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Landmarks

Basic Idea: Something that must happen in every solution

For example

I some operator must be applied (action landmark)

I some atomic proposition must hold (fact landmark)

I some formula must be true (formula landmark)

→ Derive heuristic estimate from this kind of information.

We only consider fact and disjunctive action landmarks.
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Definition

Definition (Disjunctive Action Landmark)

Let s be a state of planning task Π = 〈V , I ,O, γ〉.

A disjunctive action landmark for s is a set of operators L ⊆ O
such that every label path from s to a goal state contains an
operator from L.
The cost of landmark L is cost(L) = mino∈L cost(o).

Definition (Fact Landmark)

Let s be a state of planning task Π = 〈V , I ,O, γ〉.

An atomic proposition v = d for v ∈ V and d ∈ dom(v) is a fact
landmark for s if every state path from s to a goal state contains a
state s ′ with s ′(v) = d .

If we talk about landmarks for the initial state, we omit “for I”.
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Landmarks: Example

Example

Consider a FDR planning task 〈V , I ,O, γ〉 with
I V = {robot-at, dishes-at} with

I dom(robot-at) = {A1, . . . ,C3,B4,A5, . . . ,B6}
I dom(dishes-at) = {Table,Robot,Dishwasher}

I I = {robot-at 7→ C1, dishes-at 7→ Table}
I operators

I move-x-y to move from cell x to adjacent cell y
I pickup dishes, and
I load dishes into the dishwasher.

I γ = (robot-at = B6) ∧ (dishes-at = Dishwasher)
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Fact Landmarks: Example

1 2 3 4 5 6

C

B

A

Images from wikimedia

Each fact in gray is a fact landmark:

I robot-at = x for x ∈ {A1,A6,B3,B4,B5,B6,C1}
I dishes-at = x for x ∈ {Dishwasher,Robot,Table}

I Dummy 1

I Dumym 2
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Disjunctive Action Landmarks: Example

1 2 3 4 5 6
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A

Actions of same color form disjunctive action landmark:

I {pickup}
I {load}
I {move-B3-B4}
I {move-B4-B5}

I {move-A6-B6,move-B5-B6}
I {move-A3-B3,move-B2-B3,move-C3-B3}
I {move-B1-A1,move-A2-A1}
I . . .
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Remarks

I Not every landmark is informative. Some examples:
I The set of all operators is a disjunctive action landmark

unless the initial state is already a goal state.
I Every variable that is initially true is a fact landmark.

I Deciding whether a given variable is a fact landmark
is as hard as the plan existence problem.

I Deciding whether a given operator set is a disjunctive
action landmark is as hard as the plan existence problem.

I Every fact landmark v that is initially false induces a
disjunctive action landmark consisting of all operators that
possibly make v true.
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Computing Landmarks

How can we come up with landmarks?

Most landmarks are derived from the relaxed task graph:

I RHW landmarks: Richter, Helmert & Westphal. Landmarks
Revisited. (AAAI 2008)

I LM-Cut: Helmert & Domshlak. Landmarks, Critical Paths and
Abstractions: What’s the Difference Anyway? (ICAPS 2009)

I hm landmarks: Keyder, Richter & Helmert: Sound and
Complete Landmarks for And/Or Graphs (ECAI 2010)

We discuss hm landmarks restricted to m = 1
and to STRIPS planning tasks.
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Incidental Landmarks: Example

Example (Incidental Landmarks)

Consider a STRIPS planning task 〈V , I , {o1, o2}, γ〉 with

V = {a, b, c , d , e, f },
I = {a 7→ T, b 7→ T, c 7→ F, d 7→ F, e 7→ T, f 7→ F},

o1 = 〈{a}, {c , d , e}, {a, b}〉,
o2 = 〈{d , e}, {f }, {a, d}〉, and

γ = {e, f }.

Single solution: 〈o1, o2〉
I All variables are fact landmarks.

I Variable b is initially true but irrelevant for the plan.

I Variable c gets true as “side effect” of o1 but it is not
necessary for the goal or to make an operator applicable.
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Causal Landmarks

Definition (Causal Fact Landmark)

Let Π = 〈V , I ,O, γ〉 be a STRIPS planning task.

An atomic proposition v = T for v ∈ V is a causal fact landmark

I if v ∈ γ
I or if for all goal paths π = 〈o1, . . . , on〉 there is an oi with

v ∈ pre(oi ).
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Causal Landmarks: Example

Example (Causal Landmarks)

Consider a STRIPS planning task 〈V , I , {o1, o2}, γ〉 with

V = {a, b, c , d , e, f },
I = {a 7→ T, b 7→ T, c 7→ F, d 7→ F, e 7→ T, f 7→ F},

o1 = 〈{a}, {c , d , e}, {a, b}〉,
o2 = 〈{d , e}, {f }, {a, d}〉, and

γ = {e, f }.

Single solution: 〈o1, o2〉
I All variables are fact landmarks for the initial state.

I Only a, d , e and f are causal landmarks.
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What We Are Doing Next

I Causal landmarks are the desirable landmarks.

I We can use a simplified version of RTGs to compute
causal landmarks for STRIPS planning tasks.

I We will define landmarks of AND/OR graphs, . . .

I and show how they can be computed.

I Afterwards we establish that these are landmarks
of the planning task.
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Simplified Relaxed Task Graph

Definition

For a STRIPS planning task Π = 〈V , I ,O, γ〉, the simplified
relaxed task graph sRTG(Π+) is the AND/OR graph
〈Nand ∪ Nor,A, type〉 with

I Nand = {no | o ∈ O} ∪ {vI , vG}
with type(n) = ∧ for all n ∈ Nand,

I Nor = {nv | v ∈ V }
with type(n) = ∨ for all n ∈ Nor, and

I A = {〈na, no〉 | o ∈ O, a ∈ add(o)} ∪
E = {〈no , np〉 | o ∈ O, p ∈ pre(o)} ∪
E = {〈nv , nI 〉 | v ∈ I} ∪
E = {〈nG , nv 〉 | v ∈ γ}
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Simplified RTG: Example

The simplified RTG for our example task is:

a b

c

d

e f

I

o1 o2

G
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Characterizing Equation System

Theorem

Let G = 〈N,A, type〉 be an AND/OR graph. Consider the
following system of equations:

LM(n) = {n} ∪
⋂

〈n,n′〉∈A

LM(n′) type(n) = ∨

LM(n) = {n} ∪
⋃

〈n,n′〉∈A

LM(n′) type(n) = ∧

The equation system has a unique maximal solution (maximal with
regard to set inclusion), and for this solution it holds that

n′ ∈ LM(n) iff n′ is a landmark for reaching n in G .
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Computation of Maximal Solution

Theorem

Let G = 〈N,A, type〉 be an AND/OR graph. Consider the
following system of equations:

LM(n) = {n} ∪
⋂

〈n,n′〉∈A

LM(n′) type(n) = ∨

LM(n) = {n} ∪
⋃

〈n,n′〉∈A

LM(n′) type(n) = ∧

The equation system has a unique maximal solution (maximal with
regard to set inclusion).

Computation: Initialize landmark sets as LM(n) = Nand ∪ Nor and
Computation: apply equations as update rules until fixpoint.
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Computation: Example

a b

c

d

e f

I

o1 o2

G

a-f,I,G,o1,o2 a-f,I,G,o1,o2

a-f,I,G,o1,o2

a-f,I,G,o1,o2

a-f,I,G,o1,o2 a-f,I,G,o1,o2

a-f,I,G,o1,o2 a-f,I,G,o1,o2

a-f,I,G,o1,o2 a-f,I,G,o1,o2

I

a,I b,I e,I

a,I,o1

a,c,I,o1

a,d,I,o1

a,d,e,I,o1,o2

a,d,e,f,I,o1,o2

a,d,e,f,I,G,o1,o2

(cf. screen version of slides for step-wise computation)
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Relation to Planning Task Landmarks

Theorem

Let Π = 〈V , I ,O, γ〉 be a STRIPS planning task and
let L be the set of landmarks for reaching nG in sRTG(Π+).

The set {v = T | v ∈ V and nv ∈ L} is exactly the set of
causal fact landmarks in Π+.

For operators o ∈ O, if no ∈ L then {o} is a
disjunctive action landmark in Π+.
There are no other disjunctive action landmarks of size 1.

(Proofs omitted.)
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Computed RTG Landmarks: Example

Example (Computed RTG Landmarks)

Consider a STRIPS planning task 〈V , I , {o1, o2}, γ〉 with

V = {a, b, c , d , e, f },
I = {a 7→ T, b 7→ T, c 7→ F, d 7→ F, e 7→ T, f 7→ F},

o1 = 〈{a}, {c , d , e}, {a, b}〉,
o2 = 〈{d , e}, {f }, {a, d}〉, and

γ = {e, f }.

I LM(nG ) = {a, d , e, f , I ,G , o1, o2}
I a, d , e, and f are causal fact landmarks of Π+.

I {o1} and {o2} are disjunctive action landmarks of Π+.
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Landmarks of Π+ Are Landmarks of Π

Theorem
Let Π be a STRIPS planning task.

All fact landmarks of Π+ are fact landmarks of Π and all disjunctive
action landmarks of Π+ are disjunctive action landmarks of Π.

Proof.

Let L be a disjunctive action landmark of Π+ and π be a plan for
Π. Then π is also a plan for Π+ and, thus, π contains an operator
from L.

Let f be a fact landmark of Π+. If f is already true in the initial
state, then it is also a landmark of Π. Otherwise, every plan for Π+

contains an operator that adds f and the set of all these operators
is a disjunctive action landmark of Π+. Therefore, also each plan of
Π contains such an operator, making f a fact landmark of Π.
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E2.3 Minimum Hitting Set Heuristic
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Exploiting Disjunctive Action Landmarks

I The cost cost(L) of a disjunctive action landmark L is an
admissible heuristic, but it is usually not very informative.

I Landmark heuristics typically aim to combine multiple
disjunctive action landmarks.

How can we exploit a given set L of disjunctive action landmarks?

I Sum of costs
∑

L∈L cost(L)?
 not admissible!

I Maximize costs maxL∈L cost(L)?
 usually very weak heuristic

I better: Hitting sets
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Hitting Sets

Definition (Hitting Set)

Let X be a set, F = {F1, . . . ,Fn} ⊆ 2X be a family of subsets of
X and c : X → R+

0 be a cost function for X .

A hitting set is a subset H ⊆ X that “hits” all subsets in F , i.e.,
H ∩ F 6= ∅ for all F ∈ F . The cost of H is

∑
x∈H c(x).

A minimum hitting set (MHS) is a hitting set with minimal cost.

MHS is a “classical” NP-complete problem (Karp, 1972)
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Example: Hitting Sets

Example

X = {o1, o2, o3, o4}

F = {{o4}, {o1, o2}, {o1, o3}, {o2, o3}}

c(o1) = 3, c(o2) = 4, c(o3) = 5, c(o4) = 0

What is a minimum hitting set?

Solution: {o1, o2, o4} with cost 3 + 4 + 0 = 7
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Hitting Sets for Disjunctive Action Landmarks

Idea: disjunctive action landmarks are interpreted as
Idea: instance of minimum hitting set

Definition (Hitting Set Heuristic)

Let L be a set of disjunctive action landmarks. The hitting set
heuristic hMHS(L) is defined as the cost of a minimum hitting set
for L with c(o) = cost(o).

Proposition (Hitting Set Heuristic is Admissible)

Let L be a set of disjunctive action landmarks for state s.
Then hMHS(L) is an admissible estimate for s.
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Hitting Set Heuristic: Discussion

I The hitting set heuristic is the best possible heuristic
that only uses the given information. . .

I . . . but is NP-hard to compute.

I  Use approximations that can be efficiently computed.
⇒ LP-relaxation, cost partitioning (both discussed later)
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E2.4 Summary
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Summary

I Fact landmark: atomic proposition that is true in each state
path to a goal

I Disjunctive action landmark: set L of operators such that
every plan uses some operator from L

I Relaxed task graphs allows efficient computation of landmarks

I Hitting sets yield the most accurate heuristic for a given set of
disjunctive action landmarks

I Computation of minimal hitting set is NP-hard
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