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Roadmap for this Chapter

I We first introduce a new normal form
for delete-free STRIPS tasks that simplifies later definitions.

I We then present a method that computes
disjunctive action landmarks for such tasks.

I We conclude with the LM-cut heuristic
that builds on this method.
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Delete-Free STRIPS Planning Task in i-g Form (1)

In this chapter, we only consider delete-free STRIPS tasks
in a special form:

Definition (i-g Form for Delete-free STRIPS)

A delete-free STRIPS planning task 〈V , I ,O, γ〉 is in i-g form if

I V contains atoms i and g

I Initially exactly i is true: I (v) = T iff v = i

I g is the only goal atom: γ = {g}
I Every action has at least one precondition.
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Transformation to i-g Form

Every delete-free STRIPS task Π = 〈V , I ,O, γ〉 can easily be
transformed into an analogous task in i-g form.

I If i or g are in V already, rename them everywhere.

I Add i and g to V .

I Add an operator 〈{i}, {v ∈ V | I (v) = T}, {}, 0〉.
I Add an operator 〈γ, {g}, {}, 0〉.
I Replace all operator preconditions > with i .

I Replace initial state and goal.

For the remainder of this chapter, we assume tasks in i-g form.
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Example: Delete-Free Planning Task in i-g Form

Example

Consider a delete-free STRIPS planning task 〈V , I ,O, γ〉 with
V = {i , a, b, c , d , g}, I = {i 7→ T} ∪ {v 7→ F | v ∈ V \ {i}},
γ = {g} and operators

I oblue = 〈{i}, {a, b}, {}, 4〉,
I ogreen = 〈{i}, {a, c}, {}, 5〉,
I oblack = 〈{i}, {b, c}, {}, 3〉,
I ored = 〈{b, c}, {d}, {}, 2〉, and

I oorange = 〈{a, d}, {g}, {}, 0〉.

optimal solution to reach g from i :

I plan: 〈oblue, oblack, ored, oorange〉
I cost: 4 + 3 + 2 + 0 = 9 (= h+(I ) because plan is optimal)
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E3.2 Cut Landmarks
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Justification Graphs

Definition (Precondition Choice Function)

A precondition choice function (pcf) P : O → V for a
delete-free STRIPS task Π = 〈V , I ,O, γ〉 in i-g form
maps each operator to one of its preconditions
(i.e. P(o) ∈ pre(o) for all o ∈ O).

Definition (Justification Graphs)

Let P be a pcf for 〈V , I ,O, γ〉 in i-g form. The justification graph
for P is the directed, edge-labeled graph J = 〈V ,E 〉, where

I the vertices are the variables from V , and

I E contains an edge P(o)
o−→ a for each o ∈ O, a ∈ add(o).
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Example: Justification Graph

Example (Precondition Choice Function)

P(oblue) = P(ogreen) = P(oblack) = i , P(ored) = b, P(oorange) = a

P ′(oblue) = P ′(ogreen) = P ′(oblack) = i , P ′(ored) = c, P ′(oorange) = d

i

a

b

c

d

g

oblue = 〈{i}, {a, b}, {}, 4〉
ogreen = 〈{i}, {a, c}, {}, 5〉
oblack = 〈{i}, {b, c}, {}, 3〉
ored = 〈{b, c}, {d}, {}, 2〉

oorange = 〈{a, d}, {g}, {}, 0〉
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Cuts

Definition (Cut)

A cut in a justification graph is a subset C of its edges such that
all paths from i to g contain an edge from C .

i

a

b

c

d

g

oblue = 〈{i}, {a, b}, {}, 4〉
ogreen = 〈{i}, {a, c}, {}, 5〉
oblack = 〈{i}, {b, c}, {}, 3〉
ored = 〈{b, c}, {d}, {}, 2〉

oorange = 〈{a, d}, {g}, {}, 0〉
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Cuts are Disjunctive Action Landmarks

Theorem (Cuts are Disjunctive Action Landmarks)

Let P be a pcf for 〈V , I ,O, γ〉 (in i-g form) and
C be a cut in the justification graph for P.

The set of edge labels from C (formally {o | 〈v , o, v ′〉 ∈ C})
is a disjunctive action landmark for I .

Proof idea:

I The justification graph corresponds to a simpler problem
where some preconditions (those not picked by the pcf)
are ignored.

I Cuts are landmarks for this simplified problem.

I Hence they are also landmarks for the original problem.
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Example: Cuts in Justification Graphs

Example (Landmarks)

I L1 = {oorange} (cost = 0)

I L3 = {ored} (cost = 2)

I L2 = {ogreen, oblack} (cost = 3)

I L4 = {ogreen, oblue} (cost = 4)

i

a

b

c

d

g

oblue = 〈{i}, {a, b}, {}, 4〉
ogreen = 〈{i}, {a, c}, {}, 5〉
oblack = 〈{i}, {b, c}, {}, 3〉
ored = 〈{b, c}, {d}, {}, 2〉

oorange = 〈{a, d}, {g}, {}, 0〉
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Power of Cuts in Justification Graphs

I Which landmarks can be computed with the cut method?

I all interesting ones!

Proposition (perfect hitting set heuristics)

Let L be the set of all “cut landmarks” of a given planning task
with initial state I . Then hMHS(L) = h+(I ).

 Hitting set heuristic for L is perfect.

Proof idea:

I Show 1:1 correspondence of hitting sets H for L and plans,
i.e., each hitting set for L corresponds to a plan,
and vice versa.
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E3.3 The LM-Cut Heuristic
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LM-Cut Heuristic: Motivation

I In general, there are exponentially many pcfs, hence
computing all relevant landmarks is not tractable.

I The LM-cut heuristic is a method that chooses pcfs
and computes cuts in a goal-oriented way.

I As a side effect, it computes
I a cost partitioning over multiple instances of hmax that is also
I a saturated cost partitioning over disjunctive action landmarks.

 currently one of the best admissible planning heuristic
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LM-Cut Heuristic

hLM-cut: Helmert & Domshlak (2009)

Initialize hLM-cut(I ) := 0. Then iterate:

1 Compute hmax values of the variables. Stop if hmax(g) = 0.

2 Compute justification graph G for the P that chooses
preconditions with maximal hmax value

3 Determine the goal zone Vg of G that consists of all nodes
that have a zero-cost path to g .

4 Compute the cut L that contains the labels of all edges
〈v , o, v ′〉 such that v 6∈ Vg , v ′ ∈ Vg and v can be reached
from i without traversing a node in Vg .
It is guaranteed that cost(L) > 0.

5 Increase hLM-cut(I ) by cost(L).

6 Decrease cost(o) by cost(L) for all o ∈ L.
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Example: Computation of LM-Cut

i
0

a
4

00

b
3

00

c
3

110

d
5

33110

g
5

44110

1 Compute hmax values of the variables1 Compute hmax values of the variables. Stop if hmax(g) = 0.2 Compute justification graph3 Determine goal zone4 Compute cut5 Increase hLM-cut(I ) by cost(L)6 Decrease cost(o) by cost(L) for all o ∈ L

oblue = 〈{i}, {a, b}, {}, 4〉
ogreen = 〈{i}, {a, c}, {}, 5〉
oblack = 〈{i}, {b, c}, {}, 3〉
ored = 〈{b, c}, {d}, {}, 0〉

oorange = 〈{a, d}, {g}, {}, 0〉

round P(oorange) P(ored) landmark cost

1 d b {ored} 2

{ogreen, oblue}
{ogreen, oblack}

hLM-cut(I ) 2
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Example: Computation of LM-Cut

i
0

a
4

00

b
3

00

c
3

110

d

53

3

110

g

54

4

110

1 Compute hmax values of the variables1 Compute hmax values of the variables. Stop if hmax(g) = 0.2 Compute justification graph3 Determine goal zone4 Compute cut5 Increase hLM-cut(I ) by cost(L)6 Decrease cost(o) by cost(L) for all o ∈ L

oblue = 〈{i}, {a, b}, {}, 0〉
ogreen = 〈{i}, {a, c}, {}, 1〉
oblack = 〈{i}, {b, c}, {}, 3〉
ored = 〈{b, c}, {d}, {}, 0〉

oorange = 〈{a, d}, {g}, {}, 0〉

round P(oorange) P(ored) landmark cost

1 d b {ored} 2

2 a b {ogreen, oblue} 4

{ogreen, oblack}

hLM-cut(I ) 6
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Example: Computation of LM-Cut

i
0

a

40

0

b

30

0

c

31

1

0

d

5331

1

0

g

5441

1

0

1 Compute hmax values of the variables1 Compute hmax values of the variables. Stop if hmax(g) = 0.2 Compute justification graph3 Determine goal zone4 Compute cut5 Increase hLM-cut(I ) by cost(L)6 Decrease cost(o) by cost(L) for all o ∈ L

oblue = 〈{i}, {a, b}, {}, 0〉
ogreen = 〈{i}, {a, c}, {}, 0〉
oblack = 〈{i}, {b, c}, {}, 2〉
ored = 〈{b, c}, {d}, {}, 0〉

oorange = 〈{a, d}, {g}, {}, 0〉

round P(oorange) P(ored) landmark cost

1 d b {ored} 2

2 a b {ogreen, oblue} 4

3 d c {ogreen, oblack} 1

hLM-cut(I ) 7
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Properties of LM-Cut Heuristic

Theorem

Let 〈V , I ,O, γ〉 be a delete-free STRIPS task in i-g normal form.
The LM-cut heuristic is admissible: hLM-cut(I ) ≤ h∗(I ).

Proof omitted.

If Π is not delete-free, we can compute hLM-cut on Π+.
Then hLM-cut is bounded by h+.
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E3.4 Summary & Outlook
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Summary

I Cuts in justification graphs are a general method to find
disjunctive action landmarks.

I The minimum hitting set over all cut landmarks is a
perfect heuristic for delete-free planning tasks.

I The LM-cut heuristic is an admissible heuristic
based on these ideas.
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M. Helmert, G. Röger (Universität Basel) Planning and Optimization 28 / 28


	i-g Form
	

	Cut Landmarks
	

	The LM-Cut Heuristic
	

	Summary & Outlook
	


