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Pattern Collections

The space requirements for a pattern database
grow exponentially with the number of state variables
in the pattern.

This places severe limits on the usefulness
of single PDB heuristics h” for larger planning task.

To overcome this limitation, planners using pattern databases
work with collections of multiple patterns.

When using two patterns P; and P, it is always possible
to use the maximum of At and A2 as an admissible
and consistent heuristic estimate.

However, when possible, it is much preferable
to use the sum of APt and hP2 as a heuristic estimate,
since A1 + A2 > max{h"1, K2}
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Criterion for Additive Patterns

Theorem (Additive Pattern Sets)

Let Pi,..., Pk be disjoint patterns for an FDR planning task 1.
If there exists no operator that has an effect

on a variable v; € P; and on a variable v; € P; for some i # j,
then fo:l hPi is an admissible and consistent heuristic for IN.
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Criterion for Additive Patterns

Theorem (Additive Pattern Sets)
Let Pi,..., Pk be disjoint patterns for an FDR planning task 1.

If there exists no operator that has an effect
on a variable v; € P; and on a variable v; € P; for some i # j,
then Ef-‘zl hPi is an admissible and consistent heuristic for IN.

| A\

Proof.

If there exists no such operator, then no label of 7 () affects both
T (M7 and T(MN)™ for i # j. By the theorem on affecting
transition labels, this means that any two projections 7p, and 7p,
are orthogonal. The claim follows with the theorem on additivity
for orthogonal abstractions. [

v

A pattern set {P1,..., P} which satisfies the criterion
of the theorem is called an additive pattern set or additive set.
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Finding Additive Pattern Sets

The theorem on additive pattern sets gives us a simple criterion
to decide which pattern heuristics can be admissibly added.

Given a pattern collection C (i.e., a set of patterns),
we can use this information as follows:
@ Build the compatibility graph for C.
m Vertices correspond to patterns P € C.

m There is an edge between two vertices iff
no operator affects both incident patterns.

@ Compute all maximal cliques of the graph.
These correspond to maximal additive subsets of C.
m Computing large cliques is an NP-hard problem,
and a graph can have exponentially many maximal cliques.
m However, there are output-polynomial algorithms for finding
all maximal cliques (Tomita, Tanaka & Takahashi, 2004)
which have led to good results in practice.
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Finding Additive Pattern Sets: Example

Example

Consider a planning task with state variables V = {vq,...,v5}

and the pattern collection C = {Px, ..., Ps} with Py = {vi, vp, v3},
P2 = {Vl, V2}, P3 = {V3}, P4 = {V4} and P5 = {V5}.

There are operators affecting each individual variable,

variables vq and vp, variables v3 and v4 and variables v3 and vs.

What are the maximal cliques in the compatibility graph for C?
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Finding Additive Pattern Sets: Example

Example

Consider a planning task with state variables V = {vq,...,v5}

and the pattern collection C = {Px, ..., Ps} with Py = {vi, vp, v3},
P2 = {Vl, V2}, P3 = {V3}, P4 = {V4} and P5 = {V5}.

There are operators affecting each individual variable,

variables vq and vp, variables v3 and v4 and variables v3 and vs.

What are the maximal cliques in the compatibility graph for C?
Answer: {Pl}, {PQ, P3}, {Pg, P4, P5}
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The Canonical Heuristic Function

Definition (Canonical Heuristic Function)

Let C be a pattern collection for an FDR planning task.

The canonical heuristic h° for pattern collection C is defined as

h(s) =  max Z hP (s),

N Decliques(C) pep

where cliques(C) is the set of all maximal cliques
in the compatibility graph for C.

For all choices of C, heuristic hC is admissible and consistent.
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How Good is the Canonical Heuristic Function?

m The canonical heuristic function is the best possible admissible
heuristic we can derive from C using our additivity criterion.

m Even better heuristic estimates can be obtained from
projection heuristics using a more general additivity criterion
based on an idea called cost partitioning.

~> We will return to this topic in Part E.
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Canonical Heuristic Function: Example

Example

Consider a planning task with state variables V = {vq,...,vs}

and the pattern collection C = {Px, ..., Ps} with Py = {vi, v, v3},
P2 = {V;[7 V2}, P3 = {V3}, P4 = {V4} and P5 = {V5}.

There are operators affecting each individual variable, an operator
that affects v; and v, and an operator that affects vz, v4 and vs.

What are the maximal cliques in the compatibility graph for C?
Answer: {Pl}, {Pg, P3}, {Pg, P4, P5}

What is the canonical heuristic function h€?
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Canonical Heuristic Function: Example

Example

Consider a planning task with state variables V = {vq,...,vs}

and the pattern collection C = {Px, ..., Ps} with Py = {vi, v, v3},
P2 = {V;[7 V2}, P3 = {V3}, P4 = {V4} and P5 = {V5}.

There are operators affecting each individual variable, an operator
that affects v; and v, and an operator that affects vz, v4 and vs.

What are the maximal cliques in the compatibility graph for C?
Answer: {Pl}, {Pg, P3}, {Pg, P4, P5}
What is the canonical heuristic function h€?

Answer:
h¢ = max {h"1, hP2 - hP3 P2 4 pPs o pP5Y)
= max {p{vv2vs} pivive} 4 plusd plvivel 4 pivat 4 plshy
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Computing h¢ Efficiently: Motivation

Consider
e — max{h{vl’vz’v3}, hlvivat 4 plvs} plvivel 4 plval 4 h{Vs}}_
m We need to evaluate this expression for every search node.
m It is thus worth to spend some effort in precomputations
to make the evaluation more efficient.

A naive implementation requires 5 PDB lookups
(one for each pattern) and maximizes over 3 additive sets.

Can we do better?
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Dominated Sum Theorem

Theorem (Dominated Sum)

Summar

Let {Pl, .

task N, and let P be a pattern with P; C P for all i € {1,..., k}.
Then S K, hPi < hP.

.., P} be an additive pattern set for an FDR planning
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Dominated Sum Theorem

Theorem (Dominated Sum)

Let {Pi,..., Py} be an additive pattern set for an FDR planning
task N, and let P be a pattern with P; C P for all i € {1,..., k}.

Then S K, hPi < hP.

Proof.

Because P; C P, all projections 7p, are coarsenings

of the projection mp. Let 77 := T (M)™.

We can view each h” as an abstraction heuristic for solving 7.

By the argumentation of the previous theorem, {Py,..., P} is an
additive pattern set and hence Ef‘zl hPi is an admissible heuristic
for solving 7”. Hence, Zf-;l hPi is bounded by the optimal

goal distances in 7, which implies > | hP < hP.
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Dominated Sum Corollary

Corollary (Dominated Sum)

Let {P1,...,Pp} and {Qu,..., Qm} be additive pattern sets
of an FDR planning task such that each pattern P;
is a subset of some pattern Q; (not necessarily proper).

Then Y 7_y hPi < 37, h<.
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Dominated Sum Corollary

Corollary (Dominated Sum)

Let {P1,...,Pp} and {Qu,..., Qm} be additive pattern sets
of an FDR planning task such that each pattern P;
is a subset of some pattern Q; (not necessarily proper).

Then Y 7_y hPi < 37, h<.

where (1) holds because each P; is contained in some Q;
and (2) follows from the dominated sum theorem. O
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Dominance Pruning

m We can use the dominated sum corollary
to simplify the representation of h¢:
sums that are dominated by other sums can be pruned.

m The dominance test can be performed in polynomial time.

max{h{V17V27V3}, h{v1,v2} + h{V3,}7 h{vl,v2} + h{v4} + h{VE‘}}
= max {hlvv 2t pivivel o plvel 4 pleh)

~> number of PDB lookups reduced from 5 to 4;
number of additive sets reduced from 3 to 2
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Redundant Patterns

m The previous example shows that sometimes,
not all patterns in a pattern collection are useful.

m Pattern {v3} could be removed because
it does not affect the heuristic value.

m In this section, we will show that certain patterns
are never useful and should thus never be considered.

m Knowing about such redundant patterns is useful for
algorithms that try to find good patterns automatically.

~~ It allows us to focus on the useful ones.

Summary
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Non-Goal Patterns

Theorem (Non-Goal Patterns are Trivial)

Let M be a SAS™ planning task, and let P be a pattern for I

such that no variable in P is mentioned in the goal formula of T1.
Then hP(s) = 0 for all states s.

All states in the abstraction are goal states. O I

~> Patterns with no goal variables are redundant.
They should not be included in a pattern collection.
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Causal Graphs: Motivation

m For more interesting notions of redundancy,
we need to introduce causal graphs.

m Causal graphs describe the dependency structure
between the state variables of a planning task.

m Causal graphs are a general tool for analyzing planning tasks.

m They are used in many contexts besides abstraction heuristics.
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Causal Graphs

Definition (Causal Graph)
Let M= (V,I,O,~) be an FDR planning task.

The causal graph of I, written CG(I1), is the directed graph
whose vertices are the state variables V' and which has an arc (u, v)
iff u # v and there exists an operator o € O such that:

m u appears anywhere in o (in precondition, effect conditions
or atomic effects), and

m v is modified by an effect of o.

Idea: an arc (u, v) in the causal graph indicates that variable u
is in some way relevant for modifying the value of v
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Causally Relevant Variables

Definition (Causally Relevant)

Let M= (V,I,0O,~) be an FDR planning task,

and let P C V be a pattern for 1.

We say that v € P is causally relevant for P if CG(IN),
restricted to the variables of P, contains a directed path from v
to a variable v/ € P that is mentioned in the goal formula ~.

Note: The definition implies that variables in P mentioned
in the goal are always causally relevant for P.
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Causally Irrelevant Variables are Useless

Theorem (Causally Irrelevant Variables are Useless)

Let P C V be a pattern for an FDR planning task I, and let
P’ C P consist of all variables that are causally relevant for P.

Then hP(s) = hP'(s) for all states s.

~> Patterns P where not all variables are causally relevant are
redundant. The smaller subpattern P’ should be used instead.
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Causally Irrelevant Variables are Useless: Proof

Proof Sketch.

(>): holds because 7p is a refinement of mp
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Causally Irrelevant Variables are Useless: Proof

Proof Sketch.
(>): holds because 7p is a refinement of mp

(<): Obvious if h¥'(s) = co; else, consider an optimal abstract
plan (o1, ..., 0p) for mp/(s) in T ()™

W.l.o.g., each o; modifies some variable in P’.

(Other o; are redundant and can be omitted.)

Because P’ includes all variables causally relevant for P,

no variable in P\ P’ is mentioned in any o; or in the goal.

Then the same abstract plan also is a solution for wp(s) in T (I)™7.

Hence, the optimal solution cost under abstraction mp
is no larger than under mp:.
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Causally Connected Patterns

Definition (Causally Connected)

Let M= (V,I,O,v) be an FDR planning task,

and let P C V be a pattern for 1.

We say that P is causally connected if the subgraph of CG(IT)

induced by P is weakly connected (i.e., contains a path
from every vertex to every other vertex, ignoring arc directions).

Summar

y
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Disconnected Patterns are Decomposable

Theorem (Causally Disconnected Patterns are Decomposable)

Let P C V be a pattern for a SAS™ planning task I

that is not causally connected, and let Py, P> be a partition of P
into non-empty subsets such that CG(I) contains no arc
between the two sets.

Then hP(s) = hPi(s) + hP2(s) for all states s.

~» Causally disconnected patterns P are redundant.
The smaller subpatterns P; and P, should be used instead.
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Disconnected Patterns are Decomposable: Proof

Proof Sketch.
(>): There is no arc between P; and P, in the causal graph,
and thus there is no operator that affects both patterns.

Therefore, they are additive, and hP > hPr + hP2 follows
from the dominated sum theorem.

(<): Obvious if h*1(s) = oo or h2(s) = co. Else, consider
optimal abstract plans p; for 7 ()™ and py for T(M)™"2.
Because the variables of the two projections do not interact,
concatenating the two plans yields an abstract plan for 7(I)™.

Hence, the optimal solution cost under abstraction 7p is at most
the sum of costs of p; and py, and thus h” < AP 4 P2,
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Summary
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Summary (1)

m When faced with multiple PDB heuristics (a pattern
collection), we want to admissibly add their values where
possible, and maximize where addition is inadmissible.

m A set of patterns is additive if each operator affects (i.e.,

assigns to a variable from) at most one pattern in the set.

m The canonical heuristic function is the best possible
additive/maximizing combination for a given pattern
collection given this additivity criterion.

Summary
o] Yo}
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Summary (2)

Not all patterns need to be considered, as some are redundant:
m Patterns should include a goal variable (else h” = 0).

m Patterns should only include causally relevant variables
(others can be dropped without affecting the heuristic value).

m Patterns should be causally connected (disconnected patterns
can be split into smaller subpatterns at no loss).
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