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Pattern Selection as an Optimization Problem

Only one question remains to be answered now
in order to apply PDBs to planning tasks in practice:

How do we automatically find a good pattern collection?

The Idea
Pattern selection can be cast as an optimization problem:

> Given: a set of candidates
(= pattern collections which fit into a given memory limit)

> Find: a best possible candidate, or an approximation
(= pattern collection with high heuristic quality)
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Pattern Selection as Local Search

How to solve this optimization problem?

» For problems of interesting size, we cannot hope to find

(and prove optimal) a globally optimal pattern collection.

» Question: How many candidates are there?

> Instead, we try to find good solutions by local search.

Two approaches from the literature:
» Edelkamp (2007): using an evolutionary algorithm
» Haslum et al. (2007): using hill-climbing

~> in the following: main ideas of the second approach
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Pattern Selection as Hill-Climbing

Reminder: Hill Climbing
current := an initial candidate
loop forever:
next := a neighbour of current with maximum quality
if quality(next) < quality(current):
return current
current := next

more on hill climbing:
~ Foundations of Artificial Intelligence course FS 2020, Ch. 20-21
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Pattern Selection as Hill-Climbing

Reminder: Hill Climbing
current ;= an initial candidate

loop forever:
next := a neighbour of current with maximum quality

if quality(next) < quality(current):
return current
current := next
Three questions to answer to use this for pattern selection:

@ initial candidate: What is the initial pattern collection?

@ neighbourhood: Which pattern collections are considered next
starting from a given collection?

© quality: How do we evaluate the quality of pattern collections?
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D6.2 Search Neighbourhood
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Search Neighbourhood: Basic Idea

The basic idea is that we
> start from small patterns with only a single variable,
P grow them by adding slightly larger patterns

» and prefer moving to pattern collections that improve
the heuristic value of many states.
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Initial Pattern Collection

1. Initial Candidate
The initial pattern collection is
{{v} | v is a state variable mentioned in the goal formula}.

Motivation:
P patterns with one variable are the simplest possible ones
and hence a natural starting point
» non-goal patterns are trivial (~~ Chapter D5),
so would be useless
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Which Pattern Collections to Consider Next

From this initial pattern collection, we incrementally grow
larger pattern collections to obtain an improved heuristic.

2. Neighbourhood
The neighbours of C are all pattern collections C U {P’} where

» P'=PuU{v} for some P €C,

> P ¢C,

» all variables of P’ are causally relevant for P/,

» P’ is causally connected, and

» all pattern databases in C U {P’} can be represented
within some prespecified space limit.

~= add one pattern with one additional variable at a time

~~ use criteria for redundant patterns (~» Chapter D5)
to avoid neighbours that cannot improve the heuristic
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Checking Causal Relevance and Connectivity

Remark: For causal relevance and connectivity, there is a sufficient
and necessary criterion which is easy to check:

» v is a predecessor of some u € P in the causal graph, or

> v is a successor of some u € P in the causal graph
and is mentioned in the goal formula.
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Evaluating the Quality of Pattern Collections

» The last question we need to answer is how to evaluate
the quality of pattern collections.

» This is perhaps the most critical point: without a good
evaluation criterion, pattern collections are chosen blindly.
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Approaches for Evaluating Heuristic Quality

Three approaches have been suggested:

> estimating the mean heuristic value of the resulting heuristic
(Edelkamp, 2007)

> estimating search effort under the resulting heuristic using
a model for predicting search effort (Haslum et al., 2007)

P> sampling states in the state space and counting how many
of them have improved heuristic values compared to
the current pattern collection (Haslum et al., 2007)

The last approach is most commonly used
and has been shown to work well experimentally.
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Heuristic Quality by Improved Sample States

3. Quality
» Generate M states sy, ..., sy through random walks
in the state space from the initial state
(according to certain parameters not discussed in detail).

» The degree of improvement of a pattern collection C’
which is generated as a successor of collection C
is the number of sample states s; for which h'(s;) > h¢(s;).

> Use the degree of improvement as the quality measure for C’.
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Computing h¢ (s)

> So we need to compute h€ (s) for some states s
and each candidate successor collection C’.

» We have PDB:s for all patterns in C, but not for the new
pattern P’ € C’ (of the form P U {v} for some P € C).

» If possible, we want to avoid fully computing
all PDBs for all neighbours.

Idea:

> For SAS™ tasks M, h”'(s) is identical to the
optimal solution cost for the syntactic projection I1|p.

» We can use any optimal planning algorithm for this.

» In particular, we can use A* search using h” as a heuristic.
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Summary

» One way to automatically find a good pattern collection
is by searching in the space of pattern collections.
» One such approach uses hill-climbing search
P starting from single-variable patterns
» adding patterns with one additional variable at a time
» evaluating patterns by the number of improved sample states
P> By exploiting what we know about redundant patterns,
the hill-climbing search space can be reduced significantly.
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