Planning and Optimization
D8. Merge-and-Shrink: Algorithm and Heuristic Properties

Malte Helmert and Gabriele Roger

Universitat Basel

Content of this Course

% Foundations |

~| Logic |

—I Constraints |

Explicit MDPs |

Probabilistic

Factored MDPs |

Content of this Course: Heuristics

Abstractions

Delete Relaxation ‘ — .
in General

7 Pattern
Abstraction I
Databases

—{ Merge & Shrink

Potential
Heuristics

Generic Algorithm

@00000

Generic Algorithm

Generic Algorithm
000000

Generic Merge-and-shrink Abstractions: Outline

Using the results of the previous chapter, we can develop
a generic abstraction computation procedure
that takes all state variables into account.

m Initialization: Compute the FTS
consisting of all atomic projections.
m Loop: Repeatedly apply a transformation to the FTS.

m Merging: Combine two factors by replacing them
with their synchronized product.

m Shrinking: If the factors are too large to merge,
make one of them smaller by abstracting it further
(applying an arbitrary abstraction to it).

m Termination: Stop when only one factor is left.

The final factor is then used for an abstraction heuristic.

Generic Algorithm Example Heuristic Properties Further Topics

00@000 [0000 000000«

Generic Algorithm Template

Generic Merge & Shrink Algorithm for planning task [1

F:= F(N)
while |F| > 1:
select type € {merge, shrink}
if type = merge:
select 71,72 € F
F:=(F\ {71, T2}) U{Th ® T2}
if type = shrink:
select T € F
choose an abstraction mapping 8 on T
F=(F\{THu{T"}

return the remaining factor 7% in F

Generic Algorithm
000800

Merge-and-Shrink Strategies

Choices to resolve to instantiate the template:

m When to merge, when to shrink?
~> general strategy

m Which abstractions to merge?
~ merging strategy

m Which abstraction to shrink, and how to shrink it (which 3)?
~> shrinking strategy

Generic Algorithm
000000

Choosing a Strategy

There are many possible ways to resolve these choices,
and we do not cover them in detail.

A typical general strategy:
define a limit V on the number of states allowed in each factor

in each iteration, select two factors we would like to merge

merge them if this does not exhaust the state number limit

otherwise shrink one or both factors just enough
to make a subsequent merge possible

Generic Algorithm

O0000e

Abstraction Mappings

m The pseudo-code as described only returns
the final abstract transition system 7.

m In practice, we also need the abstraction mapping «,
so that we can map concrete states to abstract states
when we need to evaluate heuristic values.

m We do not describe in detail how this can be done.

m Key idea: keep track of which factors are merged,
which factors are shrunk and how.

m “Replay” these decisions to map a given concrete state s
to the abstract state a(s).

® The run-time for such a heuristic look-up is O(|V/])
for a task with state variables V.

Example
000000000

Example

Algorithm Example
0®00000000 ofolelole

Back to the Running Example

Logistics problem with one package, two trucks, two locations:
m state variable package: {L, R, A, B}
m state variable truck A: {L, R}
m state variable truck B: {L, R}

Example
[e]e] le]elelele]e]e]

Initialization Step: Atomic Projection for Package

Tﬂ'{package} .

Mxxk

Example
[e]e]e] lelelele]e]e]

Initialization Step: Atomic Projection for Truck A

Tﬂ-{truck A} -

PAL,DAL,MBxx, PAR,DAR,MBx*x,
PBx,DBx PB*,DBx

MALR

Example
0000800000

Initialization Step: Atomic Projection for Truck B

Tﬂ-{truck B} -

PBL,DBL,MAxx, PBR,DBR,MAxx,
PAx, DA% PAx,DAx

MBLR

current FTS {Tﬂ'{package} , Tﬂ'{truck A} , Tﬂ'{truck B}}

Example

[e]e]e]e]e] lelelele)

First Merge Step
71 = ’Tﬂ—{package} X Tﬂ-{truck A} -

MBx*x MB*%

current FTS: {77, T ™{tuck B} }

Example

[e]e]e]e]o]e] le]ele)

Need to Shrink?

m With sufficient memory, we could now compute 77 ® T ™{truck B}
and recover the full transition system of the task.

m However, to illustrate the general idea,
we assume that memory is too restricted:
we may never create a factor with more than 8 states.

m To make the product fit the bound, we shrink 77 to 4 states.
We can decide freely how exactly to abstract 73.

m In this example, we manually choose an abstraction
that leads to a good result in the end. Making good shrinking
decisions algorithmically is the job of the shrinking strategy.

Example

0000000e00

First Shrink Step

7> := some abstraction of 71

Example

0000000e00

First Shrink Step

7> := some abstraction of 71

Example

0000000e00

First Shrink Step

7> := some abstraction of 71

Example

0000000e00

First Shrink Step

7> := some abstraction of 71

Example

0000000e00

First Shrink Step

7> := some abstraction of 71

Example

0000000e00

First Shrink Step

7> := some abstraction of 71

Example

0000000e00

First Shrink Step

7> := some abstraction of 71

Example

0000000e00

First Shrink Step

7> := some abstraction of 71

Example e operties Further Topics

0000000e00

First Shrink Step

7> := some abstraction of 71

Example e operties Further Topics

0000000e00

First Shrink Step

7> := some abstraction of 71

current FTS: {7, T ™{truck B} }

Example
0000000080

Second Merge Step

73 = 7'2 X Tﬂ-{truck B} -

MALR

current FTS: {73}

Algorithm Example

0O00000000e

Another Shrink Step?

m At this point, merge-and-shrink construction stops.
The distances in the final factor define the heuristic function.

m If there were further state variables to integrate,
we would shrink again, e.g., leading to the following
abstraction (again with four states):

m We get a heuristic value of 3 for the initial state,
better than any PDB heuristic that is a proper abstraction.

m The example generalizes to arbitrarily many trucks,
even if we stick to the fixed size limit of 8.

Heuristic Properties

®000000

Heuristic Properties

Heuristic Properties
0®00000

Properties of Merge-and-Shrink Heuristics

To understand merge-and-shrink abstractions better,
we are interested in the properties of the resulting heuristic:

m Is it admissible (h*(s) < h*(s) for all states s)?
m s it consistent (h%(s) < c(0) 4+ h®(t) for all trans. s 2 t)?
m Is it perfect (h*(s) = h*(s) for all states s)?
Because merge-and-shrink is a generic procedure,
the answers may depend on how exactly we instantiate it:
m size limits
m merge strategy

m shrink strategy

Igorithm Exa Heuristic Properties

[e]e] le]elele) 00000

Further Topics

Merge-and-Shrink as Sequence of Transformations

Consider a run of the merge-and-shrink construction algorithm
with n iterations of the main loop.

Let F; (0 </ < n) be the FTS F after i loop iterations.

Let 7; (0 < i < n) be the transition system represented by F;,
e, Ti=QF;.

m In particular, Fp = F(M) and F, = {7T,}.

m For SAS™ tasks I, we also know Ty = T ().

For a formal study, it is useful to view merge-and-shrink
construction as a sequence of transformations from 7; to Tiy1.

Heuristic Properties

[e]e]e] lelele)

Transformations

Definition (Transformation)

Let 7 =(S,L,c, T,5,S:) and T = (S, L,c, T', s}, S.)

be transition systems with the same labels and costs.

Let 0 : S — S’ map the states of 7 to the states of 7.

The triple 7 = (T,0,T") is called a transformation from 7 to 7.
We also write it as 7% 7.

The transformation 7 induces the heuristic h™ for T
defined as h7(s) = hi(o(s)).

Example: If av is an abstraction mapping for transition system T,
then 7 = T is a transformation.

Heuristic Properties

0O000e00

Special Transformations

m A transformation 7 =7 % T is called conservative if it
corresponds to an abstraction, i.e., if 7/ = T°7.

m A transformation 7 =7 % T is called exact
if it induces the perfect heuristic,
i.e., if h™(s) = h*(s) for all states s of 7.

Merge transformations are always conservative and exact.

Shrink transformations are always conservative.

Heuristic Properties

0000080

Composing Transformations

Merge-and-shrink performs many transformations in sequence.
We can formalize this with a notion of composition:

!
. o2 (o
mGvent=T =T and 7 =T — T,
. . 7 / . . i O'/OO' /i
their composition 77 = 7" o 7 is defined as 7" =T —— T".
m If 7 and 7’ are conservative, then 7/ o 7 is conservative.

m If 7 and 7/ are exact, then 7/ o 7 is exact.

orithm Heuristic Properties
o o 000000e

Properties of Merge-and-Shrink Heuristics

We can conclude the following properties
of merge-and-shrink heuristics for SAS™ tasks:

m The heuristic is always admissible and consistent
(because it is induced by a a composition of conservative
transformations and therefore an abstraction).

m If all shrink transformation used are exact,
the heuristic is perfect (because it is induced by
a composition of exact transformations).

Further Topics
©0000

Further Topics and Literature

operties Further Topics
0®000

Further Topics in Merge and Shrink

Further topics in merge-and-shrink abstraction:
m how to keep track of the abstraction mapping

m efficient implementation
B concrete merge strategies
m often focus on goal variables and causal connectivity
(similar to hill-climbing for pattern selection)
m sometimes based on mutexes or symmetries
m concrete shrink strategies
m especially: h-preserving, f-preserving, bisimulation-based
m (some) bisimulation-based shrinking strategies are exact
m other transformations besides merging and shrinking
m especially: pruning and label reduction

Further Topics
00000

Literature (1)

References on merge-and-shrink abstractions:

@ Klaus Drager, Bernd Finkbeiner and Andreas Podelski.
Directed Model Checking with Distance-Preserving
Abstractions.

Proc. SPIN 2006, pp. 19-34, 2006.
Introduces merge-and-shrink abstractions
(for model checking).

@ Malte Helmert, Patrik Haslum and J6rg Hoffmann.
Flexible Abstraction Heuristics for Optimal Sequential
Planning.

Proc. ICAPS 2007, pp. 176-183, 2007.
Introduces merge-and-shrink abstractions for planning.

Further Topics
0000

Literature (2)

ﬁ Raz Nissim, Jorg Hoffmann and Malte Helmert.
Computing Perfect Heuristics in Polynomial Time:
On Bisimulation and Merge-and-Shrink Abstractions
in Optimal Planning.

Proc. IJCAI 2011, pp. 1983-1990, 2011.
Introduces bisimulation-based shrinking.

@ Malte Helmert, Patrik Haslum, Jorg Hoffmann
and Raz Nissim.
Merge-and-Shrink Abstraction: A Method
for Generating Lower Bounds in Factored State Spaces.
Journal of the ACM 61 (3), pp. 16:1-63, 2014,
Detailed journal version of the previous two publications.

Further Topics
0000®

Literature (3)

@ Silvan Sievers, Martin Wehrle and Malte Helmert.
Generalized Label Reduction for Merge-and-Shrink Heuristics.
Proc. AAAI 2014, pp. 2358-2366, 2014.

Introduces modern version of label reduction.
(There was a more complicated version before.)

[@ Gaojian Fan, Martin Miiller and Robert Holte.
Non-linear merging strategies for merge-and-shrink
based on variable interactions.

Proc. SoCS 2014, pp. 53-61, 2014.
Introduces UMC and MIASM merging strategies

Summary
@000

Summary

Summary

0e00

Summary (1)

m Merge-and-shrink abstractions are constructed by iteratively
transforming the factored transition system of a planning task.

m Merge transformations combine two factors
into their synchronized product.

m Shrink transformations reduce the size of a factor
by abstracting it.

Summary

Summary (2)

m Projections of SAS™ tasks correspond to
merges of atomic factors.

m By also including shrinking, merge-and-shrink abstractions
generalize projections: they can reflect all state variables,
but in a potentially lossy way.

[e]e] o]

Summary

[e]e]e]]

Summary (3)

m Merge-and-shrink abstractions can be analyzed
by viewing them as a sequence of transformations.
m We only use conservative transformations,
and hence merge-and-shrink heuristics for SAS™ tasks
are admissible and consistent.
m Merge-and-shrink heuristics for SAS™ tasks
that only use exact transformations are perfect.

	Generic Algorithm
	

	Example
	

	Heuristic Properties
	

	Further Topics and Literature
	

	Summary
	

