAS™ tasks, the goal does not have to specify a
value for every variable.

> All this makes the definition of flow constraints somewhat
involved and in general such constraints are inequalitites.

Good news: easy for tasks in transition normal form
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E7.2 Transition Normal Form
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Variables Occurring in Conditions and Effects

» Many algorithmic problems for SAS™ planning tasks
become simpler when we can make two further restrictions.

» These are related to the variables that occur
in conditions and effects of the task.

Definition (vars(y), vars(e))
For a logical formula ¢ over finite-domain variables V/,
vars() denotes the set of finite-domain variables occurring in .

For an effect e over finite-domain variables V,
vars(e) denotes the set of finite-domain variables occurring in e.
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Transition Normal Form

Definition (Transition Normal Form)
A SAS™T planning task M= (V,1,0,~)
is in transition normal form (TNF) if
» for all o € O, vars(pre(o)) = vars(eff0)), and
> vars(vy) = V.
In words, an operator in TNF must mention the same variables

in the precondition and effect, and a goal in TNF must mention
all variables (= specify exactly one goal state).
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Converting Operators to TNF: Violations

There are two ways in which an operator o can violate TNF:
» There exists a variable v € vars(pre(0)) \ vars(eff{ 0)).
» There exists a variable v € vars(eff{0)) \ vars(pre(0)).

The first case is easy to address: if v = d is a precondition
with no effect on v, just add the effect v := d.

The second case is more difficult: if we have the effect v := d
but no precondition on v, how can we add a precondition on v
without changing the meaning of the operator?
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Converting Operators to TNF: Multiplying Out

Solution 1: multiplying out

@ While there exists an operator o and a variable
v € vars(eff(0)) with v & vars(pre(o)):
» For each d € dom(v), add a new operator that is like o
but with the additional precondition v = d.
» Remove the original operator.

© Repeat the previous step until no more such variables exist.

Problem:

» If an operator o has n such variables, each with k values
in its domain, this introduces k" variants of o.

» Hence, this is an exponential transformation.
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Converting Operators to TNF: Auxiliary Values

Solution 2: auxiliary values
© For every variable v, add a new auxiliary value u to its domain.

@ For every variable v and value d € dom(v) \ {u},
add a new operator to change the value of v from d to u
at no cost: (v =d,v:=u,0).

© For all operators o and all variables

v € vars(eff(0)) \ vars(pre(o)),
add the precondition v = u to pre(o).

Properties:

» Transformation can be computed in linear time.

» Due to the auxiliary values, there are new states
and transitions in the induced transition system,
but all path costs between original states remain the same.
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Converting Goals to TNF

» The auxiliary value idea can also be used
to convert the goal v to TNF.

» For every variable v ¢ vars(y), add the condition v = u to ~.

With these ideas, every SAS™ planning task can be
converted into transition normal form in linear time.
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TNF for Example Task (1)

The example task is not in transition normal form:

» Load and unload operators have preconditions on the position
of some truck but no effect on this variable.

» The goal does not specify a value for variable pos-t-2.
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TNF for Example Task (2)

Operators in transition normal form: for i, j, k € {1,2}:

load(t;, locj) = (pos-t-i = locj A\ pos-p = loc;,
pos-p 1= tj A\ pos-t-i := locj, 1)
unload(t;, locj) = (pos-t-i = loc; \ pos-p = t;,
pos-p := locj A\ pos-t-i := locj, 1)
drive(t;, locj, lock) = (pos-t-i = loc;,

pos-t-i := locy, 1)
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TNF for Example Task (3)

To bring the goal in normal form,
> add an additional value u to dom(pos-t-2)
» add zero-cost operators
o1 = (pos-t-2 = locy, pos-t-2 := u,0) and
0p = (pos-t-2 = locy, pos-t-2 := u, 0)
> Add pos-t-2 = u to the goal:
~v = (pos-p = locy) A (pos-t-1 = locy) A (pos-t-2 = u)
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E7.3 Flow Heuristic
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Notation

» In SAS™T tasks, states are variable assignments,
conditions are conjunctions over atoms, and
effects are conjunctions of atomic effects.

» In the following, we use a unifying notation to express
that an atom is true in a state/entailed by a condition/
made true by an effect.

» For state s, we write (v = d) € s to express that s(v) = d.

» For a conjunction of atoms ¢, we write (v = d) € ¢ to express
that ¢ has a conjunct v = d (or alternatively ¢ = v = d).

» For effect e, we write (v = d) € e to express that e contains
the atomic effect v :=d.
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Flow Constraints (1)

A flow constraint for an atom relates how often it can be produced
to how often it can be consumed.

Let o be an operator in transition normal form. Then:
» o produces atom a iff a € eff0) and a & pre(0).
» o consumes atom a iff a € pre(o) and a & eff{0).

» Otherwise o is neutral wrt. atom a.

~~ State-independent
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Flow Constraints (2)

A flow constraint for an atom relates how often it can be produced
to how often it can be consumed.

The constraint depends on the current state s and the goal 7.
If v mentions all variables (as in TNF), the following holds:

> If a € s and a € y then atom a must be equally often
produced and consumed.

» Analogously for a € s and a & ~.

> If a € s and a &~y then a must be consumed one time more
often than it is produced.

> If a¢ s and a € 7y then a must be produced one time more
often than it is consumed.
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Iverson Bracket

The dependency on the current state and the goal can concisely be
expressed with Iverson brackets:

Definition (lverson Bracket)

Let P be a logical proposition (= some statement that can be
evaluated to true or false). Then

[Pl 1 if Pis true
0 if Pis false.
Example: 2#3] =1
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Flow Constraints (3)

Definition (Flow Constraint)

Let M= (V, I, 0,~) be a task in transition normal form.
The flow constraint for atom a in state s is

[a€s]+ Z Count, =[a €]+ Z Count,
o€ 0:aceff(0) o€ 0:acpre(o)

» Count, is an LP variable for the number of occurrences of
operator o.

» Neutral operators either appear on both sides or on none.
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Flow Heuristic

Definition (Flow Heuristic)

Let M= (V,I,0,v) be a SAS™ task in transition normal form and
let A={(v=d)|veV,decdom(v)} be the set of atoms of .

The flow heuristic Af°¥(s) is the objective value of the following
LP or oo if the LP is infeasible:

minimize ) _,cost(o) - Count,  subject to

[aes]+ > Count,=[aen]+ >  Count,forallac A
o€ 0:aceff(0) o€ 0:acpre(o)

Count, >0 foralloe O
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Flow Heuristic on Example Task

~~ Blackboard
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Flow Heuristic: Properties (1)

Theorem
The flow heuristic h°" is goal-aware, safe, consistent and
admissible.

Proof Sketch.
It suffices to prove goal-awareness and consistency.

Goal-awareness: If s = then Count, = 0 for all 0 € O is feasible
and the objective function has value 0. As Count, > 0 for all
variables and operator costs are nonnegative, the objective value
cannot be smaller.
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Flow Heuristic: Properties (2)

Proof Sketch (continued).

Consistency: Let o be an operator that is applicable in state s and
let s" = s[o].

Increasing Count, by one in an optimal feasible assignment for the
LP for state s yields a feasible assignment for the LP for state s,
where the objective function is h1°%(s") + cost(o).

This is an upper bound on Af°"(s), so in total

hflow(s) < hflow(s") + cost(o). O
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E7.4 Summary
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Summary

> A flow constraint for an atom describes how the number of
producing operator applications is linked to the number of
consuming operator applications.

» The flow heuristic computes a lower bound on the cost of
each operator sequence that satisfies these constraints for all
atoms.

» The flow heuristic only considers the number of occurrences
of each operator, but ignores their order.
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