

Planning and Optimization

E2. Landmarks: RTG Landmarks & MHS Heuristic

Malte Helmert and Gabriele Röger

Universität Basel

Planning and Optimization

— E2. Landmarks: RTG Landmarks & MHS Heuristic

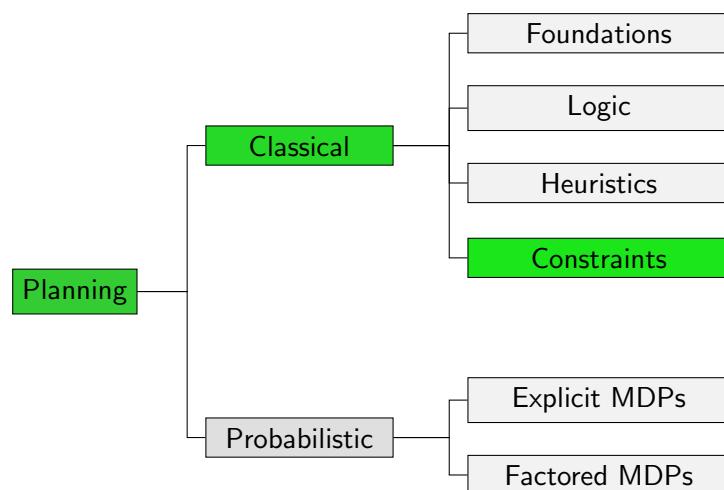
E2.1 Landmarks

E2.2 Landmarks from RTGs

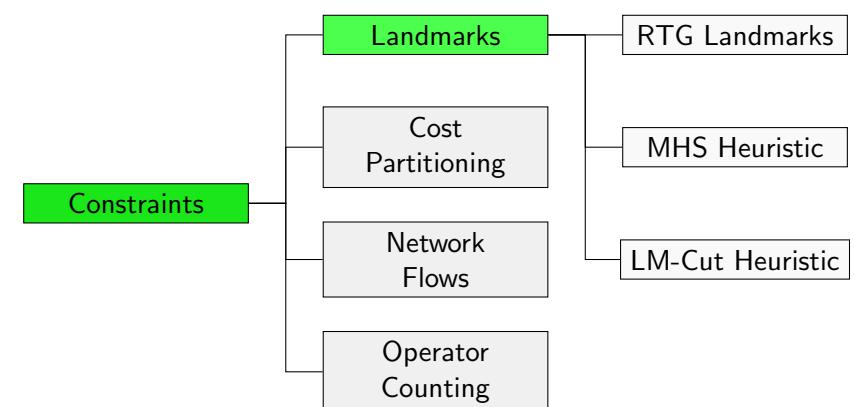
E2.3 Minimum Hitting Set Heuristic

E2.4 Summary

Content of this Course



Content of this Course: Constraints



E2.1 Landmarks

Basic Idea: Something that must happen **in every solution**

For example

- ▶ some operator must be applied (**action landmark**)
- ▶ some atomic proposition must hold (**fact landmark**)
- ▶ some formula must be true (**formula landmark**)

→ Derive heuristic estimate from this kind of information.

We only consider **fact** and **disjunctive action landmarks**.

Definition

Definition (Disjunctive Action Landmark)

Let s be a state of planning task $\Pi = \langle V, I, O, \gamma \rangle$.

A **disjunctive action landmark** for s is a set of operators $L \subseteq O$ such that every label path from s to a goal state contains an operator from L .

The **cost** of landmark L is $cost(L) = \min_{o \in L} cost(o)$.

Definition (Fact Landmark)

Let s be a state of planning task $\Pi = \langle V, I, O, \gamma \rangle$.

An atomic proposition $v = d$ for $v \in V$ and $d \in \text{dom}(v)$ is a **fact landmark** for s if every state path from s to a goal state contains a state s' with $s'(v) = d$.

If we talk about landmarks for the initial state, we omit "for I ".

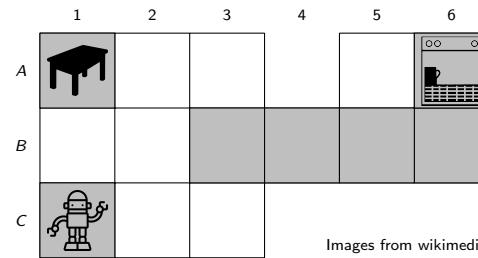
Landmarks: Example

Example

Consider a FDR planning task $\langle V, I, O, \gamma \rangle$ with

- ▶ $V = \{robot-at, dishes-at\}$ with
 - ▶ $\text{dom}(robot-at) = \{A1, \dots, C3, B4, A5, \dots, B6\}$
 - ▶ $\text{dom}(dishes-at) = \{\text{Table}, \text{Robot}, \text{Dishwasher}\}$
- ▶ $I = \{robot-at \mapsto C1, dishes-at \mapsto \text{Table}\}$
- ▶ operators
 - ▶ move- $x-y$ to move from cell x to adjacent cell y
 - ▶ pickup dishes, and
 - ▶ load dishes into the dishwasher.
- ▶ $\gamma = (robot-at = B6) \wedge (dishes-at = \text{Dishwasher})$

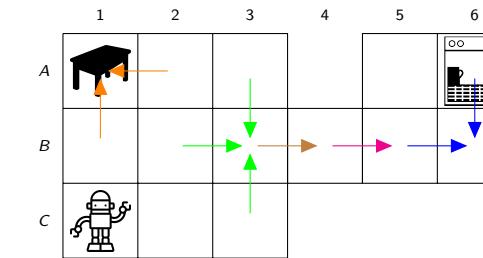
Fact Landmarks: Example



Each fact in gray is a fact landmark:

- ▶ $\text{robot-at} = x$ for $x \in \{A1, A6, B3, B4, B5, B6, C1\}$
- ▶ $\text{dishes-at} = x$ for $x \in \{\text{Dishwasher, Robot, Table}\}$

Disjunctive Action Landmarks: Example



Actions of same color form disjunctive action landmark:

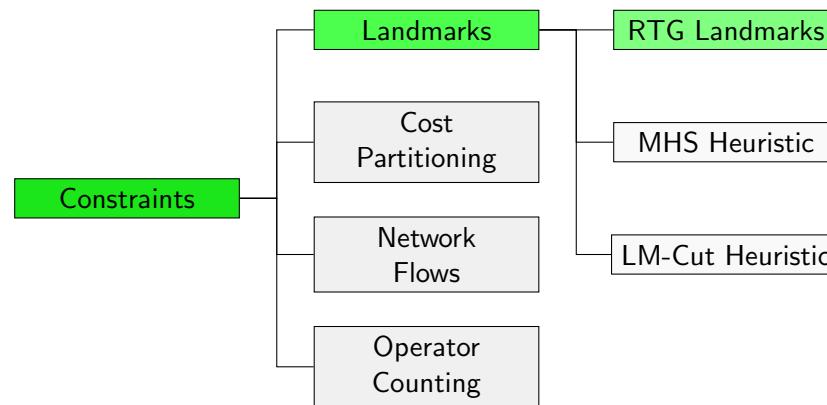
▶ $\{\text{pickup}\}$	▶ $\{\text{move-A6-B6, move-B5-B6}\}$
▶ $\{\text{load}\}$	▶ $\{\text{move-A3-B3, move-B2-B3, move-C3-B3}\}$
▶ $\{\text{move-B3-B4}\}$	▶ $\{\text{move-B1-A1, move-A2-A1}\}$
▶ $\{\text{move-B4-B5}\}$	▶ \dots

Remarks

- ▶ Not every landmark is informative. [Some examples](#):
 - ▶ The set of all operators is a disjunctive action landmark unless the initial state is already a goal state.
 - ▶ Every variable that is initially true is a fact landmark.
- ▶ Deciding whether a given variable is a fact landmark is as hard as the plan existence problem.
- ▶ Deciding whether a given operator set is a disjunctive action landmark is as hard as the plan existence problem.
- ▶ Every fact landmark v that is initially false induces a disjunctive action landmark consisting of all operators that possibly make v true.

E2.2 Landmarks from RTGs

Content of this Course: Constraints



Computing Landmarks

How can we come up with landmarks?

Most landmarks are derived from the **relaxed task graph**:

- ▶ **RHW landmarks**: Richter, Helmert & Westphal. Landmarks Revisited. (AAAI 2008)
- ▶ **LM-Cut**: Helmert & Domshlak. Landmarks, Critical Paths and Abstractions: What's the Difference Anyway? (ICAPS 2009)
- ▶ **h^m landmarks**: Keyder, Richter & Helmert: Sound and Complete Landmarks for And/Or Graphs (ECAI 2010)

We discuss **h^m landmarks** restricted to $m = 1$ and to STRIPS planning tasks.

Incidental Landmarks: Example

Example (Incidental Landmarks)

Consider a STRIPS planning task $\langle V, I, \{o_1, o_2\}, \gamma \rangle$ with

$$\begin{aligned}
 V &= \{a, b, c, d, e, f\}, \\
 I &= \{a \mapsto T, b \mapsto T, c \mapsto F, d \mapsto F, e \mapsto T, f \mapsto F\}, \\
 o_1 &= \langle \{a\}, \{c, d, e\}, \{a, b\} \rangle, \\
 o_2 &= \langle \{d, e\}, \{f\}, \{a, d\} \rangle, \text{ and} \\
 \gamma &= \{e, f\}.
 \end{aligned}$$

Single solution: $\langle o_1, o_2 \rangle$

- ▶ All variables are fact landmarks.
- ▶ Variable b is initially true but irrelevant for the plan.
- ▶ Variable c gets true as “side effect” of o_1 but it is not necessary for the goal or to make an operator applicable.

Causal Landmarks

Definition (Causal Fact Landmark)

Let $\Pi = \langle V, I, O, \gamma \rangle$ be a STRIPS planning task.

An atomic proposition $v = T$ for $v \in V$ is a **causal fact landmark**

- ▶ if $v \in \gamma$
- ▶ or if for all goal paths $\pi = \langle o_1, \dots, o_n \rangle$ there is an o_i with $v \in \text{pre}(o_i)$.

Causal Landmarks: Example

Example (Causal Landmarks)

Consider a STRIPS planning task $\langle V, I, \{o_1, o_2\}, \gamma \rangle$ with

$$\begin{aligned} V &= \{a, b, c, d, e, f\}, \\ I &= \{a \mapsto T, b \mapsto T, c \mapsto F, d \mapsto F, e \mapsto T, f \mapsto F\}, \\ o_1 &= \langle \{a\}, \{c, d, e\}, \{a, b\} \rangle, \\ o_2 &= \langle \{d, e\}, \{f\}, \{a, d\} \rangle, \text{ and} \\ \gamma &= \{e, f\}. \end{aligned}$$

Single solution: $\langle o_1, o_2 \rangle$

- ▶ All variables are fact landmarks for the initial state.
- ▶ Only a, d, e and f are causal landmarks.

What We Are Doing Next

- ▶ Causal landmarks are the desirable landmarks.
- ▶ We can use a simplified version of RTGs to compute causal landmarks for STRIPS planning tasks.
- ▶ We will define landmarks of AND/OR graphs, ...
- ▶ and show how they can be computed.
- ▶ Afterwards we establish that these are landmarks of the planning task.

Simplified Relaxed Task Graph

Definition

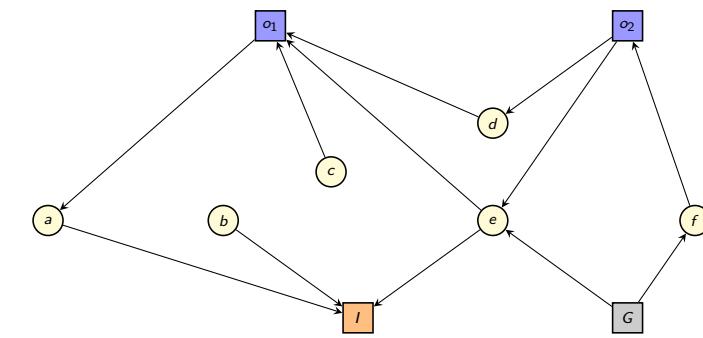
For a STRIPS planning task $\Pi = \langle V, I, O, \gamma \rangle$, the **simplified relaxed task graph** $sRTG(\Pi^+)$ is the AND/OR graph

$\langle N_{\text{and}} \cup N_{\text{or}}, A, \text{type} \rangle$ with

- ▶ $N_{\text{and}} = \{n_o \mid o \in O\} \cup \{v_I, v_G\}$
with $\text{type}(n) = \wedge$ for all $n \in N_{\text{and}}$,
- ▶ $N_{\text{or}} = \{n_v \mid v \in V\}$
with $\text{type}(n) = \vee$ for all $n \in N_{\text{or}}$, and
- ▶ $A = \{\langle n_a, n_o \rangle \mid o \in O, a \in \text{add}(o)\} \cup$
 $\{\langle n_o, n_p \rangle \mid o \in O, p \in \text{pre}(o)\} \cup$
 $\{\langle n_v, n_I \rangle \mid v \in I\} \cup$
 $\{\langle n_G, n_v \rangle \mid v \in \gamma\}$

Simplified RTG: Example

The simplified RTG for our example task is:



Characterizing Equation System

Theorem

Let $G = \langle N, A, \text{type} \rangle$ be an AND/OR graph. Consider the following system of equations:

$$LM(n) = \{n\} \cup \bigcap_{\langle n, n' \rangle \in A} LM(n') \quad \text{type}(n) = \vee$$

$$LM(n) = \{n\} \cup \bigcup_{\langle n, n' \rangle \in A} LM(n') \quad \text{type}(n) = \wedge$$

The equation system has a unique maximal solution (maximal with regard to set inclusion), and for this solution it holds that

$n' \in LM(n)$ iff n' is a landmark for reaching n in G .

Computation of Maximal Solution

Theorem

Let $G = \langle N, A, \text{type} \rangle$ be an AND/OR graph. Consider the following system of equations:

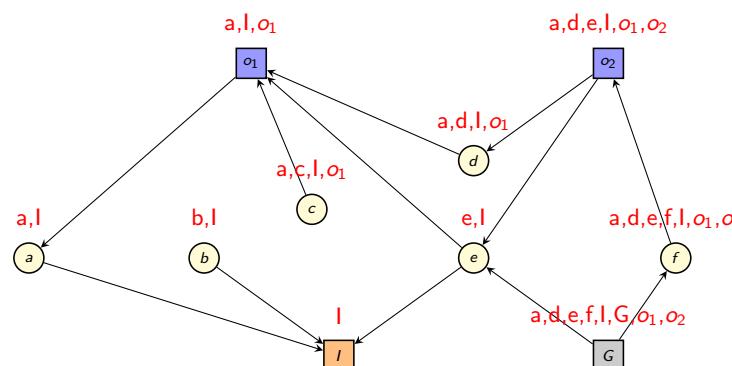
$$LM(n) = \{n\} \cup \bigcap_{\langle n, n' \rangle \in A} LM(n') \quad \text{type}(n) = \vee$$

$$LM(n) = \{n\} \cup \bigcup_{\langle n, n' \rangle \in A} LM(n') \quad \text{type}(n) = \wedge$$

The equation system has a unique maximal solution (maximal with regard to set inclusion).

Computation: Initialize landmark sets as $LM(n) = N_{\text{and}} \cup N_{\text{or}}$ and apply equations as update rules until fixpoint.

Computation: Example



(cf. screen version of slides for step-wise computation)

Relation to Planning Task Landmarks

Theorem

Let $\Pi = \langle V, I, O, \gamma \rangle$ be a STRIPS planning task and let \mathcal{L} be the set of landmarks for reaching n_G in $sRTG(\Pi^+)$.

The set $\{v = T \mid v \in V \text{ and } n_v \in \mathcal{L}\}$ is exactly the set of causal fact landmarks in Π^+ .

For operators $o \in O$, if $n_o \in \mathcal{L}$ then $\{o\}$ is a disjunctive action landmark in Π^+ .

There are no other disjunctive action landmarks of size 1.

(Proofs omitted.)

Computed RTG Landmarks: Example

Example (Computed RTG Landmarks)

Consider a STRIPS planning task $\langle V, I, \{o_1, o_2\}, \gamma \rangle$ with

$$\begin{aligned} V &= \{a, b, c, d, e, f\}, \\ I &= \{a \mapsto T, b \mapsto T, c \mapsto F, d \mapsto F, e \mapsto T, f \mapsto F\}, \\ o_1 &= \langle \{a\}, \{c, d, e\}, \{a, b\} \rangle, \\ o_2 &= \langle \{d, e\}, \{f\}, \{a, d\} \rangle, \text{ and} \\ \gamma &= \{e, f\}. \end{aligned}$$

- ▶ $LM(n_G) = \{a, d, e, f, I, G, o_1, o_2\}$
- ▶ a, d, e , and f are causal fact landmarks of Π^+ .
- ▶ $\{o_1\}$ and $\{o_2\}$ are disjunctive action landmarks of Π^+ .

Landmarks of Π^+ Are Landmarks of Π

Theorem

Let Π be a STRIPS planning task.

All fact landmarks of Π^+ are fact landmarks of Π and all disjunctive action landmarks of Π^+ are disjunctive action landmarks of Π .

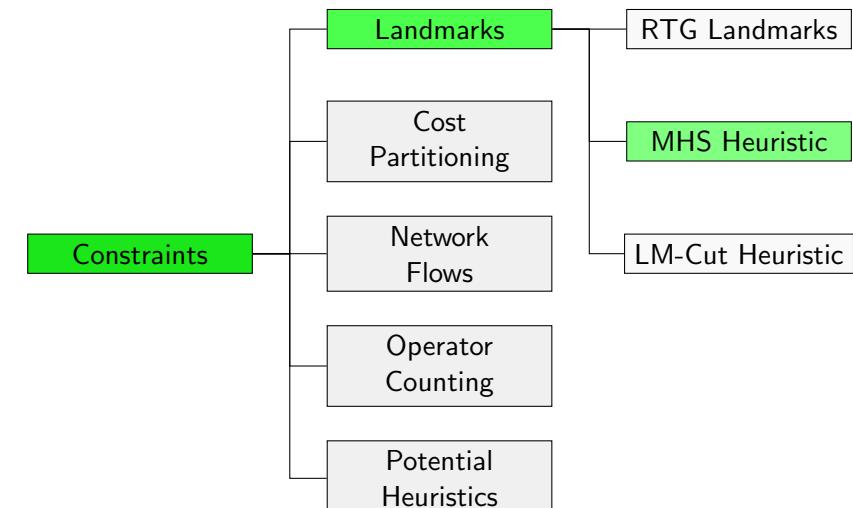
Proof.

Let L be a disjunctive action landmark of Π^+ and π be a plan for Π . Then π is also a plan for Π^+ and, thus, π contains an operator from L .

Let f be a fact landmark of Π^+ . If f is already true in the initial state, then it is also a landmark of Π . Otherwise, every plan for Π^+ contains an operator that adds f and the set of all these operators is a disjunctive action landmark of Π^+ . Therefore, also each plan of Π contains such an operator, making f a fact landmark of Π . \square

E2.3 Minimum Hitting Set Heuristic

Content of this Course: Constraints



Exploiting Disjunctive Action Landmarks

- ▶ The cost $cost(L)$ of a disjunctive action landmark L is an admissible heuristic, but it is usually not very informative.
- ▶ Landmark heuristics typically aim to combine multiple disjunctive action landmarks.

How can we exploit a given set \mathcal{L} of disjunctive action landmarks?

- ▶ Sum of costs $\sum_{L \in \mathcal{L}} cost(L)$?
~~ not admissible!
- ▶ Maximize costs $\max_{L \in \mathcal{L}} cost(L)$?
~~ usually very weak heuristic
- ▶ better: Hitting sets

Hitting Sets

Definition (Hitting Set)

Let X be a set, $\mathcal{F} = \{F_1, \dots, F_n\} \subseteq 2^X$ be a family of subsets of X and $c : X \rightarrow \mathbb{R}_0^+$ be a cost function for X .

A **hitting set** is a subset $H \subseteq X$ that “hits” all subsets in \mathcal{F} , i.e., $H \cap F \neq \emptyset$ for all $F \in \mathcal{F}$. The **cost** of H is $\sum_{x \in H} c(x)$.

A **minimum hitting set (MHS)** is a hitting set with minimal cost.

MHS is a “classical” NP-complete problem (Karp, 1972)

Example: Hitting Sets

Example

$$X = \{o_1, o_2, o_3, o_4\}$$

$$\mathcal{F} = \{\{o_4\}, \{o_1, o_2\}, \{o_1, o_3\}, \{o_2, o_3\}\}$$

$$c(o_1) = 3, c(o_2) = 4, c(o_3) = 5, c(o_4) = 0$$

What is a minimum hitting set?

Solution: $\{o_1, o_2, o_4\}$ with cost $3 + 4 + 0 = 7$

Hitting Sets for Disjunctive Action Landmarks

Idea: disjunctive action landmarks are interpreted as instance of minimum hitting set

Definition (Hitting Set Heuristic)

Let \mathcal{L} be a set of disjunctive action landmarks. The **hitting set heuristic** $h^{\text{MHS}}(\mathcal{L})$ is defined as the cost of a minimum hitting set for \mathcal{L} with $c(o) = cost(o)$.

Proposition (Hitting Set Heuristic is Admissible)

Let \mathcal{L} be a set of disjunctive action landmarks for state s . Then $h^{\text{MHS}}(\mathcal{L})$ is an admissible estimate for s .

Hitting Set Heuristic: Discussion

- ▶ The hitting set heuristic is the **best possible** heuristic that only uses the given information...
- ▶ ...but is NP-hard to compute.
- ▶ ↵ Use approximations that can be efficiently computed.
⇒ **LP-relaxation**, **cost partitioning** (both discussed later)

E2.4 Summary

Summary

- ▶ **Fact landmark**: atomic proposition that is true in each state path to a goal
- ▶ **Disjunctive action landmark**: set L of operators such that every plan uses some operator from L
- ▶ **Relaxed task graphs** allows efficient computation of landmarks
- ▶ **Hitting sets** yield the most accurate heuristic for a given set of disjunctive action landmarks
- ▶ Computation of **minimal hitting set** is NP-hard